File size: 19,642 Bytes
ea828c3
 
 
 
 
 
 
7a84f11
ea828c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a84f11
 
 
 
 
ea828c3
 
7a84f11
ea828c3
7a84f11
 
 
ea828c3
 
7a84f11
ea828c3
 
 
 
7a84f11
ea828c3
7a84f11
ea828c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a84f11
 
 
 
 
ea828c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
import asyncio
import os
from typing import Optional, Tuple

# Save original asyncio.run BEFORE any imports that might patch it (nest_asyncio)
_ORIGINAL_ASYNCIO_RUN = asyncio.run

# On ZeroGPU H200, TF32 matmul paths can occasionally trip cuBLAS errors in
# some einsum-heavy models. Prefer full FP32 math for stability.
os.environ.setdefault("NVIDIA_TF32_OVERRIDE", "0")
# ZeroGPU H200-specific workarounds for cuBLAS strided-batch GEMM issues
# H200 has 70GB VRAM, so memory isn't the issue - focus on CUDA context stability
# - Force synchronous CUDA execution to avoid race conditions during dynamic GPU allocation
# - Use deterministic cuBLAS workspace to ensure consistent behavior across GPU allocations
os.environ.setdefault("CUDA_LAUNCH_BLOCKING", "1")
os.environ.setdefault("CUBLAS_WORKSPACE_CONFIG", ":16:8")

import gradio as gr
import numpy as np
from PIL import Image, ImageDraw, ImageFont


# ZeroGPU decorator - only import on Hugging Face Spaces to avoid asyncio conflicts locally
def _make_spaces_fallback():
    class _SpacesFallback:
        @staticmethod
        def GPU(*args, **kwargs):
            def _decorator(fn):
                return fn
            return _decorator
    return _SpacesFallback()

if os.environ.get("SPACE_ID"):
    # Running on Hugging Face Spaces
    try:
        import spaces  # type: ignore
    except Exception:
        spaces = _make_spaces_fallback()  # type: ignore
else:
    # Local development - skip spaces import to avoid asyncio conflicts
    spaces = _make_spaces_fallback()  # type: ignore


def _ensure_cache_dirs() -> None:
    os.makedirs("outputs", exist_ok=True)
    os.makedirs(os.path.join("outputs", "cache"), exist_ok=True)
    os.environ.setdefault("EARTH2STUDIO_CACHE", os.path.join(os.getcwd(), "outputs", "cache"))


def _normalize_to_uint8(x: np.ndarray) -> np.ndarray:
    x = np.asarray(x, dtype=np.float32)
    finite = np.isfinite(x)
    if not finite.any():
        return np.zeros_like(x, dtype=np.uint8)
    vmin = float(np.nanpercentile(x[finite], 2.0))
    vmax = float(np.nanpercentile(x[finite], 98.0))
    if vmax <= vmin:
        return np.zeros_like(x, dtype=np.uint8)
    y = (x - vmin) / (vmax - vmin)
    y = np.clip(y, 0.0, 1.0)
    return (y * 255.0).astype(np.uint8)


def _apply_simple_colormap(u8: np.ndarray) -> np.ndarray:
    """
    Lightweight colormap without matplotlib:
    map grayscale -> RGB using a simple blue->cyan->yellow->red ramp.
    """
    u = u8.astype(np.float32) / 255.0
    r = np.clip(1.5 * u, 0.0, 1.0)
    g = np.clip(1.5 * (1.0 - np.abs(u - 0.5) * 2.0), 0.0, 1.0)
    b = np.clip(1.5 * (1.0 - u), 0.0, 1.0)
    rgb = np.stack([r, g, b], axis=-1)
    return (rgb * 255.0).astype(np.uint8)


def _plot_latlon_field(lon: np.ndarray, lat: np.ndarray, field2d: np.ndarray, title: str) -> str:
    """
    Save a quick image to outputs/ and return the file path.
    Avoids matplotlib/cartopy to keep system deps minimal on Spaces.
    """
    _ensure_cache_dirs()

