python_code
stringlengths
0
780k
repo_name
stringlengths
7
38
file_path
stringlengths
5
103
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Main entry point for annealed flow transport and baselines.""" from typing import Sequence from absl import app from absl import flags from annealed_flow_transport import train from ml_collections.config_flags import config_flags FLAGS = flags.FLAGS config_flags.DEFINE_config_file('config', './configs/single_normal.py', 'Training configuration.') def main(argv: Sequence[str]) -> None: config = FLAGS.config info = 'Displaying config '+str(config) if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') train.run_experiment(config) if __name__ == '__main__': app.run(main)
annealed_flow_transport-master
main.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for train_vae.py.""" import ml_collections ConfigDict = ml_collections.ConfigDict def get_config(): """Returns a train_vae config as ConfigDict.""" config = ConfigDict() config.random_seed = 1 config.batch_size = 100 config.num_latents = 30 # Number of latents for VAE. config.step_size = 0.00005 # ADAM optimizer step size. # Base directory for output of results. If falsey don't store files. config.output_dir_stub = '/tmp/aft_vae/' config.train_iters = 500001 config.report_period = 5000 return config
annealed_flow_transport-master
train_vae_configs/vae_config.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code for loading and saving model parameters.""" import pickle def load_checkpoint(filename): with open(filename, "rb") as f: state = pickle.load(f) return state def save_checkpoint(filename, state): with open(filename, "wb") as f: pickle.dump(state, f)
annealed_flow_transport-master
annealed_flow_transport/serialize.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code for probability densities.""" import abc import pickle from annealed_flow_transport import vae as vae_lib import annealed_flow_transport.aft_types as tp import annealed_flow_transport.cox_process_utils as cp_utils import chex import haiku as hk import jax import jax.numpy as jnp import jax.scipy.linalg as slinalg from jax.scipy.special import logsumexp from jax.scipy.stats import multivariate_normal from jax.scipy.stats import norm import numpy as np import tensorflow_datasets as tfds # TypeDefs NpArray = np.ndarray Array = tp.Array ConfigDict = tp.ConfigDict Samples = tp.Samples SampleShape = tp.SampleShape assert_trees_all_equal = chex.assert_trees_all_equal class LogDensity(metaclass=abc.ABCMeta): """Abstract base class from which all log densities should inherit.""" def __init__(self, config: ConfigDict, sample_shape: SampleShape): self._check_constructor_inputs(config, sample_shape) self._config = config self._sample_shape = sample_shape @abc.abstractmethod def _check_constructor_inputs(self, config: ConfigDict, sample_shape: SampleShape): """Check the config and sample shape of the class. Will typically raise Assertion like errors. Args: config: Configuration for the log density. sample_shape: Shape expected for the density. """ def __call__(self, x: Samples) -> Array: """Evaluate the log density with automatic shape checking. This calls evaluate_log_density which needs to be implemented in derived classes. Args: x: input Samples. Returns: Array of shape (num_batch,) with corresponding log densities. """ self._check_input_shape(x) output = self.evaluate_log_density(x) self._check_output_shape(x, output) return output @abc.abstractmethod def evaluate_log_density(self, x: Samples) -> Array: """Evaluate the log density. Args: x: Samples. Returns: Array of shape (num_batch,) containing values of log densities. """ def _check_input_shape(self, x_in: Samples): should_be_tree_shape = jax.tree_map(lambda x: x.shape[1:], x_in) chex.assert_trees_all_equal(self._sample_shape, should_be_tree_shape) def get_first_leaf(tree): return jax.tree_util.tree_leaves(tree)[0] first_batch_size = np.shape(get_first_leaf(x_in))[0] chex.assert_tree_shape_prefix(x_in, (first_batch_size,)) def _check_output_shape(self, x_in: Samples, x_out: Samples): batch_sizes = jax.tree_util.tree_map(lambda x: np.shape(x)[0], x_in) def get_first_leaf(tree): return jax.tree_util.tree_leaves(tree)[0] first_batch_size = get_first_leaf(batch_sizes) chex.assert_shape(x_out, (first_batch_size,)) def _check_members_types(self, config: ConfigDict, expected_members_types): for elem, elem_type in expected_members_types: if elem not in config: raise ValueError("LogDensity config element not found: ", elem) if not isinstance(config[elem], elem_type): msg = "LogDensity config element " + elem + " is not of type " + str( elem_type) raise TypeError(msg) class NormalDistribution(LogDensity): """A univariate normal distribution with configurable scale and location. num_dim should be 1 and config should include scalars "loc" and "scale" """ def _check_constructor_inputs(self, config: ConfigDict, sample_shape: SampleShape): assert_trees_all_equal(sample_shape, (1,)) expected_members_types = [("loc", float), ("scale", float), ] self._check_members_types(config, expected_members_types) def evaluate_log_density(self, x: Samples) -> Array: output = norm.logpdf(x, loc=self._config.loc, scale=self._config.scale)[:, 0] return output class MultivariateNormalDistribution(LogDensity): """A normalized multivariate normal distribution. Each element of the mean vector has the same value config.shared_mean Each element of the diagonal covariance matrix has value config.diagonal_cov """ def _check_constructor_inputs(self, config: ConfigDict, sample_shape: SampleShape): expected_members_types = [("shared_mean", float), ("diagonal_cov", float)] assert len(sample_shape) == 1 self._check_members_types(config, expected_members_types) def evaluate_log_density(self, x: Array) -> Array: num_dim = np.shape(x)[1] mean = jnp.ones(num_dim) * self._config.shared_mean cov = jnp.diag(jnp.ones(num_dim) * self._config.diagonal_cov) output = multivariate_normal.logpdf(x, mean=mean, cov=cov) return output class FunnelDistribution(LogDensity): """The funnel distribution from https://arxiv.org/abs/physics/0009028. num_dim should be 10. config is unused in this case. """ def _check_constructor_inputs(self, config: ConfigDict, sample_shape: SampleShape): del config assert_trees_all_equal(sample_shape, (10,)) def evaluate_log_density(self, x: Array) -> Array: num_dim = self._sample_shape[0] def unbatched(x): v = x[0] log_density_v = norm.logpdf(v, loc=0., scale=3.) variance_other = jnp.exp(v) other_dim = num_dim - 1 cov_other = jnp.eye(other_dim) * variance_other mean_other = jnp.zeros(other_dim) log_density_other = multivariate_normal.logpdf(x[1:], mean=mean_other, cov=cov_other) chex.assert_equal_shape([log_density_v, log_density_other]) return log_density_v + log_density_other output = jax.vmap(unbatched)(x) return output class LogGaussianCoxPines(LogDensity): """Log Gaussian Cox process posterior in 2D for pine saplings data. This follows Heng et al 2020 https://arxiv.org/abs/1708.08396 . config.file_path should point to a csv file of num_points columns and 2 rows containg the Finnish pines data. config.use_whitened is a boolean specifying whether or not to use a reparameterization in terms of the Cholesky decomposition of the prior. See Section G.4 of https://arxiv.org/abs/2102.07501 for more detail. The experiments in the paper have this set to False. num_dim should be the square of the lattice sites per dimension. So for a 40 x 40 grid num_dim should be 1600. """ def __init__(self, config: ConfigDict, sample_shape: SampleShape): super().__init__(config, sample_shape) # Discretization is as in Controlled Sequential Monte Carlo # by Heng et al 2017 https://arxiv.org/abs/1708.08396 num_dim = sample_shape[0] self._num_latents = num_dim self._num_grid_per_dim = int(np.sqrt(num_dim)) bin_counts = jnp.array( cp_utils.get_bin_counts(self.get_pines_points(config.file_path), self._num_grid_per_dim)) self._flat_bin_counts = jnp.reshape(bin_counts, (self._num_latents)) # This normalizes by the number of elements in the grid self._poisson_a = 1./self._num_latents # Parameters for LGCP are as estimated in Moller et al, 1998 # "Log Gaussian Cox processes" and are also used in Heng et al. self._signal_variance = 1.91 self._beta = 1./33 self._bin_vals = cp_utils.get_bin_vals(self._num_grid_per_dim) def short_kernel_func(x, y): return cp_utils.kernel_func(x, y, self._signal_variance, self._num_grid_per_dim, self._beta) self._gram_matrix = cp_utils.gram(short_kernel_func, self._bin_vals) self._cholesky_gram = jnp.linalg.cholesky(self._gram_matrix) self._white_gaussian_log_normalizer = -0.5 * self._num_latents * jnp.log( 2. * jnp.pi) half_log_det_gram = jnp.sum(jnp.log(jnp.abs(jnp.diag(self._cholesky_gram)))) self._unwhitened_gaussian_log_normalizer = -0.5 * self._num_latents * jnp.log( 2. * jnp.pi) - half_log_det_gram # The mean function is a constant with value mu_zero. self._mu_zero = jnp.log(126.) - 0.5*self._signal_variance if self._config.use_whitened: self._posterior_log_density = self.whitened_posterior_log_density else: self._posterior_log_density = self.unwhitened_posterior_log_density def _check_constructor_inputs(self, config: ConfigDict, sample_shape: SampleShape): expected_members_types = [("use_whitened", bool)] self._check_members_types(config, expected_members_types) num_dim = sample_shape[0] assert_trees_all_equal(sample_shape, (num_dim,)) num_grid_per_dim = int(np.sqrt(num_dim)) if num_grid_per_dim * num_grid_per_dim != num_dim: msg = ("num_dim needs to be a square number for LogGaussianCoxPines " "density.") raise ValueError(msg) if not config.file_path: msg = "Please specify a path in config for the Finnish pines data csv." raise ValueError(msg) def get_pines_points(self, file_path): """Get the pines data points.""" with open(file_path, "rt") as input_file: b = np.genfromtxt(input_file, delimiter=",") return b def whitened_posterior_log_density(self, white: Array) -> Array: quadratic_term = -0.5 * jnp.sum(white**2) prior_log_density = self._white_gaussian_log_normalizer + quadratic_term latent_function = cp_utils.get_latents_from_white(white, self._mu_zero, self._cholesky_gram) log_likelihood = cp_utils.poisson_process_log_likelihood( latent_function, self._poisson_a, self._flat_bin_counts) return prior_log_density + log_likelihood def unwhitened_posterior_log_density(self, latents: Array) -> Array: white = cp_utils.get_white_from_latents(latents, self._mu_zero, self._cholesky_gram) prior_log_density = -0.5 * jnp.sum( white * white) + self._unwhitened_gaussian_log_normalizer log_likelihood = cp_utils.poisson_process_log_likelihood( latents, self._poisson_a, self._flat_bin_counts) return prior_log_density + log_likelihood def evaluate_log_density(self, x: Array) -> Array: return