Update app.py
Browse files
app.py
CHANGED
|
@@ -5,200 +5,105 @@ import gradio as gr
|
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
from datetime import datetime
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
'centroid_x': cx,
|
| 98 |
-
'centroid_y': cy
|
| 99 |
-
})
|
| 100 |
-
valid_contours.append(contour)
|
| 101 |
-
|
| 102 |
-
return valid_contours, cells, red_mask
|
| 103 |
-
|
| 104 |
-
def analyze_image(self, image):
|
| 105 |
-
"""Analyze the blood cell image and generate visualizations."""
|
| 106 |
-
if image is None:
|
| 107 |
-
return None, None, None, None
|
| 108 |
-
|
| 109 |
-
# Detect cells
|
| 110 |
-
contours, cells, mask = self.detect_cells(image)
|
| 111 |
-
vis_img = image.copy()
|
| 112 |
-
|
| 113 |
-
# Draw detections
|
| 114 |
-
for cell in cells:
|
| 115 |
-
contour = contours[cell['label'] - 1]
|
| 116 |
-
color = (0, 0, 255) if cell['type'] == 'RBC' else (255, 0, 0)
|
| 117 |
-
cv2.drawContours(vis_img, [contour], -1, color, 2)
|
| 118 |
-
cv2.putText(vis_img, f"{cell['type']}",
|
| 119 |
-
(cell['centroid_x'], cell['centroid_y']),
|
| 120 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 1)
|
| 121 |
-
|
| 122 |
-
# Create DataFrame
|
| 123 |
-
df = pd.DataFrame(cells)
|
| 124 |
-
|
| 125 |
-
# Generate summary statistics
|
| 126 |
-
if not df.empty:
|
| 127 |
-
rbc_count = len(df[df['type'] == 'RBC'])
|
| 128 |
-
wbc_count = len(df[df['type'] == 'WBC'])
|
| 129 |
-
|
| 130 |
-
summary_stats = {
|
| 131 |
-
'total_rbc': rbc_count,
|
| 132 |
-
'total_wbc': wbc_count,
|
| 133 |
-
'rbc_avg_size': df[df['type'] == 'RBC']['area'].mean() if rbc_count > 0 else 0,
|
| 134 |
-
'wbc_avg_size': df[df['type'] == 'WBC']['area'].mean() if wbc_count > 0 else 0,
|
| 135 |
-
}
|
| 136 |
-
|
| 137 |
-
# Add summary stats to DataFrame
|
| 138 |
-
for k, v in summary_stats.items():
|
| 139 |
-
df[k] = v
|
| 140 |
-
|
| 141 |
-
# Generate visualization
|
| 142 |
-
fig = self.generate_analysis_plots(df)
|
| 143 |
-
|
| 144 |
-
return vis_img, mask, fig, df
|
| 145 |
-
|
| 146 |
-
def generate_analysis_plots(self, df):
|
| 147 |
-
"""Generate analysis plots for the detected cells."""