    out_path = os.path.join("outputs", "t2m.png")
    gray = _normalize_to_uint8(field2d)
    rgb = _apply_simple_colormap(gray)
    img = Image.fromarray(rgb, mode="RGB").resize((1024, 512), resample=Image.BILINEAR)

    draw = ImageDraw.Draw(img)
    text = title
    try:
        font = ImageFont.load_default()
    except Exception:
        font = None
    # simple text background for readability
    pad = 6
    tw, th = draw.textbbox((0, 0), text, font=font)[2:]
    draw.rectangle((0, 0, tw + 2 * pad, th + 2 * pad), fill=(0, 0, 0))
    draw.text((pad, pad), text, fill=(255, 255, 255), font=font)

    img.save(out_path)
    return out_path


def _gpu_duration(nsteps: int) -> int:
    """
    Calculate GPU duration for inference only.
    """
    nsteps = max(1, int(nsteps))
    # 30s base (model to GPU) + 15s per step
    return int(min(300, 30 + nsteps * 15))


@spaces.GPU(duration=lambda forecast_date, nsteps: _gpu_duration(int(nsteps)))
def _run_inference(forecast_date: str, nsteps: int):
    """
    GPU-only function: load model, run inference, return extracted data.
    
    ZeroGPU uses multiprocessing so we can't pass unpicklable objects (GFS, model).
    Everything must be created inside this function.
    """
    import torch
    import earth2studio.run as run
    from earth2studio.data import GFS
    from earth2studio.io import ZarrBackend
    
    _ensure_cache_dirs()
    
    # Critical precision settings for ZeroGPU H200 cuBLAS stability
    torch.backends.cudnn.benchmark = False
    torch.set_float32_matmul_precision("highest")  # Full FP32, no TF32
    torch.backends.cuda.matmul.allow_tf32 = False
    torch.backends.cudnn.allow_tf32 = False
    torch.cuda.empty_cache()
    
    # Force einsum operand contiguity to avoid cuBLAS strided-batch GEMM errors
    _orig_einsum = torch.einsum
    torch.einsum = lambda eq, *ops: _orig_einsum(
        eq, *[op.contiguous() if torch.is_tensor(op) else op for op in ops]
    )  # type: ignore[assignment]

    # Load model inside GPU function (ZeroGPU requirement)
    from earth2studio.models.px import FCN
    
    package = FCN.load_default_package()
    model = FCN.load_model(package)
    
    # Move to GPU with FP32 precision
    device = torch.device("cuda")
    model = model.float().to(device).eval()
    torch.cuda.empty_cache()
    
    # CRITICAL: Warmup CUDA/cuBLAS context on ZeroGPU's H200 before complex ops
    # This ensures cuBLAS is fully initialized and strided-batch GEMM handlers are ready
    try:
        with torch.no_grad():
            # Create dummy tensors matching FCN's expected input shape
            # FCN expects (batch, channels, lat, lon) - use minimal batch/size for warmup
            dummy_input = torch.randn(1, 73, 8, 8, device=device, dtype=torch.float32)
            _ = model(dummy_input)
            torch.cuda.synchronize()
        torch.cuda.empty_cache()
    except Exception as warmup_err:
        # If warmup fails, log but continue - the actual inference might still work
        print(f"[Warning] CUDA warmup failed: {warmup_err}")
    
    data = GFS()
    io = ZarrBackend()
    
    try:
        with torch.no_grad():
            io = run.deterministic([forecast_date], nsteps, model, data, io, device=device)
        
        # Extract ALL timesteps to numpy arrays (picklable) before returning
        lon = np.asarray(io["lon"][:])
        lat = np.asarray(io["lat"][:])
        # Return all timesteps: shape (1, nsteps+1, lat, lon)
        all_fields = np.asarray(io["t2m"][:])
        
        return lon, lat, all_fields
    finally:
        # Cleanup: restore einsum and free GPU memory
        torch.einsum = _orig_einsum  # type: ignore[assignment]
        del model, data, io
        torch.cuda.empty_cache()
        torch.cuda.synchronize()


def run_forecast(forecast_date: str, nsteps: int):
    """
    Run Earth2Studio deterministic inference and return cached results.
    Returns: (forecast_date, nsteps, lon, lat, all_fields, status_msg)
    """
    _ensure_cache_dirs()

