SamvYang commited on
Commit
1555ecb
·
verified ·
1 Parent(s): e567233

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +14 -0
  2. README_CN.md +14 -0
README.md CHANGED
@@ -146,6 +146,8 @@ Each instance is a JSON object with the following fields:
146
 
147
  ## 💻 Usage
148
 
 
 
149
  ```python
150
  from datasets import load_dataset
151
 
@@ -159,6 +161,18 @@ skill_tasks = [d for d in dataset["train"] if d["category"] == "Skill"]
159
  claudecode_tasks = [d for d in dataset["train"] if d["scaffold"]["name"] == "claudecode"]
160
  ```
161
 
 
 
 
 
 
 
 
 
 
 
 
 
162
  ## ⚖️ Evaluation Metrics
163
 
164
  | Metric | Definition | What it measures |
 
146
 
147
  ## 💻 Usage
148
 
149
+ ### 1. Load the Dataset
150
+
151
  ```python
152
  from datasets import load_dataset
153
 
 
161
  claudecode_tasks = [d for d in dataset["train"] if d["scaffold"]["name"] == "claudecode"]
162
  ```
163
 
164
+ ### 2. Evaluation Pipeline
165
+
166
+ The evaluation consists of three steps:
167
+
168
+ | Step | Description |
169
+ |------|-------------|
170
+ | **Environment Setup** | Pull Docker image and start task environment container |
171
+ | **Trajectory Collection** | Send system_prompt and user_query to the agent under test, collect full interaction trajectory |
172
+ | **Scoring** | Use LLM-as-Judge to perform binary evaluation based on checklist |
173
+
174
+ > ⚠️ **Note**: The complete evaluation scripts are under active development and will be open-sourced soon. Stay tuned for updates.
175
+
176
  ## ⚖️ Evaluation Metrics
177
 
178
  | Metric | Definition | What it measures |
README_CN.md CHANGED
@@ -146,6 +146,8 @@ docker run -it --rm minimaxai/feedfeed:<tag> /bin/bash
146
 
147
  ## 💻 使用方法
148
 
 
 
149
  ```python
150
  from datasets import load_dataset
151
 
@@ -159,6 +161,18 @@ skill_tasks = [d for d in dataset["train"] if d["category"] == "Skill"]
159
  claudecode_tasks = [d for d in dataset["train"] if d["scaffold"]["name"] == "claudecode"]
160
  ```
161
 
 
 
 
 
 
 
 
 
 
 
 
 
162
  ## ⚖️ 评估指标
163
 
164
  | 指标 | 定义 | 衡量内容 |
 
146
 
147
  ## 💻 使用方法
148
 
149
+ ### 1. 加载数据集
150
+
151
  ```python
152
  from datasets import load_dataset
153
 
 
161
  claudecode_tasks = [d for d in dataset["train"] if d["scaffold"]["name"] == "claudecode"]
162
  ```
163
 
164
+ ### 2. 评测流程
165
+
166
+ 评测分为三个步骤:
167
+
168
+ | 步骤 | 说明 |
169
+ |------|------|
170
+ | **环境准备** | 拉取 Docker 镜像,启动任务环境容器 |
171
+ | **轨迹收集** | 将 system_prompt 和 user_query 发送给待测智能体,收集完整交互轨迹 |
172
+ | **评分判定** | 基于 checklist 使用 LLM-as-Judge 对轨迹进行二元判定 |
173
+
174
+ > ⚠️ **注意**:完整的评测脚本正在完善中,即将开源。敬请关注本仓库更新。
175
+
176
  ## ⚖️ 评估指标
177
 
178
  | 指标 | 定义 | 衡量内容 |