Any-to-Any
Transformers
Safetensors
chameleon
image-to-text
multimodal
reasoning
sft
rl
Omni-R1 / README.md
charlesdj's picture
Update README.md
ef1738f verified
---
library_name: transformers
tags:
- multimodal
- reasoning
- sft
- rl
datasets:
- multimodal-reasoning-lab/Zebra-CoT
- ModalityDance/Omni-Bench
base_model:
- GAIR/Anole-7b-v0.1
pipeline_tag: any-to-any
---
# Omni-R1
[![Paper](https://img.shields.io/badge/Paper-arXiv-b31b1b?style=for-the-badge&logo=arxiv)](https://arxiv.org/abs/2601.09536)
[![Code](https://img.shields.io/badge/GitHub-Code-blue?style=for-the-badge&logo=github)](https://github.com/ModalityDance/Omni-R1)
[![Omni-Bench](https://img.shields.io/badge/Dataset-Omni--Bench-fcc21b?style=for-the-badge&logo=huggingface&logoColor=white)](https://huggingface.co/datasets/ModalityDance/Omni-Bench)
## Overview
**Omni-R1** is trained with multimodal interleaved supervision. It uses **PeSFT** for stable functional image generation, then **PeRPO** for RL refinement on unified tasks—enabling interleaved multimodal reasoning trajectories.
## Usage
```python
import torch
from PIL import Image
from transformers import ChameleonProcessor, ChameleonForConditionalGeneration
# 1) Import & load
model_id = "ModalityDance/Omni-R1" # or "ModalityDance/Omni-R1-Zero"
processor = ChameleonProcessor.from_pretrained(model_id)
model = ChameleonForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
model.eval()
# 2) Prepare a single input (prompt contains <image>)
prompt = "What is the smiling man in the image wearing? <image>"
image = Image.open("image.png").convert("RGB")
inputs = processor(
prompt,
images=[image],
padding=False,
return_for_text_completion=True,
return_tensors="pt",
).to(model.device)
# --- minimal image token preprocessing: replace <image> placeholder with image tokens ---
input_ids = inputs["input_ids"].long()
pixel_values = inputs["pixel_values"]
placeholder_id = processor.tokenizer.encode("<image>", add_special_tokens=False)[0]
image_tokens = model.get_image_tokens(pixel_values) # shape: [1, N] (or compatible)
mask = (input_ids == placeholder_id)
input_ids = input_ids.clone()
input_ids[mask] = image_tokens.reshape(-1).to(dtype=torch.long, device=input_ids.device)
# 3) Call the model
outputs = model.generate(
input_ids=input_ids,
max_length=4096,
do_sample=True,
temperature=0.5,
top_p=0.9,
pad_token_id=1,
multimodal_generation_mode="unrestricted",
)
# 4) Get results
text = processor.batch_decode(outputs, skip_special_tokens=False)[0]
print(text)
```
For full scripts (batch JSONL inference, interleaved decoding, and vLLM-based evaluation), please refer to the official GitHub repository:
https://github.com/ModalityDance/Omni-R1
## License
This project is licensed under the **MIT License**.
It also complies with the licenses of referenced third-party projects and dependencies, including the **Chameleon Research License**.
## Citation
```bibtex
@misc{cheng2026omnir1unifiedgenerativeparadigm,
title={Omni-R1: Towards the Unified Generative Paradigm for Multimodal Reasoning},
author={Dongjie Cheng and Yongqi Li and Zhixin Ma and Hongru Cai and Yupeng Hu and Wenjie Wang and Liqiang Nie and Wenjie Li},
year={2026},
eprint={2601.09536},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2601.09536},
}
```