    # Validate inputs
    if not forecast_date:
        return None, None, None, None, None, "ERROR: forecast_date is required (YYYY-MM-DD)."

    nsteps = int(nsteps)
    if nsteps < 1:
        return None, None, None, None, None, "ERROR: nsteps must be >= 1"

    # Run inference on GPU (model loaded inside due to ZeroGPU pickling)
    try:
        lon, lat, all_fields = _run_inference(forecast_date, nsteps)
    except Exception as e:
        return None, None, None, None, None, f"ERROR during inference: {type(e).__name__}: {e}"

    # Return cached data for dynamic plot_step updates
    status = f"SUCCESS: Computed {nsteps} forecast steps ({(nsteps+1)*6} hours total). Use plot_step slider to explore."
    return forecast_date, nsteps, lon, lat, all_fields, status


def update_plot_from_cache(forecast_date, nsteps, lon, lat, all_fields, plot_step):
    """
    Update the displayed plot from cached inference results (no GPU needed).
    """
    if lon is None or lat is None or all_fields is None:
        return None, "No cached results. Click 'Run Inference' first."
    
    plot_step = int(plot_step)
    nsteps = int(nsteps)
    
    # Validate plot_step
    if plot_step < 0 or plot_step > nsteps:
        return None, f"Invalid plot_step {plot_step} (must be 0-{nsteps})"
    
    # Extract the specific timestep
    field = all_fields[0, plot_step]
    
    # Plot
    img_path = _plot_latlon_field(
        lon,
        lat,
        field,
        title=f"{forecast_date} - t2m - lead={6 * plot_step}h",
    )
    return img_path, f"Displaying step {plot_step} (lead time: {6 * plot_step} hours)"


def build_ui() -> gr.Blocks:
    with gr.Blocks(title="Earth2Studio FCN (ZeroGPU)") as demo:
        gr.Markdown(
            """
# Introduction to Earth2Studio

Earth2Studio is a Python package built to empower researchers, scientists, and enthusiasts in the fields of weather and climate science with the latest artificial intelligence models and capabilities. With an intuitive design and a comprehensive feature set, it serves as a robust toolkit for exploring modern AI workflows for weather and climate.

#### Learning Outcomes

- Earth2Studio key features
- How to instantiate a built-in prognostic model
- Creating a data source and IO object
- Running a simple built-in workflow
- Post-processing results

---

## Package Design

The goal of Earth2Studio is to enable users to extrapolate and build beyond what is implemented in it. The design philosophy embodies a **modular architecture** where the inference workflow acts as a flexible adhesive, seamlessly binding together various specialized software components with well-defined interfaces.

<div style="display:flex; justify-content:center; gap: 10px;">
  <figure style="text-align:center; max-width: 900px;">
    <img src="https://raw.githubusercontent.com/openhackathons-org/End-to-End-AI-for-Science/main/workspace/python/jupyter_notebook/Earth2Studio/images/arch.png" style="width:100%; height:auto;">
    <figcaption>Model architecture overview.</figcaption>
  </figure>
</div>

By viewing the inference workflow as a dynamic connector, Earth2Studio facilitates effortless integration of these components, allowing researchers to easily swap out or augment functionalities to suit their specific needs.

<div style="display:flex; justify-content:center; gap: 10px;">
  <figure style="text-align:center; max-width: 900px;">
    <img src="https://raw.githubusercontent.com/openhackathons-org/End-to-End-AI-for-Science/main/workspace/python/jupyter_notebook/Earth2Studio/images/samples.png" style="width:100%; height:auto;">
  </figure>
</div>

### Key Features

- **Built-in Workflows**: Multiple built-in inference workflows to accelerate your development and research.
- **Prognostic Models**: Support for the latest AI weather forecast models offered under a coherent interface.
- **Diagnostic Models**: Diagnostic models for mapping to other quantities of interest.
- **Datasources**: Datasources to connect on-prem and remote data stores to inference workflows.
- **IO**: Simple, yet powerful IO utilities to export data for post-processing.
- **Statistical Operators**: Statistical methods to fuse directly into your inference workflow for more complex uncertainty analysis.

