Spaces:
Sleeping
Sleeping
File size: 5,816 Bytes
bdad329 4c03150 bdad329 fdfd029 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
---
title: API Bridge
emoji: 😻
colorFrom: red
colorTo: purple
sdk: docker
pinned: false
license: gpl-3.0
short_description: The Bridge of The API's
---
# GambitFlow Bridge API
Unified API gateway for all GambitFlow chess engines with Firebase analytics and caching.
## Features
- **Unified Endpoint**: Single API for all models (Nano, Core, Base)
- **Firebase Analytics**: Real-time tracking of moves and matches
- **Intelligent Caching**: 5-minute cache for repeated positions
- **Batch Predictions**: Process multiple positions in one request
- **Model Health Checks**: Monitor all engine statuses
- **No Rate Limiting**: Unrestricted access for all users
## Quick Start
### Basic Request
```bash
curl -X POST https://YOUR-SPACE.hf.space/predict \
-H "Content-Type: application/json" \
-d '{
"fen": "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1",
"model": "core",
"depth": 5,
"time_limit": 3000
}'
```
### Response
```json
{
"best_move": "e2e4",
"evaluation": 0.25,
"depth_searched": 5,
"nodes_evaluated": 125000,
"time_taken": 1500,
"pv": ["e2e4", "e7e5", "Ng1f3"],
"from_cache": false,
"model": "core"
}
```
## Endpoints
### POST /predict
Get best move for a position
**Request Body:**
```json
{
"fen": "string", // Required: FEN notation
"model": "core", // Optional: nano|core|base (default: core)
"depth": 5, // Optional: 1-10 (default: 5)
"time_limit": 3000, // Optional: ms (default: 3000)
"track_stats": true // Optional: track in analytics (default: true)
}
```
### POST /batch
Batch predictions (max 10 positions)
**Request Body:**
```json
{
"model": "core",
"positions": [
{
"fen": "...",
"depth": 5,
"time_limit": 3000
},
// ... more positions
]
}
```
### POST /match/start
Track match start (increments match counter)
**Request Body:**
```json
{
"model": "core"
}
```
### GET /stats
Get usage statistics
**Response:**
```json
{
"total": {
"moves": 15420,
"matches": 532
},
"models": {
"nano": {"moves": 4200, "matches": 150},
"core": {"moves": 8500, "matches": 280},
"base": {"moves": 2720, "matches": 102}
},
"last_updated": 1704724800
}
```
### GET /models
List all available models
### GET /health
Health check
## Configuration
### Environment Variables
Set these in your HuggingFace Space settings:
```bash
# Model Endpoints
NANO_ENDPOINT=https://gambitflow-nexus-nano-inference-api.hf.space
CORE_ENDPOINT=https://gambitflow-nexus-core-inference-api.hf.space
BASE_ENDPOINT=https://gambitflow-synapse-base-inference-api.hf.space
```
### Adding New Models
To add a new model:
1. **Deploy the model inference API** to HuggingFace Spaces
2. **Update `app.py`** - Add model configuration:
```python
MODELS = {
'nano': {...},
'core': {...},
'base': {...},
'new_model': { # Add here
'name': 'New-Model',
'endpoint': 'https://your-new-model-api.hf.space',
'timeout': 40
}
}
```
3. **Set environment variable** (optional, if URL is dynamic):
```bash
NEW_MODEL_ENDPOINT=https://your-new-model-api.hf.space
```
Then update the endpoint loading:
```python
'new_model': {
'name': 'New-Model',
'endpoint': os.getenv('NEW_MODEL_ENDPOINT', 'https://fallback-url.hf.space'),
'timeout': 40
}
```
4. **Update Firebase structure** - Initialize stats for new model in Firebase:
```json
{
"stats": {
"models": {
"new_model": {
"moves": 0,
"matches": 0
}
}
}
}
```
5. **Restart the Space** - Changes will take effect immediately
## Firebase Setup
### 1. Create Firebase Project
- Go to [Firebase Console](https://console.firebase.google.com/)
- Create new project
- Enable Realtime Database
### 2. Get Service Account
- Go to Project Settings → Service Accounts
- Generate new private key
- Copy JSON content
### 3. Configure Space
Add to HuggingFace Space secrets:
**FIREBASE_DATABASE_URL:**
```
https://YOUR-PROJECT.firebaseio.com
```
**FIREBASE_CREDENTIALS:**
```json
{
"type": "service_account",
"project_id": "your-project-id",
"private_key_id": "...",
"private_key": "-----BEGIN PRIVATE KEY-----\n...\n-----END PRIVATE KEY-----\n",
"client_email": "firebase-adminsdk-xxxxx@your-project.iam.gserviceaccount.com",
"client_id": "...",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "..."
}
```
### 4. Database Rules
Set Realtime Database rules:
```json
{
"rules": {
"stats": {
".read": true,
".write": false
}
}
}
```
## Integration Examples
### Python
```python
import requests
API_URL = "https://YOUR-SPACE.hf.space"
# Single prediction
response = requests.post(f"{API_URL}/predict", json={
"fen": "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1",
"model": "core",
"depth": 5
})
result = response.json()
print(f"Best move: {result['best_move']}")
# Get statistics
stats = requests.get(f"{API_URL}/stats").json()
print(f"Total moves: {stats['total']['moves']}")
```
### JavaScript
```javascript
const API_URL = "https://YOUR-SPACE.hf.space";
async function getBestMove(fen, model = 'core') {
const response = await fetch(`${API_URL}/predict`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
fen: fen,
model: model,
depth: 5
})
});
return await response.json();
}
// Usage
const result = await getBestMove('rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1');
console.log(`Best move: ${result.best_move}`);
```
---
**GambitFlow Bridge API** - Unified gateway for chess AI engines |