|
| 148 |
-
if df.empty:
|
| 149 |
-
return None
|
| 150 |
-
|
| 151 |
-
plt.style.use('dark_background')
|
| 152 |
-
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
|
| 153 |
-
|
| 154 |
-
# Cell count by type
|
| 155 |
-
cell_counts = df['type'].value_counts()
|
| 156 |
-
axes[0, 0].bar(cell_counts.index, cell_counts.values, color=['red', 'blue'])
|
| 157 |
-
axes[0, 0].set_title('Cell Count by Type')
|
| 158 |
-
|
| 159 |
-
# Size distribution
|
| 160 |
-
for cell_type, color in zip(['RBC', 'WBC'], ['red', 'blue']):
|
| 161 |
-
if len(df[df['type'] == cell_type]) > 0:
|
| 162 |
-
axes[0, 1].hist(df[df['type'] == cell_type]['area'],
|
| 163 |
-
bins=20, alpha=0.5, color=color, label=cell_type)
|
| 164 |
-
axes[0, 1].set_title('Cell Size Distribution')
|
| 165 |
-
axes[0, 1].legend()
|
| 166 |
-
|
| 167 |
-
# Circularity by type
|
| 168 |
-
for cell_type, color in zip(['RBC', 'WBC'], ['red', 'blue']):
|
| 169 |
-
cell_data = df[df['type'] == cell_type]
|
| 170 |
-
if len(cell_data) > 0:
|
| 171 |
-
axes[1, 0].scatter(cell_data['area'], cell_data['circularity'],
|
| 172 |
-
c=color, label=cell_type, alpha=0.6)
|
| 173 |
-
axes[1, 0].set_title('Area vs Circularity')
|
| 174 |
-
axes[1, 0].legend()
|
| 175 |
-
|
| 176 |
-
# Spatial distribution
|
| 177 |
-
for cell_type, color in zip(['RBC', 'WBC'], ['red', 'blue']):
|
| 178 |
-
cell_data = df[df['type'] == cell_type]
|
| 179 |
-
if len(cell_data) > 0:
|
| 180 |
-
axes[1, 1].scatter(cell_data['centroid_x'], cell_data['centroid_y'],
|
| 181 |
-
c=color, label=cell_type, alpha=0.6)
|
| 182 |
-
axes[1, 1].set_title('Spatial Distribution')
|
| 183 |
-
axes[1, 1].legend()
|
| 184 |
-
|
| 185 |
-
plt.tight_layout()
|
| 186 |
-
return fig
|
| 187 |
-
|
| 188 |
-
# Create Gradio interface
|
| 189 |
-
analyzer = BloodCellAnalyzer()
|
| 190 |
demo = gr.Interface(
|
| 191 |
-
fn=
|
| 192 |
inputs=gr.Image(type="numpy"),
|
| 193 |
outputs=[
|
| 194 |
-
gr.Image(label="
|
| 195 |
-
gr.Image(label="
|
| 196 |
gr.Plot(label="Analysis Plots"),
|
| 197 |
-
gr.
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
description="Upload an image to analyze red and white blood cells."
|
| 201 |
)
|
| 202 |
|
| 203 |
-
|
| 204 |
-
demo.launch()
|
|
|
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
from datetime import datetime
|
| 7 |
|
| 8 |
+
def preprocess_image(image):
|
| 9 |
+
"""Enhance image contrast, apply thresholding, and clean noise."""
|
| 10 |
+
if len(image.shape) == 2:
|
| 11 |
+
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
| 12 |
+
|
| 13 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
| 14 |
+
|
| 15 |
+
# Apply Gaussian blur to remove noise
|
| 16 |
+
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
|
| 17 |
+
|
| 18 |
+
# Otsu's Thresholding (more robust than adaptive for blood cells)
|
| 19 |
+
_, binary = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
| 20 |
+
|
| 21 |
+
# Morphological operations to improve segmentation
|
| 22 |
+
kernel = np.ones((3, 3), np.uint8)
|
| 23 |
+
clean_mask = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel, iterations=2)
|
| 24 |
+
clean_mask = cv2.morphologyEx(clean_mask, cv2.MORPH_OPEN, kernel, iterations=1)
|
| 25 |
+
|
| 26 |
+
return clean_mask
|
| 27 |
+
|
| 28 |
+
def detect_blood_cells(image):
|
| 29 |
+
"""Detect blood cells and extract features."""