---

## Simple Deterministic Inference

<div style="display:flex; justify-content:center; gap: 10px;">
  <figure style="text-align:center; max-width: 900px;">
    <img src="https://raw.githubusercontent.com/openhackathons-org/End-to-End-AI-for-Science/main/workspace/python/jupyter_notebook/Earth2Studio/images/deterministic.png" style="width:100%; height:auto;">
  </figure>
</div>

All workflows inside Earth2Studio require constructed components to be handed to them. In this example, we use `earth2studio.run.deterministic`.

### Prognostic Models

Prognostic models are a class of models that perform time-integration. They are typically used to generate forecast predictions. Examples include:

| Model | Description |
|-------|-------------|
| `models.px.FCN` | FourCastNet - AFNO-based global weather forecasting model (used in this demo) |
| `models.px.SFNO` | Spherical Fourier Operator Network global prognostic model |
| `models.px.Pangu24` | Pangu Weather 24 hour model |
| `models.px.FuXi` | FuXi weather model with three auto-regressive U-net transformer models |
| `models.px.Aurora` | Aurora transformer-based weather model |

### Data Sources

Data sources are used for downloading, caching and reading different weather/climate data APIs into Xarray data arrays. Used for fetching initial conditions for inference and validation data for scoring:

| Data Source | Description |
|-------------|-------------|
| `data.GFS` | Global Forecast System initial state data source (used in this demo) |
| `data.ARCO` | Analysis-Ready, Cloud Optimized ERA5 re-analysis data curated by Google |
| `data.CDS` | Climate Data Store serving ERA5 re-analysis data |
| `data.HRRR` | High-Resolution Rapid Refresh North-American weather forecast model |
| `data.IFS` | Integrated Forecast System initial state data source |

### IO Backends

IO Backends are used for saving the inference results for further post-processing:

| IO Backend | Description |
|------------|-------------|
| `io.ZarrBackend` | Zarr format backend (used in this demo) |
| `io.NetCDF4Backend` | NetCDF4 format backend |
| `io.XarrayBackend` | Xarray backed IO object |
| `io.KVBackend` | Key-value (dict) backend |

---

## Code Overview

### Set Up

```python
import os
from earth2studio.data import GFS
from earth2studio.io import ZarrBackend
from earth2studio.models.px import FCN

# Set cache directory
os.environ['EARTH2STUDIO_CACHE'] = os.getcwd() + "/outputs/cache"

# Prognostic Model - Load from NGC (ngc://models/nvidia/modulus/modulus_fcn@v0.2)
package = FCN.load_default_package()
model = FCN.load_model(package)

# Data Source - Create the data source
data = GFS()

# IO Backend - Create the IO handler
io = ZarrBackend()
```

### Execute the Workflow

The `run.deterministic` function signature:

```python
def deterministic(
    time: list[str] | list[datetime] | list[np.datetime64],
    nsteps: int,
    prognostic: PrognosticModel,
    data: DataSource,
    io: IOBackend,
    output_coords: CoordSystem = OrderedDict({}),
    device: torch.device | None = None,
) -> IOBackend:
    \"\"\"Built in deterministic workflow.

    This workflow creates a deterministic inference pipeline to produce
    a forecast prediction using a prognostic model.

    Parameters
    ----------
    time : list[str] | list[datetime] | list[np.datetime64]
        List of string, datetimes or np.datetime64
    nsteps : int
        Number of forecast steps
    prognostic : PrognosticModel
        Prognostic model
    data : DataSource
        Data source
    io : IOBackend
        IO object
    output_coords: CoordSystem, optional
        IO output coordinate system override
    device : torch.device, optional
        Device to run inference on

    Returns
    -------
    IOBackend
        Output IO object
    \"\"\"
```

Running the forecast (each step is 6 hours for FCN, ~5-10 seconds/step on GPU):

```python
import earth2studio.run as run

nsteps = 4  # 4 steps = 24 hours
io = run.deterministic(["2024-01-01"], nsteps, model, data, io)

print(io.root.tree())
```

