Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +29 -16
src/streamlit_app.py
CHANGED
|
@@ -1,29 +1,42 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
|
| 7 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
|
| 11 |
-
#
|
| 12 |
if "chat_history" not in st.session_state:
|
| 13 |
st.session_state.chat_history = []
|
| 14 |
|
| 15 |
-
# Input box
|
| 16 |
user_input = st.text_input("You:", key="input")
|
| 17 |
|
| 18 |
if user_input:
|
| 19 |
-
|
| 20 |
-
conversation = Conversation(user_input)
|
| 21 |
-
result = chatbot(conversation)
|
| 22 |
-
|
| 23 |
-
response = result.generated_responses[-1]
|
| 24 |
st.session_state.chat_history.append(("You", user_input))
|
| 25 |
-
st.session_state.chat_history.append(("Bot", response))
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
|
| 29 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
import torch
|
| 4 |
|
| 5 |
+
st.set_page_config(page_title="Qwen Chatbot", layout="centered")
|
| 6 |
+
st.title("🧠 Qwen3-0.6B Chatbot")
|
| 7 |
|
| 8 |
+
@st.cache_resource
|
| 9 |
+
def load_model():
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-0.6B")
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-0.6B", torch_dtype=torch.float32)
|
| 12 |
+
return tokenizer, model
|
| 13 |
|
| 14 |
+
tokenizer, model = load_model()
|
| 15 |
|
| 16 |
+
# Chat state
|
| 17 |
if "chat_history" not in st.session_state:
|
| 18 |
st.session_state.chat_history = []
|
| 19 |
|
|
|
|
| 20 |
user_input = st.text_input("You:", key="input")
|
| 21 |
|
| 22 |
if user_input:
|
| 23 |
+
# Add to chat history
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
st.session_state.chat_history.append(("You", user_input))
|
|
|
|
| 25 |
|
| 26 |
+
# Prepare prompt with full context
|
| 27 |
+
context = ""
|
| 28 |
+
for speaker, msg in st.session_state.chat_history:
|
| 29 |
+
context += f"{speaker}: {msg}\n"
|
| 30 |
+
context += "Bot:"
|
| 31 |
+
|
| 32 |
+
inputs = tokenizer(context, return_tensors="pt")
|
| 33 |
+
outputs = model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.9, temperature=0.7)
|
| 34 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 35 |
+
|
| 36 |
+
# Extract only bot response (after "Bot:")
|
| 37 |
+
bot_msg = response.split("Bot:")[-1].strip()
|
| 38 |
+
st.session_state.chat_history.append(("Bot", bot_msg))
|
| 39 |
+
|
| 40 |
+
# Display conversation
|
| 41 |
+
for speaker, msg in st.session_state.chat_history:
|
| 42 |
+
st.markdown(f"**{speaker}:** {msg}")
|