jax.vmap(self._posterior_log_density)(x) class ChallengingTwoDimensionalMixture(LogDensity): """A challenging mixture of Gaussians in two dimensions. num_dim should be 2. config is unused in this case. """ def _check_constructor_inputs(self, config: ConfigDict, sample_shape: SampleShape): del config assert_trees_all_equal(sample_shape, (2,)) def raw_log_density(self, x: Array) -> Array: """A raw log density that we will then symmetrize.""" mean_a = jnp.array([3.0, 0.]) mean_b = jnp.array([-2.5, 0.]) mean_c = jnp.array([2.0, 3.0]) means = jnp.stack((mean_a, mean_b, mean_c), axis=0) cov_a = jnp.array([[0.7, 0.], [0., 0.05]]) cov_b = jnp.array([[0.7, 0.], [0., 0.05]]) cov_c = jnp.array([[1.0, 0.95], [0.95, 1.0]]) covs = jnp.stack((cov_a, cov_b, cov_c), axis=0) log_weights = jnp.log(jnp.array([1./3, 1./3., 1./3.])) l = jnp.linalg.cholesky(covs) y = slinalg.solve_triangular(l, x[None, :] - means, lower=True, trans=0) mahalanobis_term = -1/2 * jnp.einsum("...i,...i->...", y, y) n = means.shape[-1] normalizing_term = -n / 2 * np.log(2 * np.pi) - jnp.log( l.diagonal(axis1=-2, axis2=-1)).sum(axis=1) individual_log_pdfs = mahalanobis_term + normalizing_term mixture_weighted_pdfs = individual_log_pdfs + log_weights return logsumexp(mixture_weighted_pdfs) def make_2d_invariant(self, log_density, x: Array) -> Array: density_a = log_density(x) density_b = log_density(np.flip(x)) return jnp.logaddexp(density_a, density_b) - jnp.log(2) def evaluate_log_density(self, x: Array) -> Array: density_func = lambda x: self.make_2d_invariant(self.raw_log_density, x) return jax.vmap(density_func)(x) class AutoEncoderLikelihood(LogDensity): """Generative decoder log p(x,z| theta) as a function of latents z. This evaluates log p(x,z| theta) = log p(x, z| theta ) + log p(z) for a VAE. Here x is an binarized MNIST Image, z are real valued latents, theta denotes the generator neural network parameters. Since x is fixed and z is a random variable this is the log of an unnormalized z density p(x, z | theta) The normalizing constant is a marginal p(x | theta) = int p(x, z | theta) dz. The normalized target density is the posterior over latents p(z|x, theta). The likelihood uses a pretrained generator neural network. It is contained in a pickle file specifed by config.params_filesname A script producing such a pickle file can be found in train_vae.py The resulting pretrained network used in the AFT paper can be found at data/vae.pickle The binarized MNIST test set image used is specfied by config.image_index """ def __init__(self, config: ConfigDict, sample_shape: SampleShape): super().__init__(config, sample_shape) self._num_dim = sample_shape[0] self._vae_params = self._get_vae_params(config.params_filename) test_batch_size = 1 test_ds = vae_lib.load_dataset(tfds.Split.TEST, test_batch_size) for unused_index in range(self._config.image_index): unused_batch = next(test_ds) self._test_image = next(test_ds)["image"] assert self._test_image.shape[0] == 1 # Batch size needs to be 1. assert self._test_image.shape[1:] == vae_lib.MNIST_IMAGE_SHAPE self.entropy_eval = hk.transform(self.cross_entropy_eval_func) def _check_constructor_inputs(self, config: ConfigDict, sample_shape: SampleShape): assert_trees_all_equal(sample_shape, (30,)) num_mnist_test = 10000 in_range = config.image_index >= 0 and config.image_index < num_mnist_test if not in_range: msg = "VAE image_index must be greater than or equal to zero " msg += "and strictly less than "+str(num_mnist_test)+"." raise ValueError(msg) def _get_vae_params(self, ckpt_filename): with open(ckpt_filename, "rb") as f: vae_params = pickle.load(f) return vae_params def cross_entropy_eval_func(self, data: Array, latent: Array) -> Array: """Evaluate the binary cross entropy for given latent and data. Needs to be called within a Haiku transform. Args: data: Array of shape (1, image_shape) latent: Array of shape (num_latent_dim,) Returns: Array, value of binary cross entropy for single data point in question. """ chex.assert_rank(latent, 1) chex.assert_rank(data, 4) # Shape should be (1, 28, 28, 1) hence rank 4. vae = vae_lib.ConvVAE() # New axis here required for batch size = 1 for VAE compatibility. batch_latent = latent[None, :] logits = vae.decoder(batch_latent) chex.assert_equal_shape([logits, data]) return vae_lib.binary_cross_entropy_from_logits(logits, data) def log_prior(self, latent: Array) -> Array: """Latent shape (num_dim,) -> standard multivariate log density.""" chex.assert_rank(latent, 1) log_norm_gaussian = -0.5*self._num_dim * jnp.log(2.*jnp.pi) data_term = - 0.5 * jnp.sum(jnp.square(latent)) return data_term + log_norm_gaussian def total_log_probability(self, latent: Array) -> Array: chex.assert_rank(latent, 1) log_prior = self.log_prior(latent) dummy_rng_key = 0 # Data point log likelihood is negative of loss for batch size of 1. log_likelihood = -1. * self.entropy_eval.apply( self._vae_params, dummy_rng_key, self._test_image, latent) total_log_probability = log_prior + log_likelihood return total_log_probability def evaluate_log_density(self, x: Array) -> Array: return jax.vmap(self.total_log_probability)(x) def phi_four_log_density(x: Array, mass_squared: Array, bare_coupling: Array) -> Array: """Evaluate the phi_four_log_density. Args: x: Array of size (L_x, L_y)- values on 2D lattice. mass_squared: Scalar representing bare mass squared. bare_coupling: Scare representing bare coupling. Returns: Scalar corresponding to log_density. """ chex.assert_rank(x, 2) chex.assert_rank(mass_squared, 0) chex.assert_rank(bare_coupling, 0) mass_term = mass_squared * jnp.sum(jnp.square(x)) quadratic_term = bare_coupling * jnp.sum(jnp.power(x, 4)) roll_x_plus = jnp.roll(x, shift=1, axis=0) roll_x_minus = jnp.roll(x, shift=-1, axis=0) roll_y_plus = jnp.roll(x, shift=1, axis=1) roll_y_minus = jnp.roll(x, shift=-1, axis=1) # D'alembertian operator acting on field phi. dalembert_phi = 4.*x - roll_x_plus - roll_x_minus - roll_y_plus - roll_y_minus kinetic_term = jnp.sum(x * dalembert_phi) action_density = kinetic_term + mass_term + quadratic_term return -action_density class PhiFourTheory(LogDensity): """Log density for phi four field theory in two dimensions.""" def __init__(self, config: ConfigDict, sample_shape: SampleShape): super().__init__(config, sample_shape) self._num_grid_per_dim = int(np.sqrt(sample_shape[0])) def _check_constructor_inputs(self, config: ConfigDict, sample_shape: SampleShape): expected_members_types = [("mass_squared", float), ("bare_coupling", float)] num_dim = sample_shape[0] self._check_members_types(config, expected_members_types) num_grid_per_dim = int(np.sqrt(num_dim)) if num_grid_per_dim * num_grid_per_dim != num_dim: msg = ("num_dim needs to be a square number for PhiFourTheory " "density.") raise ValueError(msg) def reshape_and_call(self, x: Array) -> Array: return phi_four_log_density(jnp.reshape(x, (self._num_grid_per_dim, self._num_grid_per_dim)), self._config.mass_squared, self._config.bare_coupling) def evaluate_log_density(self, x: Array) -> Array: return jax.vmap(self.reshape_and_call)(x) class ManyWell(LogDensity): """Many well log density. See: Midgeley, Stimper et al. Flow Annealed Importance Sampling Bootstrap. 2022. Wu et al. Stochastic Normalizing Flows. 2020. """ def __init__(self, config: ConfigDict, sample_shape: SampleShape): super().__init__(config, sample_shape) self._num_dim = sample_shape[0] def _check_constructor_inputs(self, config: ConfigDict, sample_shape: SampleShape): num_dim = sample_shape[0] if num_dim % 2 != 0: msg = ("sample_shape[0] needs to be even.") raise ValueError(msg) def single_well_log_density(self, x) -> Array: chex.assert_shape(x, (2,)) # Here we index from 0 instead of 1 which differs from the cited papers. x_zero_term = ( -1.0 * jnp.power(x[0], 4) + 6.0 * jnp.power(x[0], 2) + 0.5 * x[0] ) x_one_term = -0.5 * jnp.power(x[1], 2) return x_zero_term + x_one_term def many_well_log_density(self, x: Array) -> Array: chex.assert_rank(x, 2) per_group_log_densities = jax.vmap(self.single_well_log_density)(x) return jnp.sum(per_group_log_densities) def evaluate_log_density(self, x: Array) -> Array: chex.assert_rank(x, 2) (num_batch, num_dim) = x.shape reshaped_x = jnp.reshape(x, (num_batch, num_dim//2, 2)) return jax.vmap(self.many_well_log_density)(reshaped_x)
annealed_flow_transport-master
annealed_flow_transport/densities.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Shared math functions for flow transport SMC algorithms.""" from typing import Any, Tuple, Union from annealed_flow_transport import resampling import annealed_flow_transport.aft_types as tp import chex import jax import jax.numpy as jnp from jax.scipy.special import logsumexp Array = tp.Array FlowApply = tp.FlowApply FlowParams = tp.FlowParams LogDensityByStep = tp.LogDensityByStep LogDensityNoStep = tp.LogDensityNoStep MarkovKernelApply = tp.MarkovKernelApply AcceptanceTuple = tp.AcceptanceTuple RandomKey = tp.RandomKey Samples = tp.Samples assert_equal_shape = chex.assert_equal_shape assert_trees_all_equal_shapes = chex.assert_trees_all_equal_shapes class GeometricAnnealingSchedule(object): """Container computing a geometric annealing schedule between log densities.""" def __init__(self, initial_log_density: LogDensityNoStep, final_log_density: LogDensityNoStep, num_temps: int): self._initial_log_density = initial_log_density self._final_log_density = final_log_density self._num_temps = num_temps def get_beta(self, step): final_step = self._num_temps-1 beta = step / final_step return beta def __call__(self, step: int, samples: Samples): log_densities_final = self._final_log_density(samples) log_densities_initial = self._initial_log_density(samples) beta = self.get_beta(step) interpolated_densities = ( 1. - beta) * log_densities_initial + beta * log_densities_final return interpolated_densities def get_delta_no_flow(samples: Samples, log_density: LogDensityByStep, step: int) -> Array: log_density_values_current = log_density(step, samples) log_density_values_previous = log_density(step-1, samples) assert_equal_shape([log_density_values_current, log_density_values_previous]) deltas = log_density_values_previous - log_density_values_current return deltas def get_delta(samples: Samples, flow_apply: FlowApply, flow_params: FlowParams, log_density: LogDensityByStep, step: int) -> Array: """Get density difference between current target and push forward of previous. Args: samples: Array containing samples of shape (batch,) + sample_shape. flow_apply: function that applies the flow. flow_params: parameters of the flow. log_density: function returning the log_density of a sample at given step. step: current step. Returns: deltas: an array containing the difference for each sample. """ transformed_samples, log_det_jacs = flow_apply(flow_params, samples) assert_trees_all_equal_shapes(transformed_samples, samples) log_density_values_current = log_density(step, transformed_samples) log_density_values_previous = log_density(step-1, samples) assert_equal_shape([log_density_values_current, log_density_values_previous]) assert_equal_shape([log_density_values_previous, log_det_jacs]) deltas = log_density_values_previous - log_density_values_current - log_det_jacs return deltas def get_delta_path_grad(samples: Samples, flow_apply: FlowApply, inv_flow_apply: FlowApply, flow_params: FlowParams, log_density: LogDensityByStep, step: int) -> Array: """Like get_delta above but with gradient changed to use path estimator. See https://arxiv.org/abs/1703.09194 and https://arxiv.org/abs/2207.08219 Args: samples: Array containing samples of shape (batch,) + sample_shape. flow_apply: function that applies the flow. inv_flow_apply: function that applies the inverse flow. flow_params: parameters of the flow. log_density: function returning the log_density of a sample at given step. step: current step. Returns: deltas: an array containing the difference for each sample. """ transformed_samples, _ = flow_apply(flow_params, samples) assert_trees_all_equal_shapes(transformed_samples, samples) log_density_target = log_density(step, transformed_samples) def variational_density(params, input_samples): initial_samples, log_det_jacs = inv_flow_apply(params, input_samples) assert_trees_all_equal_shapes(initial_samples, input_samples) log_density_base = log_density(step-1, initial_samples) assert_equal_shape([log_density_base, log_det_jacs]) return log_density_base + log_det_jacs log_density_q = variational_density(jax.lax.stop_gradient(flow_params), transformed_samples) assert_equal_shape([log_density_target, log_density_q]) return log_density_q - log_density_target def get_batch_parallel_free_energy_increment(samples: Samples, flow_apply: FlowApply, flow_params: FlowParams, log_density: LogDensityByStep, step: int) -> Array: """Get the log normalizer increments in case where there is no resampling. Args: samples: (num_batch, num_dim) flow_apply: Apply the flow. flow_params: Parameters of the flow. log_density: Value of the log density. step: Step of the algorithm. Returns: Scalar array containing the increments. """ deltas = get_delta(samples, flow_apply, flow_params, log_density, step) chex.assert_rank(deltas, 1) # The mean takes the average over the batch. This is equivalent to delaying # the average until all temperatures have been accumulated. return jnp.mean(deltas) def transport_free_energy_estimator(samples: Samples, log_weights: Array, flow_apply: FlowApply, inv_flow_apply: Union[FlowApply, Any], flow_params: FlowParams, log_density: LogDensityByStep, step: int, use_path_gradient: bool) -> Array: """Compute an estimate of the free energy. Args: samples: Array representing samples (batch,) + sample_shape log_weights: scalar representing sample weights (batch,) flow_apply: function that applies the flow. inv_flow_apply: function that applies the inverse flow or None. flow_params: parameters of the flow. log_density: function returning the log_density of a sample at given step. step: current step use_path_gradient: Whether or not to modify gradients to use path estimator. Returns: Estimate of the free_energy. """ if not use_path_gradient: deltas = get_delta(samples, flow_apply, flow_params, log_density, step) else: deltas = get_delta_path_grad(samples, flow_apply, inv_flow_apply, flow_params, log_density, step) assert_equal_shape([deltas, log_weights]) return jnp.sum(jax.nn.softmax(log_weights) * deltas) def get_log_normalizer_increment_no_flow(deltas: Array, log_weights: Array) -> Array: assert_equal_shape([deltas, log_weights]) normalized_log_weights = jax.nn.log_softmax(log_weights) total_terms = normalized_log_weights - deltas assert_equal_shape([normalized_log_weights, log_weights, total_terms]) increment = logsumexp(total_terms) return increment def get_log_normalizer_increment(samples: Samples, log_weights: Array, flow_apply: FlowApply, flow_params: FlowParams, log_density: LogDensityByStep, step: int) -> Array: """Get the increment in the log of the normalizing constant estimate. Args: samples: Array representing samples (batch,) + sample_shape log_weights: scalar representing sample weights (batch,) flow_apply: function that applies the flow. flow_params: parameters of the flow. log_density: function returning the log_density of a sample at given step. step: current step Returns: Scalar Array, logarithm of normalizing constant increment. """ deltas = get_delta(samples, flow_apply, flow_params, log_density, step) increment = get_log_normalizer_increment_no_flow(deltas, log_weights) return increment def reweight_no_flow(log_weights_old: Array, deltas: Array) -> Array: log_weights_new_unorm = log_weights_old - deltas log_weights_new = jax.nn.log_softmax(log_weights_new_unorm) return log_weights_new def reweight(log_weights_old: Array, samples: Samples, flow_apply: FlowApply, flow_params: FlowParams, log_density: LogDensityByStep, step: int) -> Array: """Compute the new weights from the old ones and the deltas. Args: log_weights_old: scalar representing previous sample weights (batch,) samples: Array representing samples (batch,) + sample_shape flow_apply: function that applies the flow. flow_params: parameters of the flow. log_density: function returning the log_density of a sample at given step. step: current step Returns: logarithm of new weights. """ deltas = get_delta(samples, flow_apply, flow_params, log_density, step) log_weights_new = reweight_no_flow(log_weights_old, deltas) return log_weights_new def update_samples_log_weights( flow_apply: FlowApply, markov_kernel_apply: MarkovKernelApply, flow_params: FlowParams, samples: Samples, log_weights: Array, key: RandomKey, log_density: LogDensityByStep, step: int, use_resampling: bool, use_markov: bool, resample_threshold: float) -> Tuple[Array, Array, AcceptanceTuple]: """Update samples and log weights once the flow has been learnt.""" transformed_samples, _ = flow_apply(flow_params, samples) assert_trees_all_equal_shapes(transformed_samples, samples) log_weights_new = reweight(log_weights, samples, flow_apply, flow_params, log_density, step) assert_equal_shape([log_weights_new, log_weights]) if use_resampling: subkey, key = jax.random.split(key) resampled_samples, log_weights_resampled = resampling.optionally_resample( subkey, log_weights_new, transformed_samples, resample_threshold) assert_trees_all_equal_shapes(resampled_samples, transformed_samples) assert_equal_shape([log_weights_resampled, log_weights_new]) else: resampled_samples = transformed_samples log_weights_resampled = log_weights_new if use_markov: markov_samples, acceptance_tuple = markov_kernel_apply( step, key, resampled_samples) else: markov_samples = resampled_samples acceptance_tuple = (1., 1., 1.) return markov_samples, log_weights_resampled, acceptance_tuple
annealed_flow_transport-master
annealed_flow_transport/flow_transport.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for annealed_flow_transport.flows.""" from absl.testing import absltest from absl.testing import parameterized from annealed_flow_transport import flows import haiku as hk import jax import jax.numpy as jnp import ml_collections ConfigDict = ml_collections.ConfigDict def _assert_equal_vec(tester, v1, v2, **kwargs): tester.assertTrue(jnp.allclose(v1, v2, **kwargs)) class DiagonalAffineTest(parameterized.TestCase): def test_identity_init(self): # Config dict is unused here so pass None. flow_config = ConfigDict() flow_config.sample_shape = (3,) def compute_flow(x_loc): diagonal_affine_flow = flows.DiagonalAffine(flow_config) return diagonal_affine_flow.transform_and_log_abs_det_jac(x_loc) x_in = jnp.array([1., 2., 3.]) flow_func = hk.without_apply_rng(hk.transform(compute_flow)) dummy_key = jax.random.PRNGKey(13) init_params = flow_func.init(dummy_key, x_in) x_out, log_det_abs_jac = flow_func.apply(init_params, x_in) _assert_equal_vec(self, x_out, x_in) _assert_equal_vec(self, log_det_abs_jac, 0.) # Now test the inverse. def compute_inverse_flow(x_loc): diagonal_affine_flow = flows.DiagonalAffine(flow_config) return diagonal_affine_flow.inv_transform_and_log_abs_det_jac(x_loc) inv_flow_func = hk.without_apply_rng(hk.transform(compute_inverse_flow)) x_inv, log_det_abs_jac_inv = inv_flow_func.apply(init_params, x_in) _assert_equal_vec(self, x_in, x_inv) _assert_equal_vec(self, log_det_abs_jac_inv, 0.) def test_non_identity(self): flow_config = ConfigDict() flow_config.sample_shape = (3,) # Config dict is unused here so pass None. def compute_flow(x_loc): diagonal_affine_flow = flows.DiagonalAffine(flow_config) return diagonal_affine_flow.transform_and_log_abs_det_jac(x_loc) x_in = jnp.array([1., 2., 3.]) flow_func = hk.without_apply_rng(hk.transform(compute_flow)) dummy_key = jax.random.PRNGKey(13) init_params = flow_func.init(dummy_key, x_in) shift = -0.3 num_dim = 3 new_params = jax.tree_map(lambda x: x+shift, init_params) x_out, log_det_abs_jac = flow_func.apply(new_params, x_in) validation_x_out = x_in * jnp.exp(shift) + shift _assert_equal_vec(self, validation_x_out, x_out) _assert_equal_vec(self, log_det_abs_jac, num_dim*shift) def short_func(x_loc): return flow_func.apply(new_params, x_loc)[0] numerical_jacobian = jax.jacobian(short_func)(x_in) numerical_log_abs_det = jnp.linalg.slogdet(numerical_jacobian)[1] _assert_equal_vec(self, log_det_abs_jac, numerical_log_abs_det) # Now test the inverse. def compute_inverse_flow(x_loc): diagonal_affine_flow = flows.DiagonalAffine(flow_config) return diagonal_affine_flow.inv_transform_and_log_abs_det_jac(x_loc) inv_flow_func = hk.without_apply_rng(hk.transform(compute_inverse_flow)) x_inv, log_det_abs_jac_inv = inv_flow_func.apply(new_params, x_out) _assert_equal_vec(self, x_in, x_inv) _assert_equal_vec(self, log_det_abs_jac, -1. * log_det_abs_jac_inv) class SplinesTest(parameterized.TestCase): def _get_non_identity_monotone_spline(self): bin_positions = jnp.linspace(-3., 3., 10) bin_heights = jax.nn.softplus(bin_positions) derivatives = jax.nn.sigmoid(bin_positions) def spline_func(x): return flows.rational_quadratic_spline(x, bin_positions, bin_heights, derivatives) return spline_func def test_identity(self): bin_positions = jnp.linspace(-3., 3., 10) bin_heights = bin_positions derivatives = jnp.ones_like(bin_heights) x = jnp.array(1.77) output, output_deriv = flows.rational_quadratic_spline(x, bin_positions, bin_heights, derivatives) _assert_equal_vec(self, x, output) _assert_equal_vec(self, output_deriv, 1.) def test_jacobian(self): # Test jacobian against numerical value for non-identity transformation. x = jnp.array(1.77) spline_func = self._get_non_identity_monotone_spline() _, output_deriv = spline_func(x) curry = lambda input: spline_func(input)[0] grad_func = jax.grad(curry) grad_val = grad_func(x) _assert_equal_vec(self, grad_val, output_deriv) def test_monotonic(self): # Test function is monotonic and has positive deriviatives. x = jnp.linspace(-2.7, 2.7, 17) spline_func_bat = jax.vmap(self._get_non_identity_monotone_spline()) spline_vals, spline_derivs = spline_func_bat(x) self.assertTrue((jnp.diff(spline_vals) > 0.).all()) self.assertTrue((jnp.diff(spline_derivs) > 0.).all()) class AutoregressiveMLPTest(parameterized.TestCase): def _get_transformed(self, zero_init): def forward(x): mlp = flows.AutoregressiveMLP([3, 1], False, jax.nn.leaky_relu, zero_init, True) return mlp(x) forward_fn = hk.without_apply_rng(hk.transform(forward)) return forward_fn def test_zero_init(self): forward_fn = self._get_transformed(True) x = jnp.array([1., 2., 3.]) key = jax.random.PRNGKey(13) params = forward_fn.init(key, x) output = forward_fn.apply(params, x) _assert_equal_vec(self, output, jnp.zeros_like(output)) def test_autoregressive(self): forward_fn = self._get_transformed(False) x = jnp.array([1., 2., 3.]) key = jax.random.PRNGKey(13) params = forward_fn.init(key, x) curry = lambda u: forward_fn.apply(params, u)[:, 0] jacobian = jax.jacobian(curry)(x) lower_triangle = jnp.tril(jacobian, k=0) _assert_equal_vec(self, lower_triangle, jnp.zeros_like(lower_triangle)) class SplineInverseAutoregressiveFlowTest(parameterized.TestCase): def _get_config(self, identity_init): flow_config = ConfigDict() flow_config.num_spline_bins = 10 flow_config.intermediate_hids_per_dim = 30 flow_config.num_layers = 3 flow_config.identity_init = identity_init flow_config.lower_lim = -4. flow_config.upper_lim = 4. flow_config.min_bin_size = 1e-4 flow_config.min_derivative = 1e-4 flow_config.bias_last = True return flow_config def _get_transformed(self, identity_init): def forward(x): config = self._get_config(identity_init) flow = flows.SplineInverseAutoregressiveFlow(config) return flow.transform_and_log_abs_det_jac(x) forward_fn = hk.without_apply_rng(hk.transform(forward)) return forward_fn def test_identity_init(self): forward_fn = self._get_transformed(True) x = jnp.array([1., 2., 3.]) key = jax.random.PRNGKey(13) params = forward_fn.init(key, x) output, log_det_jac = forward_fn.apply(params, x) _assert_equal_vec(self, output, x) _assert_equal_vec(self, 0., log_det_jac, atol=1e-6) def test_jacobian(self): # Compare the numerical Jacobian with computed value. forward_fn = self._get_transformed(False) x = jnp.array([1., 2., 3.]) key = jax.random.PRNGKey(13) params = forward_fn.init(key, x) curry_val = lambda x: forward_fn.apply(params, x)[0] curry_jac = lambda x: forward_fn.apply(params, x)[1] jac_func = jax.jacobian(curry_val) jac = jac_func(x) target_log_det_jac = jnp.sum(jnp.log(jnp.abs(jnp.diag(jac)))) test_log_det_jac = curry_jac(x) _assert_equal_vec(self, target_log_det_jac, test_log_det_jac) lower_triangle = jnp.tril(jac, k=-1) _assert_equal_vec(self, lower_triangle, jnp.zeros_like(lower_triangle)) class AffineInverseAutoregressiveFlowTest(parameterized.TestCase): def _get_config(self, identity_init): flow_config = ConfigDict() flow_config.intermediate_hids_per_dim = 30 flow_config.num_layers = 3 flow_config.identity_init = identity_init flow_config.bias_last = True return flow_config def _get_transformed(self, identity_init): def forward(x): config = self._get_config(identity_init) flow = flows.AffineInverseAutoregressiveFlow(config) return flow.transform_and_log_abs_det_jac(x) forward_fn = hk.without_apply_rng(hk.transform(forward)) return forward_fn def test_identity_init(self): forward_fn = self._get_transformed(True) x = jnp.array([1., 2., 3.]) key = jax.random.PRNGKey(13) params = forward_fn.init(key, x) output, log_det_jac = forward_fn.apply(params, x) _assert_equal_vec(self, output, x) _assert_equal_vec(self, 0., log_det_jac, atol=1e-6) def test_jacobian(self): # Compare the numerical Jacobian with computed value. forward_fn = self._get_transformed(False) x = jnp.array([1., 2., 3.]) key = jax.random.PRNGKey(13) params = forward_fn.init(key, x) curry_val = lambda x: forward_fn.apply(params, x)[0] curry_jac = lambda x: forward_fn.apply(params, x)[1] jac_func = jax.jacobian(curry_val) jac = jac_func(x) target_log_det_jac = jnp.sum(jnp.log(jnp.abs(jnp.diag(jac)))) test_log_det_jac = curry_jac(x) _assert_equal_vec(self, target_log_det_jac, test_log_det_jac) lower_triangle = jnp.tril(jac, k=-1) _assert_equal_vec(self, lower_triangle, jnp.zeros_like(lower_triangle)) class RationalQuadraticSplineFlowTest(parameterized.TestCase): """This just tests that the flow constructs and gives right shape. The math functions are separately tested by SplinesTest. """ def _get_config(self): flow_config = ConfigDict() flow_config.num_bins = 5 flow_config.lower_lim = -3. flow_config.upper_lim = 3. flow_config.min_bin_size = 1e-2 flow_config.min_derivative = 1e-2 return flow_config def test_shape(self): def forward(x): config = self._get_config() flow = flows.RationalQuadraticSpline(config) return flow.transform_and_log_abs_det_jac(x) forward_fn = hk.without_apply_rng(hk.transform(forward)) x = jnp.array([1., 2., 3.]) key = jax.random.PRNGKey(13) params = forward_fn.init(key, x) output, log_det_jac = forward_fn.apply(params, x) self.assertEqual(x.shape, output.shape) self.assertEqual(log_det_jac.shape, ()) class ComposedFlowsTest(parameterized.TestCase): def _get_individual_config(self, is_identity: bool): flow_config = ConfigDict() flow_config.type = 'SplineInverseAutoregressiveFlow' flow_config.num_spline_bins = 10 flow_config.intermediate_hids_per_dim = 30 flow_config.num_layers = 3 flow_config.identity_init = is_identity flow_config.lower_lim = -4. flow_config.upper_lim = 4. flow_config.min_bin_size = 1e-4 flow_config.min_derivative = 1e-4 flow_config.bias_last = True return flow_config def _get_overall_config(self, is_identity: bool): flow_config = ConfigDict() # A flow based on two flows composed. flow_config.flow_configs = [self._get_individual_config(is_identity)] * 2 return flow_config def _get_transformed(self, is_identity): def forward(x): config = self._get_overall_config(is_identity=is_identity) flow = flows.ComposedFlows(config) return flow(x) forward_fn = hk.without_apply_rng(hk.transform(forward)) return forward_fn def test_identity(self): # Test that two identity flows composed gives an identity flow. forward_fn = self._get_transformed(is_identity=True) x = jnp.array([[1., 2., 3.]]) key = jax.random.PRNGKey(13) params = forward_fn.init(key, x) output, log_det_jac = forward_fn.apply(params, x) _assert_equal_vec(self, x, output, atol=1e-6) _assert_equal_vec(self, log_det_jac, jnp.array([0.]), atol=1e-6) def test_jacobian(self): # Test the numerical Jacobian of the composition of two non-identity flows. forward_fn = self._get_transformed(is_identity=False) x = jnp.array([[1., 2., 3.]]) key = jax.random.PRNGKey(13) params = forward_fn.init(key, x) curry_val = lambda x: forward_fn.apply(params, x[None])[0][0, :] curry_jac = lambda x: forward_fn.apply(params, x)[1][0] jac_func = jax.jacobian(curry_val) jac = jac_func(x[0]) print(jac) target_log_det_jac = jnp.linalg.slogdet(jac)[1] test_log_det_jac = curry_jac(x) _assert_equal_vec(self, target_log_det_jac, test_log_det_jac, atol=1e-6) class CheckerBoardMaskTest(parameterized.TestCase): def test_checkerboard(self): target_a = jnp.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) target_b = jnp.array([[1, 0, 1], [0, 1, 0]]) test_a = flows.get_checkerboard_mask((3, 3), 0) test_b = flows.get_checkerboard_mask((2, 3), 1) _assert_equal_vec(self, target_a, test_a) _assert_equal_vec(self, target_b, test_b) class TestFullyConvolutionalNetwork(parameterized.TestCase): def test_net(self): num_middle_channels = 3 num_middle_layers = 2 num_final_channels = 2 image_shape = (7, 9) kernel_shape = (4, 3) def forward(x): net = flows.FullyConvolutionalNetwork( num_middle_channels=num_middle_channels, num_middle_layers=num_middle_layers, num_final_channels=num_final_channels, kernel_shape=kernel_shape, zero_final=True) return net(x) forward_fn = hk.without_apply_rng(hk.transform(forward)) key = jax.random.PRNGKey(1) subkey, key = jax.random.split(key) random_input = jax.random.normal(subkey, image_shape) params = forward_fn.init(key, random_input) output = forward_fn.apply(params, random_input) self.assertEqual(output.shape, image_shape+(2,)) _assert_equal_vec(self, output, jnp.zeros_like(output)) def test_translation_symmetry(self): num_middle_channels = 3 num_middle_layers = 2 num_final_channels = 2 image_shape = (7, 9) kernel_shape = (3, 3) def forward(x): net = flows.FullyConvolutionalNetwork( num_middle_channels=num_middle_channels, num_middle_layers=num_middle_layers, num_final_channels=num_final_channels, kernel_shape=kernel_shape, zero_final=False, is_torus=True) return net(x) forward_fn = hk.without_apply_rng(hk.transform(forward)) key = jax.random.PRNGKey(1) subkey, key = jax.random.split(key) random_input = jax.random.normal(subkey, image_shape) params = forward_fn.init(key, random_input) output = forward_fn.apply(params, random_input) def roll_array(array_in): return jnp.roll(array_in, shift=(2, 2), axis=(0, 1)) translated_output = forward_fn.apply(params, roll_array(random_input)) _assert_equal_vec(self, translated_output, roll_array(output)) class TestConvAffineCoupling(parameterized.TestCase): def test_identity_init(self): image_shape = (3, 3) kernel_shape = (2, 2) num_middle_channels = 3 num_middle_layers = 3 mask = jnp.