### Post Processing

```python
import matplotlib.pyplot as plt
import cartopy.crs as ccrs

forecast = "2024-01-01"
variable = "t2m"
step = 1  # lead time = 1 x 6 = 6 hrs

projection = ccrs.Robinson()
fig, ax = plt.subplots(subplot_kw={"projection": projection}, figsize=(10, 6))

im = ax.pcolormesh(
    io["lon"][:],
    io["lat"][:],
    io[variable][0, step],
    transform=ccrs.PlateCarree(),
    cmap="Spectral_r",
)

ax.set_title(f"{forecast} - Lead time: {6*step}hrs")
ax.coastlines()
ax.gridlines()
plt.savefig("outputs/t2m_prediction.jpg")
```

---

## Interactive Demo

This Space runs the deterministic workflow using **FCN** (FourCastNet, checkpoint from [NVIDIA NGC](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/models/modulus_fcn)) and plots **t2m** (2-meter temperature) at your chosen lead time.

FCN uses the AFNO (Adaptive Fourier Neural Operator) architecture and requires ~8GB VRAM.
"""
        )

        with gr.Row():
            with gr.Column(scale=1):
                forecast_date = gr.Textbox(
                    label="Forecast Date",
                    value="2024-01-01",
                    placeholder="YYYY-MM-DD",
                    info="GFS data available from ~2020-present",
                    max_lines=1,
                )
            with gr.Column(scale=1):
                nsteps = gr.Slider(
                    minimum=1,
                    maximum=5,
                    step=1,
                    value=5,
                    label="Number of Forecast Steps",
                    info="Each step = 6 hours (5 steps = 30 hours total)",
                )
        
        run_btn = gr.Button("Run Inference on ZeroGPU H200", variant="primary")
        
        with gr.Row():
            plot_step = gr.Slider(
                minimum=0,
                maximum=5,
                step=1,
                value=2,
                label="Display Timestep",
                info="0=initial conditions, 1-N=forecast steps (updates instantly from cache)",
            )
        
        status = gr.Textbox(label="Status", interactive=False)
        out_img = gr.Image(label="2-meter Temperature (t2m)", type="filepath")
        
        # Hidden state to cache inference results
        cached_date = gr.State(value=None)
        cached_nsteps = gr.State(value=None)
        cached_lon = gr.State(value=None)
        cached_lat = gr.State(value=None)
        cached_fields = gr.State(value=None)

        def _sync_plot_step_max(n: int):
            n = int(n)
            # deterministic outputs n+1 time points, so max plot_step = n
            new_max = max(1, n)
            # Default to middle timestep for more interesting view
            new_val = min(n // 2, new_max)
            return gr.Slider(maximum=new_max, value=new_val)

        # Update plot_step max when nsteps changes
        nsteps.change(fn=_sync_plot_step_max, inputs=[nsteps], outputs=[plot_step])
        
        # Run inference and cache results
        run_btn.click(
            fn=run_forecast,
            inputs=[forecast_date, nsteps],
            outputs=[cached_date, cached_nsteps, cached_lon, cached_lat, cached_fields, status],
        ).then(
            fn=update_plot_from_cache,
            inputs=[cached_date, cached_nsteps, cached_lon, cached_lat, cached_fields, plot_step],
            outputs=[out_img, status],
        )
        
        # Update plot when plot_step slider changes (instant, uses cache)
        plot_step.change(
            fn=update_plot_from_cache,
            inputs=[cached_date, cached_nsteps, cached_lon, cached_lat, cached_fields, plot_step],
            outputs=[out_img, status],
        )

    return demo


# ============================================================
# STARTUP
# Note: Model is loaded inside @spaces.GPU function because
# ZeroGPU uses multiprocessing and can't pickle the model.
# ============================================================
print("[App] Building Gradio UI...")

# Create demo at module level so HF Spaces can find it
demo = build_ui()

if __name__ == "__main__":
    # Fix for local testing: nest_asyncio patches asyncio.run in a way
    # incompatible with uvicorn's loop_factory. Restore original.
    asyncio.run = _ORIGINAL_ASYNCIO_RUN
    
    demo.launch()