|
| 30 |
+
mask = preprocess_image(image)
|
| 31 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 32 |
+
|
| 33 |
+
features = []
|
| 34 |
+
total_area = 0
|
| 35 |
+
|
| 36 |
+
for i, contour in enumerate(contours, 1):
|
| 37 |
+
area = cv2.contourArea(contour)
|
| 38 |
+
perimeter = cv2.arcLength(contour, True)
|
| 39 |
+
circularity = (4 * np.pi * area / (perimeter * perimeter)) if perimeter > 0 else 0
|
| 40 |
+
|
| 41 |
+
# Filtering: Only count reasonable-sized circular objects
|
| 42 |
+
if 100 < area < 5000 and circularity > 0.7:
|
| 43 |
+
M = cv2.moments(contour)
|
| 44 |
+
if M["m00"] != 0:
|
| 45 |
+
cx = int(M["m10"] / M["m00"])
|
| 46 |
+
cy = int(M["m01"] / M["m00"])
|
| 47 |
+
features.append({
|
| 48 |
+
'ID': i, 'Area': area, 'Perimeter': perimeter,
|
| 49 |
+
'Circularity': circularity, 'Centroid_X': cx, 'Centroid_Y': cy
|
| 50 |
+
})
|
| 51 |
+
total_area += area
|
| 52 |
+
|
| 53 |
+
# Summary Statistics
|
| 54 |
+
avg_cell_size = total_area / len(features) if features else 0
|
| 55 |
+
cell_density = len(features) / (image.shape[0] * image.shape[1]) # Density per pixel
|
| 56 |
+
|
| 57 |
+
summary = {
|
| 58 |
+
'Total Cells': len(features),
|
| 59 |
+
'Avg Cell Size': avg_cell_size,
|
| 60 |
+
'Cell Density': cell_density
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
return contours, features, mask, summary
|
| 64 |
+
|
| 65 |
+
def process_image(image):
|
| 66 |
+
if image is None:
|
| 67 |
+
return None, None, None, None, None
|
| 68 |
+
|
| 69 |
+
contours, features, mask, summary = detect_blood_cells(image)
|
| 70 |
+
vis_img = image.copy()
|
| 71 |
+
|
| 72 |
+
for feature in features:
|
| 73 |
+
contour = contours[feature['ID'] - 1]
|
| 74 |
+
cv2.drawContours(vis_img, [contour], -1, (0, 255, 0), 2)
|
| 75 |
+
cv2.putText(vis_img, str(feature['ID']), (feature['Centroid_X'], feature['Centroid_Y']),
|
| 76 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
|
| 77 |
+
|
| 78 |
+
df = pd.DataFrame(features)
|
| 79 |
+
return vis_img, mask, df, summary
|
| 80 |
+
|
| 81 |
+
def analyze(image):
|
| 82 |
+
vis_img, mask, df, summary = process_image(image)
|
| 83 |
+
|
| 84 |
+
plt.style.use('dark_background')
|
| 85 |
+
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
|
| 86 |
+
|
| 87 |
+
if not df.empty:
|
| 88 |
+
axes[0].hist(df['Area'], bins=20, color='cyan', edgecolor='black')
|
| 89 |
+
axes[0].set_title('Cell Size Distribution')
|
| 90 |
+
|
| 91 |
+
axes[1].scatter(df['Area'], df['Circularity'], alpha=0.6, c='magenta')
|
| 92 |
+
axes[1].set_title('Area vs Circularity')
|
| 93 |
+
|
| 94 |
+
return vis_img, mask, fig, df, summary
|
| 95 |
+
|
| 96 |
+
# Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
demo = gr.Interface(
|
| 98 |
+
fn=analyze,
|
| 99 |
inputs=gr.Image(type="numpy"),
|
| 100 |
outputs=[
|
| 101 |
+
gr.Image(label="Processed Image"),
|
| 102 |
+
gr.Image(label="Binary Mask"),
|
| 103 |
gr.Plot(label="Analysis Plots"),
|
| 104 |
+
gr.Dataframe(label="Detected Cells Data"),
|
| 105 |
+
gr.JSON(label="Summary Statistics")
|
| 106 |
+
]
|
|
|
|
| 107 |
)
|
| 108 |
|
| 109 |
+
demo.launch()
|
|
|