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) def forward(x): flow = flows.ConvAffineCoupling( mask=mask, conv_num_middle_channels=num_middle_channels, conv_num_middle_layers=num_middle_layers, conv_kernel_shape=kernel_shape, identity_init=True) return flow(x) forward_fn = hk.without_apply_rng(hk.transform(forward)) key = jax.random.PRNGKey(1) subkey, key = jax.random.split(key) random_input = jax.random.normal(subkey, shape=image_shape) params = forward_fn.init(key, random_input) output, log_det_jac = forward_fn.apply(params, random_input) _assert_equal_vec(self, output, random_input) _assert_equal_vec(self, log_det_jac, 0.) def test_jacobian(self): num_middle_channels = 3 num_middle_layers = 5 image_shape = (3, 2) kernel_shape = (3, 3) mask = jnp.array([[1, 1], [1, 0], [0, 0]]) def forward(x): flow = flows.ConvAffineCoupling( mask=mask, conv_num_middle_channels=num_middle_channels, conv_num_middle_layers=num_middle_layers, conv_kernel_shape=kernel_shape, identity_init=False) return flow(x) forward_fn = hk.without_apply_rng(hk.transform(forward)) key = jax.random.PRNGKey(2) subkey, key = jax.random.split(key) random_input = jax.random.normal(subkey, shape=image_shape) params = forward_fn.init(key, random_input) apply = jax.jit(forward_fn.apply) curry_val = lambda x: apply(params, x)[0].reshape((6,)) curry_jac = lambda x: apply(params, x)[1] jac_func = jax.jit(jax.jacobian(curry_val)) jac = jac_func(random_input).reshape((6, 6)) print('NVP Jacobian \n', jac) target_log_det_jac = jnp.sum(jnp.log(jnp.abs(jnp.diag(jac)))) test_log_det_jac = curry_jac(random_input) _assert_equal_vec(self, target_log_det_jac, test_log_det_jac) upper_triangle = jnp.triu(jac, k=1) _assert_equal_vec(self, upper_triangle, jnp.zeros_like(upper_triangle)) def test_inverse(self): num_middle_channels = 3 num_middle_layers = 5 image_shape = (3, 2) kernel_shape = (3, 3) mask = jnp.array([[1, 1], [1, 0], [0, 0]]) def forward_and_inverse(x): flow = flows.ConvAffineCoupling( mask=mask, conv_num_middle_channels=num_middle_channels, conv_num_middle_layers=num_middle_layers, conv_kernel_shape=kernel_shape, identity_init=False) y, fw_ldj = flow(x) recons_x, bw_ldj = flow.inverse(y) return y, fw_ldj, recons_x, bw_ldj forward_fn = hk.without_apply_rng(hk.transform(forward_and_inverse)) key = jax.random.PRNGKey(2) subkey, key = jax.random.split(key) random_input = jax.random.normal(subkey, shape=image_shape) params = forward_fn.init(key, random_input) unused_y, fw_ldj, recons_x, bw_ldj = forward_fn.apply(params, random_input) _assert_equal_vec(self, recons_x, random_input) _assert_equal_vec(self, fw_ldj, -1.*bw_ldj) class TestHaikuParameterShapes(parameterized.TestCase): def test_diagonal_affine(self): flow_config = ConfigDict() flow_config.sample_shape = (2,) num_dim = 2 num_batch = 3 def run_flow(x): flow = flows.DiagonalAffine(config=flow_config) return flow(x) x_in = jnp.zeros((num_batch, num_dim)) forward_fn = hk.without_apply_rng(hk.transform(run_flow)) key = jax.random.PRNGKey(1) params = forward_fn.init(key, x_in) bias_shape = params['diagonal_affine']['bias'].shape unconst_diag_shape = params['diagonal_affine']['unconst_diag'].shape self.assertEqual(bias_shape, (num_dim,)) self.assertEqual(unconst_diag_shape, (num_dim,)) x_out, log_abs_det = forward_fn.apply(params, x_in) self.assertEqual(x_out.shape, x_in.shape) self.assertEqual(log_abs_det.shape, (num_batch,)) if __name__ == '__main__': absltest.main()
annealed_flow_transport-master
annealed_flow_transport/flows_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Continual Repeated Annealed Flow Transport (CRAFT) Monte Carlo algorithm.""" import time from typing import Any, Tuple, Union from absl import logging from annealed_flow_transport import flow_transport import annealed_flow_transport.aft_types as tp import jax import jax.numpy as jnp import optax Array = tp.Array Samples = tp.Samples OptState = tp.OptState UpdateFn = tp.UpdateFn FlowParams = tp.FlowParams FlowApply = tp.FlowApply LogDensityNoStep = tp.LogDensityNoStep InitialSampler = tp.InitialSampler RandomKey = tp.RandomKey SamplesTuple = tp.SamplesTuple FreeEnergyAndGrad = tp.FreeEnergyAndGrad MarkovKernelApply = tp.MarkovKernelApply LogDensityByStep = tp.LogDensityByStep AcceptanceTuple = tp.AcceptanceTuple LogWeightsTuple = tp.LogWeightsTuple AlgoResultsTuple = tp.AlgoResultsTuple ParticleState = tp.ParticleState def inner_step_craft( key: RandomKey, free_energy_and_grad: FreeEnergyAndGrad, flow_params: FlowParams, flow_apply: FlowApply, markov_kernel_apply: MarkovKernelApply, samples: Array, log_weights: Array, log_density: LogDensityByStep, step: int, config ) -> Tuple[FlowParams, Array, Array, Samples, Array, AcceptanceTuple]: """A temperature step of CRAFT. Args: key: A JAX random key. free_energy_and_grad: function giving estimate of free energy and gradient. flow_params: parameters of the flow. flow_apply: function that applies the flow. markov_kernel_apply: function that applies the Markov transition kernel. samples: input samples. log_weights: Array containing train/validation/test log_weights. log_density: function returning the log_density of a sample at given step. step: int giving current step of algorithm. config: experiment configuration. Returns: flow_grads: Gradient with respect to parameters of flow. vfe: Value of the objective for this temperature. log_normalizer_increment: Scalar log of normalizing constant increment. next_samples: samples after temperature step has been performed. new_log_weights: log_weights after temperature step has been performed. acceptance_tuple: Acceptance rate of the Markov kernels used. """ vfe, flow_grads = free_energy_and_grad(flow_params, samples, log_weights, step) log_normalizer_increment = flow_transport.get_log_normalizer_increment( samples, log_weights, flow_apply, flow_params, log_density, step) next_samples, next_log_weights, acceptance_tuple = flow_transport.update_samples_log_weights( flow_apply=flow_apply, markov_kernel_apply=markov_kernel_apply, flow_params=flow_params, samples=samples, log_weights=log_weights, key=key, log_density=log_density, step=step, use_resampling=config.use_resampling, use_markov=config.use_markov, resample_threshold=config.resample_threshold) return flow_grads, vfe, log_normalizer_increment, next_samples, next_log_weights, acceptance_tuple def inner_loop_craft(key: RandomKey, free_energy_and_grad: FreeEnergyAndGrad, opt_update: UpdateFn, opt_states: OptState, transition_params: FlowParams, flow_apply: FlowApply, markov_kernel_apply: MarkovKernelApply, initial_sampler: InitialSampler, log_density: LogDensityByStep, config, axis_name=None): """Inner loop of CRAFT training. Uses Scan step requiring trees that have the same structure as the base input but with each leaf extended with an extra array index of size num_transitions. We call this an extended tree. Args: key: A JAX random key. free_energy_and_grad: function giving estimate of free energy and gradient. opt_update: function that updates the state of flow based on gradients etc. opt_states: Extended tree of optimizer states. transition_params: Extended tree of flow parameters. flow_apply: function that applies the flow. markov_kernel_apply: function that applies the Markov transition kernel. initial_sampler: A function that produces the initial samples. log_density: A function evaluating the log density for each step. config: A ConfigDict containing the configuration. axis_name: None or string for gradient sync when using pmap only. Returns: final_samples: final samples. final_log_weights: Array of final log_weights. final_transition_params: Extended tree of updated flow params. final_opt_states: Extended tree of updated optimizer parameters. overall_free_energy: Total variational free energy. log_normalizer_estimate: Estimate of the log normalizers. """ subkey, key = jax.random.split(key) initial_samples = initial_sampler(subkey, config.craft_batch_size, config.sample_shape) initial_log_weights = -jnp.log(config.craft_batch_size) * jnp.ones( config.craft_batch_size) def scan_step(passed_state, per_step_input): samples, log_weights = passed_state flow_params, key, inner_step = per_step_input flow_grads, vfe, log_normalizer_increment, next_samples, next_log_weights, acceptance_tuple = inner_step_craft( key=key, free_energy_and_grad=free_energy_and_grad, flow_params=flow_params, flow_apply=flow_apply, markov_kernel_apply=markov_kernel_apply, samples=samples, log_weights=log_weights, log_density=log_density, step=inner_step, config=config) next_passed_state = (next_samples, next_log_weights) per_step_output = (flow_grads, vfe, log_normalizer_increment, acceptance_tuple) return next_passed_state, per_step_output initial_state = (initial_samples, initial_log_weights) inner_steps = jnp.arange(1, config.num_temps) keys = jax.random.split(key, config.num_temps-1) per_step_inputs = (transition_params, keys, inner_steps) final_state, per_step_outputs = jax.lax.scan(scan_step, initial_state, per_step_inputs) final_samples, final_log_weights = final_state flow_grads, free_energies, log_normalizer_increments, unused_acceptance_tuples = per_step_outputs if axis_name: flow_grads = jax.lax.pmean(flow_grads, axis_name=axis_name) def per_step_update(input_tuple): (step_grad, step_opt, step_params) = input_tuple step_updates, new_opt_state = opt_update(step_grad, step_opt) new_step_params = optax.apply_updates(step_params, step_updates) return new_step_params, new_opt_state final_transition_params, final_opt_states = jax.lax.map( per_step_update, (flow_grads, opt_states, transition_params)) overall_free_energy = jnp.sum(free_energies) log_normalizer_estimate = jnp.sum(log_normalizer_increments) return final_samples, final_log_weights, final_transition_params, final_opt_states, overall_free_energy, log_normalizer_estimate def craft_evaluation_loop(key: RandomKey, transition_params: FlowParams, flow_apply: FlowApply, markov_kernel_apply: MarkovKernelApply, initial_sampler: InitialSampler, log_density: LogDensityByStep, config) -> ParticleState: """A single pass of CRAFT with fixed flows. Uses Scan step requiring trees that have the same structure as the base input but with each leaf extended with an extra array index of size num_transitions. We call this an extended tree. Args: key: A JAX random key. transition_params: Extended tree of flow parameters. flow_apply: function that applies the flow. markov_kernel_apply: function that applies the Markov transition kernel. initial_sampler: A function that produces the initial samples. log_density: A function evaluating the log density for each step. config: A ConfigDict containing the configuration. Returns: ParticleState containing samples, log_weights, log_normalizer_estimate. """ subkey, key = jax.random.split(key) initial_samples = initial_sampler(subkey, config.craft_batch_size, config.sample_shape) initial_log_weights = -jnp.log(config.craft_batch_size) * jnp.ones( config.craft_batch_size) def scan_step(passed_state, per_step_input): samples, log_weights = passed_state flow_params, key, inner_step = per_step_input log_normalizer_increment = flow_transport.get_log_normalizer_increment( samples, log_weights, flow_apply, flow_params, log_density, inner_step) next_samples, next_log_weights, acceptance_tuple = flow_transport.update_samples_log_weights( flow_apply=flow_apply, markov_kernel_apply=markov_kernel_apply, flow_params=flow_params, samples=samples, log_weights=log_weights, key=key, log_density=log_density, step=inner_step, use_resampling=config.use_resampling, use_markov=config.use_markov, resample_threshold=config.resample_threshold) next_passed_state = (next_samples, next_log_weights) per_step_output = (log_normalizer_increment, acceptance_tuple) return next_passed_state, per_step_output initial_state = (initial_samples, initial_log_weights) inner_steps = jnp.arange(1, config.num_temps) keys = jax.random.split(key, config.num_temps-1) per_step_inputs = (transition_params, keys, inner_steps) final_state, per_step_outputs = jax.lax.scan(scan_step, initial_state, per_step_inputs) final_samples, final_log_weights = final_state log_normalizer_increments, unused_acceptance_tuples = per_step_outputs log_normalizer_estimate = jnp.sum(log_normalizer_increments) particle_state = ParticleState( samples=final_samples, log_weights=final_log_weights, log_normalizer_estimate=log_normalizer_estimate) return particle_state def outer_loop_craft(opt_update: UpdateFn, opt_init_state: OptState, flow_init_params: FlowParams, flow_apply: FlowApply, flow_inv_apply: Union[FlowApply, Any], density_by_step: LogDensityByStep, markov_kernel_by_step: MarkovKernelApply, initial_sampler: InitialSampler, key: RandomKey, config, log_step_output, save_checkpoint) -> AlgoResultsTuple: """Outer loop for CRAFT training. Args: opt_update: function that updates the state of flow based on gradients etc. opt_init_state: initial state variables of the optimizer. flow_init_params: initial state of the flow. flow_apply: function that applies the flow. flow_inv_apply: function that applies the inverse flow or None. density_by_step: The log density for different annealing temperatures. markov_kernel_by_step: Markov kernel for different annealing temperatures. initial_sampler: A function that produces the initial samples. key: A Jax random key. config: A ConfigDict containing the configuration. log_step_output: Callable that logs the step output. save_checkpoint: None or function that takes params and saves them. Returns: An AlgoResults tuple containing a summary of the results. """ num_temps = config.num_temps def free_energy_short(flow_params: FlowParams, samples: Samples, log_weights: Array, step: int) -> Array: return flow_transport.transport_free_energy_estimator( samples, log_weights, flow_apply, flow_inv_apply, flow_params, density_by_step, step, config.use_path_gradient) free_energy_and_grad = jax.value_and_grad(free_energy_short) def short_inner_loop(rng_key: RandomKey, curr_opt_states: OptState, curr_transition_params): return inner_loop_craft(key=rng_key, free_energy_and_grad=free_energy_and_grad, opt_update=opt_update, opt_states=curr_opt_states, transition_params=curr_transition_params, flow_apply=flow_apply, markov_kernel_apply=markov_kernel_by_step, initial_sampler=initial_sampler, log_density=density_by_step, config=config) inner_loop_jit = jax.jit(short_inner_loop) repeater = lambda x: jnp.repeat(x[None], num_temps-1, axis=0) opt_states = jax.tree_util.tree_map(repeater, opt_init_state) transition_params = jax.tree_util.tree_map(repeater, flow_init_params) logging.info('Performing initial step redundantly for accurate timing...') initial_start_time = time.time() inner_loop_jit(key, opt_states, transition_params) initial_finish_time = time.time() initial_time_diff = initial_finish_time - initial_start_time logging.info('Initial step time / seconds %f: ', initial_time_diff) logging.info('Launching training...') start_time = time.time() for step in range(config.craft_num_iters): with jax.profiler.StepTraceAnnotation('train', step_num=step): key, subkey = jax.random.split(key) final_samples, final_log_weights, transition_params, opt_states, overall_free_energy, log_normalizer_estimate = inner_loop_jit( subkey, opt_states, transition_params) if step % config.report_step == 0: if log_step_output is not None: delta_time = time.time()-start_time log_step_output(step=step, training_objective=overall_free_energy, log_normalizer_estimate=log_normalizer_estimate, delta_time=delta_time, samples=final_samples, log_weights=final_log_weights) logging.info( 'Step %05d: Free energy %f Log Normalizer estimate %f', step, overall_free_energy, log_normalizer_estimate ) finish_time = time.time() delta_time = finish_time - start_time logging.info('Delta time / seconds %f: ', delta_time) logging.info('Log normalizer estimate %f: ', log_normalizer_estimate) if save_checkpoint: save_checkpoint(transition_params) results = AlgoResultsTuple( test_samples=final_samples, test_log_weights=final_log_weights, log_normalizer_estimate=log_normalizer_estimate, delta_time=delta_time, initial_time_diff=initial_time_diff) return results
annealed_flow_transport-master
annealed_flow_transport/craft.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code related to resampling of weighted samples.""" from typing import Tuple import annealed_flow_transport.aft_types as tp import chex import jax import jax.numpy as jnp Array = tp.Array RandomKey = tp.RandomKey Samples = tp.Samples assert_trees_all_equal_shapes = chex.assert_trees_all_equal_shapes def log_effective_sample_size(log_weights: Array) -> Array: """Numerically stable computation of log of effective sample size. ESS := (sum_i weight_i)^2 / (sum_i weight_i^2) and so working in terms of logs log ESS = 2 log sum_i (log exp log weight_i) - log sum_i (exp 2 log weight_i ) Args: log_weights: Array of shape (num_batch). log of normalized weights. Returns: Scalar log ESS. """ chex.assert_rank(log_weights, 1) first_term = 2.*jax.scipy.special.logsumexp(log_weights) second_term = jax.scipy.special.logsumexp(2.*log_weights) chex.assert_equal_shape([first_term, second_term]) return first_term-second_term def simple_resampling(key: RandomKey, log_weights: Array, samples: Array) -> Tuple[Array, Array]: """Simple resampling of log_weights and samples pair. Randomly select possible samples with replacement proportionally to softmax(log_weights). Args: key: A Jax Random Key. log_weights: An array of size (num_batch,) containing the log weights. samples: An array of size (num_batch, num_dim) containing the samples.å Returns: New samples of shape (num_batch, num_dim) and weights of shape (num_batch,) """ chex.assert_rank(log_weights, 1) num_batch = log_weights.shape[0] indices = jax.random.categorical(key, log_weights, shape=(num_batch,)) take_lambda = lambda x: jnp.take(x, indices, axis=0) resamples = jax.tree_util.tree_map(take_lambda, samples) log_weights_new = -jnp.log(log_weights.shape[0])*jnp.ones_like(log_weights) chex.assert_equal_shape([log_weights, log_weights_new]) assert_trees_all_equal_shapes(resamples, samples) return resamples, log_weights_new def optionally_resample(key: RandomKey, log_weights: Array, samples: Samples, resample_threshold: Array) -> Tuple[Array, Array]: """Call simple_resampling on log_weights/samples if ESS is below threshold. The resample_threshold is interpretted as a fraction of the total number of samples. So for example a resample_threshold of 0.3 corresponds to an ESS of samples 0.3 * num_batch. Args: key: Jax Random Key. log_weights: Array of shape (num_batch,) samples: Array of shape (num_batch, num_dim) resample_threshold: scalar controlling fraction of total sample sized used. Returns: new samples of shape (num_batch, num_dim) and """ # In the case where we don't resample we just return the current # samples and weights. # lamdba_no_resample will do that on the tuple given to jax.lax.cond below. lambda_no_resample = lambda x: (x[2], x[1]) lambda_resample = lambda x: simple_resampling(*x) threshold_sample_size = log_weights.shape[0] * resample_threshold log_ess = log_effective_sample_size(log_weights) return jax.lax.cond(log_ess < jnp.log(threshold_sample_size), lambda_resample, lambda_no_resample, (key, log_weights, samples))
annealed_flow_transport-master
annealed_flow_transport/resampling.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for annealed_flow_transport.flow_transport.""" from absl.testing import absltest from absl.testing import parameterized from annealed_flow_transport import cox_process_utils import jax.numpy as jnp import numpy as np def _assert_equal_vec(tester, v1, v2, **kwargs): tester.assertTrue(jnp.allclose(v1, v2, **kwargs)) class CoxProcessUtilsTest(parameterized.TestCase): def test_get_bin_vals(self): bins_per_dim = 30 bin_vals = cox_process_utils.get_bin_vals(bins_per_dim) self.assertEqual(bin_vals.shape, (bins_per_dim*bins_per_dim, 2)) first_bin_vals = bin_vals[0, :] self.assertEqual(list(first_bin_vals), [0, 0]) second_bin_vals = bin_vals[1, :] self.assertEqual(list(second_bin_vals), [0, 1]) final_bin_vals = bin_vals[-1, :] self.assertEqual(list(final_bin_vals), [bins_per_dim-1, bins_per_dim-1]) def test_whites_and_latents(self): lower_triangular_matrix = jnp.array([[1., 0.], [-1., 2.]]) constant_mean = 1.7 latents = jnp.array([5.5, 3.6]) test_white = cox_process_utils.get_white_from_latents( latents, constant_mean, lower_triangular_matrix) test_latents = cox_process_utils.get_latents_from_white( test_white, constant_mean, lower_triangular_matrix) _assert_equal_vec(self, latents, test_latents) def test_gram(self): def pairwise_function(x, y): return jnp.sqrt((x[0]-y[0])**2 + (x[1]-y[1])**2) test_points = jnp.array([[1., 2.], [5.2, 6.1], [7.2, 3.6]]) test_gram_matrix = cox_process_utils.gram(pairwise_function, test_points) validation_gram_matrix = np.zeros((3, 3)) for row_index in range(3): for col_index in range(3): pair_val = pairwise_function(test_points[row_index, :], test_points[col_index, :]) validation_gram_matrix[row_index, col_index] = pair_val _assert_equal_vec(self, test_gram_matrix, validation_gram_matrix) def test_bin_counts(self): num_bins_per_dim = 2 test_array = jnp.array([[0.25, 0.25], # in bin [0, 0] [0.75, 0.75], # in bin [1, 1] [0.0, 0.0], # in bin [0, 0] [0.0, 1.0], # in bin [0, 1] an edge case [1.0, 1.0], # in bin [1, 1] a corner case [0.22, 0.22]]) # in bin [0, 0] test_bin_counts = cox_process_utils.get_bin_counts(test_array, num_bins_per_dim) validation_bin_counts = jnp.array([[3, 1], [0, 2]]) _assert_equal_vec(self, test_bin_counts, validation_bin_counts) if __name__ == '__main__': absltest.main()
annealed_flow_transport-master
annealed_flow_transport/cox_process_utils_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Shared custom defined types used in more than one source file.""" from typing import Any, Callable, Mapping, NamedTuple, Tuple import chex import ml_collections import numpy as np import optax VaeBatch = Mapping[str, np.ndarray] ConfigDict = ml_collections.ConfigDict Array = Any Samples = chex.ArrayTree SampleShape = Any LogDensityByStep = Any RandomKey = Array AcceptanceTuple = Tuple[Array, Array, Array] MarkovKernelApply = Callable[[int, RandomKey, Samples], Tuple[Samples, AcceptanceTuple]] OptState = optax.OptState UpdateFn = optax.TransformUpdateFn FlowParams = Any FlowApply = Callable[[FlowParams, Samples], Tuple[Samples, Array]] LogDensityNoStep = Callable[[Samples], Array] InitialSampler = Callable[[RandomKey, int, Tuple[int]], Samples] FreeEnergyAndGrad = Callable[[FlowParams, Array, Array, int], Tuple[Array, Array]] FreeEnergyEval = Callable[[FlowParams, Array, Array, int], Array] MNIST_IMAGE_SHAPE = (28, 28, 1) class SamplesTuple(NamedTuple): train_samples: Array validation_samples: Array test_samples: Array class LogWeightsTuple(NamedTuple): train_log_weights: Array validation_log_weights: Array test_log_weights: Array class VfesTuple(NamedTuple): train_vfes: Array validation_vfes: Array class AlgoResultsTuple(NamedTuple): test_samples: Samples test_log_weights: Array log_normalizer_estimate: Array delta_time: float initial_time_diff: float class ParticleState(NamedTuple): samples: Samples log_weights: Array log_normalizer_estimate: Array class VAEResult(NamedTuple): sample_image: Array reconst_sample: Array latent_mean: Array latent_std: Array logits: Array ParticlePropose = Callable[[RandomKey], ParticleState]
annealed_flow_transport-master
annealed_flow_transport/aft_types.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for annealed_flow_transport.train_vae.""" from absl.testing import parameterized from annealed_flow_transport import vae import jax import jax.numpy as jnp def _assert_equal_vec(tester, v1, v2, **kwargs): tester.assertTrue(jnp.allclose(v1, v2, **kwargs)) class TestKLDivergence(parameterized.TestCase): def reference_kl_divergence(self, mean, std): def termwise_kl(single_mean, single_std): term_a = -jnp.log(single_std) term_b = 0.5 * single_std**2 term_c = 0.5 * single_mean**2 term_d = -0.5 return term_a + term_b + term_c + term_d return jnp.sum(jax.vmap(termwise_kl)(mean, std)) def test_kl_divergence(self): num_dim = 4 mean = jnp.zeros(num_dim) std = jnp.ones(num_dim) test_kl = vae.kl_divergence_standard_gaussian(mean, std) _assert_equal_vec(self, test_kl, 0.) mean_b = jnp.arange(4) std_b = jnp.array([1.3, 1.7, 1.8, 2.0]) test_kl_b = vae.kl_divergence_standard_gaussian(mean_b, std_b) reference_kl_b = self.reference_kl_divergence(mean_b, std_b) _assert_equal_vec(self, test_kl_b, reference_kl_b) def test_batch_kl_divergence(self): num_dim = 5 num_batch = 3 total_points = num_dim * num_batch means = jnp.arange(total_points).reshape((num_batch, num_dim)) stds = jnp.arange(total_points).reshape((num_batch, num_dim))+1.5 total_reference_kl_divergence = 0. for batch_index in range(num_batch): total_reference_kl_divergence += self.reference_kl_divergence( means[batch_index], stds[batch_index]) reference_mean_kl = total_reference_kl_divergence/num_batch test_mean_kl = vae.batch_kl_divergence_standard_gaussian(means, stds) _assert_equal_vec(self, reference_mean_kl, test_mean_kl) class TestBinaryCrossEntropy(parameterized.TestCase): def reference_binary_cross_entropy(self, logits, labels): def single_binary_cross_entropy(logit, label): h = label * jax.nn.softplus(-logit) + (1 - label) * jax.nn.softplus(logit) return h accumulator = 0. (num_batch, num_dim_a, num_dim_b) = logits.shape for batch_index in range(num_batch): for dim_a in range(num_dim_a): for dim_b in range(num_dim_b): accumulator += single_binary_cross_entropy( logits[batch_index, dim_a, dim_b], labels[batch_index, dim_a, dim_b]) return accumulator/num_batch def test_binary_cross_entropy(self): num_batch = 7 num_pixel_per_image_dim = 3 total_elements = num_batch * num_pixel_per_image_dim * num_pixel_per_image_dim trial_logits = jnp.arange(total_elements).reshape( (num_batch, num_pixel_per_image_dim, num_pixel_per_image_dim)) - 10. sequence = jnp.arange(total_elements).reshape( (num_batch, num_pixel_per_image_dim, num_pixel_per_image_dim)) trial_labels = jnp.mod(sequence, 2) test_loss = vae.binary_cross_entropy_from_logits(trial_logits, trial_labels) reference_loss = self.reference_binary_cross_entropy(trial_logits, trial_labels) _assert_equal_vec(self, test_loss, reference_loss)
annealed_flow_transport-master
annealed_flow_transport/vae_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Stochastic Normalizing Flows as implemented in Wu et al. 2020. For fixed flows this is equivalent to Annealed Importance Sampling with flows, and without resampling. Training is then based on the corresponding ELBO. This is not reparameterizable using a continuous function but Wu et al. proceed as if it where using a "straight through" gradient estimator. """ import time from absl import logging from annealed_flow_transport import flow_transport import annealed_flow_transport.aft_types as tp import jax import jax.numpy as jnp import optax Array = tp.Array OptState = tp.OptState UpdateFn = tp.UpdateFn FlowParams = tp.FlowParams FlowApply = tp.FlowApply LogDensityNoStep = tp.LogDensityNoStep InitialSampler = tp.InitialSampler RandomKey = tp.RandomKey SamplesTuple = tp.SamplesTuple FreeEnergyAndGrad = tp.FreeEnergyAndGrad MarkovKernelApply = tp.MarkovKernelApply LogDensityByStep = tp.LogDensityByStep AcceptanceTuple = tp.AcceptanceTuple LogWeightsTuple = tp.LogWeightsTuple AlgoResultsTuple = tp.AlgoResultsTuple def inner_loop_snf(key: RandomKey, transition_params: FlowParams, flow_apply: FlowApply, markov_kernel_apply: MarkovKernelApply, initial_sampler: InitialSampler, log_density: LogDensityByStep, config): """Inner loop of Stochastic Normalizing Flows. Uses Scan step requiring trees that have the same structure as the base input but with each leaf extended with an extra array index of size num_transitions. We call this an extended tree. Args: key: A JAX random key. transition_params: Extended tree of flow parameters. flow_apply: function that applies the flow. markov_kernel_apply: function that applies the Markov transition kernel. initial_sampler: A function that produces the initial samples. log_density: A function evaluating the log density for each step. config: A ConfigDict containing the configuration. Returns: vfe: variational free energy. """ subkey, key = jax.random.split(key) initial_samples = initial_sampler(subkey, config.snf_batch_size, config.sample_shape) initial_log_weights = -jnp.log(config.snf_batch_size) * jnp.ones( config.snf_batch_size) def scan_step(passed_state, per_step_input): samples, log_weights = passed_state flow_params, key, inner_step = per_step_input vfe_increment = flow_transport.get_batch_parallel_free_energy_increment( samples=samples, flow_apply=flow_apply, flow_params=flow_params, log_density=log_density, step=inner_step) next_samples, next_log_weights, acceptance_tuple = flow_transport.update_samples_log_weights( flow_apply=flow_apply, markov_kernel_apply=markov_kernel_apply, flow_params=flow_params, samples=samples, log_weights=log_weights, key=key, log_density=log_density, step=inner_step, use_resampling=False, use_markov=config.use_markov, resample_threshold=config.resample_threshold) next_passed_state = (next_samples, next_log_weights) per_step_output = (vfe_increment, acceptance_tuple) return next_passed_state, per_step_output initial_state = (initial_samples, initial_log_weights) inner_steps = jnp.arange(1, config.num_temps) keys = jax.random.split(key, config.num_temps-1) per_step_inputs = (transition_params, keys, inner_steps) unused_final_state, per_step_outputs = jax.lax.scan(scan_step, initial_state, per_step_inputs) vfe_increments, unused_acceptance_tuples = per_step_outputs vfe = jnp.sum(vfe_increments) return vfe def outer_loop_snf(flow_init_params: FlowParams, flow_apply: FlowApply, density_by_step: LogDensityByStep, markov_kernel_by_step: MarkovKernelApply, initial_sampler: InitialSampler, key: RandomKey, opt, config, log_step_output, save_checkpoint): """Outer loop for Stochastic Normalizing Flows. Args: flow_init_params: initial state of the flow. flow_apply: function that applies the flow. density_by_step: The log density for different annealing temperatures. markov_kernel_by_step: Markov kernel for different annealing temperatures. initial_sampler: A function that produces the initial samples. key: A Jax random key. opt: An Optax optimizer. config: A ConfigDict containing the configuration. log_step_output: Callable that logs the step output. save_checkpoint: None or function that takes params and saves them. Returns: An AlgoResults tuple containing a summary of the results. """ num_temps = config.num_temps def short_inner_loop(curr_transition_params, rng_key: RandomKey): return inner_loop_snf(rng_key, curr_transition_params, flow_apply, markov_kernel_by_step, initial_sampler, density_by_step, config) repeater = lambda x: jnp.repeat(x[None], num_temps-1, axis=0) transition_params = jax.tree_util.tree_map(repeater, flow_init_params) opt_state = opt.init(transition_params) def vi_update(curr_key, curr_transition_params, curr_opt_state): subkey, curr_key = jax.random.split(curr_key) objective, flow_grads = jax.value_and_grad(short_inner_loop)( curr_transition_params, subkey) updates, new_opt_state = opt.update(flow_grads, curr_opt_state) new_transition_params = optax.apply_updates(curr_transition_params, updates) return curr_key, new_transition_params, objective, new_opt_state jit_vi_update = jax.jit(vi_update) logging.info('Performing initial step redundantly for accurate timing...') initial_start_time = time.time() jit_vi_update(key, transition_params, opt_state) initial_finish_time = time.time() initial_time_diff = initial_finish_time - initial_start_time logging.info('Initial step time / seconds %f: ', initial_time_diff) logging.info('Launching training...') place_holder_array = jnp.array([0.]) start_time = time.time() for step in range(config.snf_num_iters): key, transition_params, vfe, opt_state = jit_vi_update( key, transition_params, opt_state) if step % config.report_step == 0: if log_step_output is not None: delta_time = time.time()-start_time log_step_output(step=step, training_objective=vfe, log_normalizer_estimate=-1.*vfe, delta_time=delta_time, samples=place_holder_array, log_weights=place_holder_array) logging.info( 'Step %05d: Free energy %f', step, vfe ) finish_time = time.time() delta_time = finish_time - start_time final_log_normalizer_estimate = -1.*vfe logging.info('Delta time / seconds %f: ', delta_time) logging.info('Log normalizer estimate %f: ', final_log_normalizer_estimate) if save_checkpoint: save_checkpoint(transition_params) results = AlgoResultsTuple( test_samples=place_holder_array, test_log_weights=place_holder_array, log_normalizer_estimate=final_log_normalizer_estimate, delta_time=delta_time, initial_time_diff=initial_time_diff) return results
annealed_flow_transport-master
annealed_flow_transport/snf.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluation code for launching PIMH and final target density MCMC.""" from absl import logging from annealed_flow_transport import craft from annealed_flow_transport import densities from annealed_flow_transport import expectations from annealed_flow_transport import flow_transport from annealed_flow_transport import flows from annealed_flow_transport import markov_kernel from annealed_flow_transport import mcmc from annealed_flow_transport import pimh from annealed_flow_transport import samplers from annealed_flow_transport import serialize from annealed_flow_transport import smc from annealed_flow_transport import vi import annealed_flow_transport.aft_types as tp import chex import haiku as hk import jax # Type defs. Array = tp.Array OptState = tp.OptState UpdateFn = tp.UpdateFn FlowParams = tp.FlowParams FlowApply = tp.FlowApply LogDensityByStep = tp.LogDensityByStep RandomKey = tp.RandomKey AcceptanceTuple = tp.AcceptanceTuple FreeEnergyAndGrad = tp.FreeEnergyAndGrad FreeEnergyEval = tp.FreeEnergyEval MarkovKernelApply = tp.MarkovKernelApply SamplesTuple = tp.SamplesTuple LogWeightsTuple = tp.LogWeightsTuple VfesTuple = tp.VfesTuple InitialSampler = tp.InitialSampler LogDensityNoStep = tp.LogDensityNoStep assert_equal_shape = chex.assert_equal_shape AlgoResultsTuple = tp.AlgoResultsTuple ParticleState = tp.ParticleState ParticlePropose = tp.ParticlePropose class OnlineMovingAverage(): """Numerically stable implementation of a moving average.""" def __init__(self, label: str): self.label = label self._num_vals = 0 # pytype: disable=attribute-error def update(self, val): self._num_vals += 1 if self._num_vals == 1: self._average = val else: delta = (val - self._average) self._average = self._average + delta/self._num_vals def get_value(self): return self._average # pytype: enable=attribute-error class ExpectationLogger(object): """Compute and log expectations based on particles.""" def __init__(self, expectation_config, num_dim: int): self._expectation_config = expectation_config self._step = 0 self._expectations = [] for config in self._expectation_config.configurations: exp_class = getattr(expectations, config.name) self._expectations.append(jax.jit(exp_class(config, num_dim))) names = [] self._labels = [] for config in self._expectation_config.configurations: name = config.name index = len([elem for elem in names if elem == name]) label = name+'_'+str(index) names.append(name) self._labels.append(label) self._averages = [] for config, label in zip(self._expectation_config.configurations, self._labels): self._averages.append(OnlineMovingAverage(label=label)) def record_expectations(self, particle_state: ParticleState): """Record expectations based on particle state.""" for index, expectation in enumerate(self._expectations): expectation_val = expectation(particle_state.samples, particle_state.log_weights) average = self._averages[index] average.update(expectation_val) if self._step % self._expectation_config.expectation_report_step == 0: logging.info('Step %05d :', self._step) msg = '' for average in self._averages: msg += average.label + ' ' msg += str(average.get_value()) + ', ' logging.info(msg) self._step += 1 def is_flow_algorithm(algo_name): return algo_name in ('craft', 'vi') def is_annealing_markov_kernel_algorithm(algo_name): return algo_name in ('smc', 'craft') def get_particle_propose(config) -> ParticlePropose: """Get a function that proposes particles and log normalizer.""" log_density_initial = getattr(densities, config.initial_config.density)( config.initial_config, config.sample_shape) log_density_final = getattr(densities, config.final_config.density)( config.final_config, config.sample_shape) initial_sampler = getattr(samplers, config.initial_sampler_config.initial_sampler)( config.initial_sampler_config) if is_annealing_markov_kernel_algorithm(config.algo): density_by_step = flow_transport.GeometricAnnealingSchedule( log_density_initial, log_density_final, config.num_temps) markov_kernel_by_step = markov_kernel.MarkovTransitionKernel( config.mcmc_config, density_by_step, config.num_temps) if is_flow_algorithm(config.algo): def flow_func(x): flow = getattr(flows, config.flow_config.type)(config.flow_config) return flow(x) flow_forward_fn = hk.without_apply_rng(hk.transform(flow_func)) flow_params = serialize.load_checkpoint(config.params_filename) if config.algo == 'smc': @jax.jit def particle_propose(loc_key: RandomKey): return smc.fast_outer_loop_smc(density_by_step, initial_sampler, markov_kernel_by_step, loc_key, config) elif config.algo == 'craft': @jax.jit def particle_propose(loc_key: RandomKey): return craft.craft_evaluation_loop(loc_key, flow_params, flow_forward_fn.apply, markov_kernel_by_step, initial_sampler, density_by_step, config) elif config.algo == 'vi': @jax.jit def particle_propose(loc_key: RandomKey): return vi.vfe_naive_importance(initial_sampler, log_density_initial, log_density_final, flow_forward_fn.apply, flow_params, loc_key, config) else: raise NotImplementedError return particle_propose def get_expectation_logger(expectation_config, num_dim: int) -> ExpectationLogger: return ExpectationLogger(expectation_config, num_dim) def run_experiment(config): """Run a SMC flow experiment. Args: config: experiment configuration. Returns: An AlgoResultsTuple containing the experiment results. """ random_key = jax.random.PRNGKey(config.evaluation_seed) expectation_logger = get_expectation_logger(config.expectation_config, config.sample_shape[0]) if config.evaluation_algo == 'pimh': particle_propose = get_particle_propose(config) logging.info('Draw initial samples redundantly for accurate timing...') particle_propose(random_key) logging.info('Starting PIMH algorithm.') pimh.particle_metropolis_loop(random_key, particle_propose, config.num_evaluation_samples, expectation_logger.record_expectations) elif config.evaluation_algo == 'mcmc_final': mcmc.outer_loop_mcmc(random_key, config.num_evaluation_samples, expectation_logger.record_expectations, config) else: raise NotImplementedError
annealed_flow_transport-master
annealed_flow_transport/evaluation.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code for variational inference (VI) with normalizing flows. For background see: Rezende and Mohamed. 2015. Variational Inference with Normalizing Flows. International Conference of Machine Learning. """ from absl import logging import annealed_flow_transport.aft_types as tp import chex import jax import jax.numpy as jnp from jax.scipy.special import logsumexp import numpy as np import optax Array = jnp.ndarray UpdateFn = tp.UpdateFn OptState = tp.OptState FlowParams = tp.FlowParams FlowApply = tp.FlowApply LogDensityNoStep = tp.LogDensityNoStep InitialSampler = tp.InitialSampler RandomKey = tp.RandomKey assert_equal_shape = chex.assert_equal_shape AlgoResultsTuple = tp.AlgoResultsTuple ParticleState = tp.ParticleState assert_trees_all_equal_shapes = chex.assert_trees_all_equal_shapes def vfe_naive_importance(initial_sampler: InitialSampler, initial_density: LogDensityNoStep, final_density: LogDensityNoStep, flow_apply: FlowApply, flow_params: FlowParams, key: RandomKey, config) -> ParticleState: """Estimate log normalizing constant using naive importance sampling.""" samples = initial_sampler(key, config.batch_size, config.sample_shape) transformed_samples, log_det_jacs = flow_apply(flow_params, samples) assert_trees_all_equal_shapes(transformed_samples, samples) log_density_target = final_density(transformed_samples) log_density_initial = initial_density(samples) assert_equal_shape([log_density_initial, log_density_target]) log_density_approx = log_density_initial - log_det_jacs log_importance_weights = log_density_target - log_density_approx log_normalizer_estimate = logsumexp(log_importance_weights) - np.log( config.batch_size) particle_state = ParticleState( samples=transformed_samples, log_weights=log_importance_weights, log_normalizer_estimate=log_normalizer_estimate) return particle_state def vi_free_energy(flow_params: FlowParams, key: RandomKey, initial_sampler: InitialSampler, initial_density: LogDensityNoStep, final_density: LogDensityNoStep, flow_apply: FlowApply, config): """The variational free energy used in VI with normalizing flows.""" samples = initial_sampler(key, config.batch_size, config.sample_shape) transformed_samples, log_det_jacs = flow_apply(flow_params, samples) assert_trees_all_equal_shapes(transformed_samples, samples) log_density_target = final_density(transformed_samples) log_density_initial = initial_density(samples) assert_equal_shape([log_density_initial, log_density_target]) log_density_approx = log_density_initial - log_det_jacs assert_equal_shape([log_density_approx, log_density_initial]) free_energies = log_density_approx - log_density_target free_energy = jnp.mean(free_energies) return free_energy def outer_loop_vi(initial_sampler: InitialSampler, opt_update: UpdateFn, opt_init_state: OptState, flow_init_params: FlowParams, flow_apply: FlowApply, key: RandomKey, initial_log_density: LogDensityNoStep, final_log_density: LogDensityNoStep, config, save_checkpoint) -> AlgoResultsTuple: """The training loop for variational inference with normalizing flows. Args: initial_sampler: Produces samples from the base distribution. opt_update: Optax update function for the optimizer. opt_init_state: Optax initial state for the optimizer. flow_init_params: Initial params for the flow. flow_apply: A callable that evaluates the flow for given params and samples. key: A Jax random Key. initial_log_density: Function that evaluates the base density. final_log_density: Function that evaluates the target density. config: configuration ConfigDict. save_checkpoint: None or function that takes params and saves them. Returns: An AlgoResults tuple containing a summary of the results. """ def vi_free_energy_short(loc_flow_params, loc_key): return vi_free_energy(loc_flow_params, loc_key, initial_sampler, initial_log_density, final_log_density, flow_apply, config) free_energy_and_grad = jax.jit(jax.value_and_grad(vi_free_energy_short)) def short_vfe_naive_importance(loc_flow_params, loc_key): return vfe_naive_importance(initial_sampler, initial_log_density, final_log_density, flow_apply, loc_flow_params, loc_key, config).log_normalizer_estimate jit_vfe_naive_importance = jax.jit(short_vfe_naive_importance) flow_params = flow_init_params opt_state = opt_init_state def vi_update(curr_key, curr_flow_params, curr_opt_state): subkey, curr_key = jax.random.split(curr_key) new_free_energy, flow_grads = free_energy_and_grad(curr_flow_params, subkey) updates, new_opt_state = opt_update(flow_grads, curr_opt_state) new_flow_params = optax.apply_updates(curr_flow_params, updates) return curr_key, new_flow_params, new_free_energy, new_opt_state jit_vi_update = jax.jit(vi_update) step = 0 while step < config.vi_iters: with jax.profiler.StepTraceAnnotation('train', step_num=step): key, flow_params, curr_free_energy, opt_state = jit_vi_update(key, flow_params, opt_state) if step % config.vi_report_step == 0: logging.info('Step %05d: free_energy %f:', step, curr_free_energy) if config.vi_estimator == 'elbo': log_normalizer_estimate = -1.*curr_free_energy elif config.vi_estimator == 'importance': subkey, key = jax.random.split(key, 2) log_normalizer_estimate = jit_vfe_naive_importance(flow_params, subkey) else: raise NotImplementedError logging.info('Log normalizer estimate %f:', log_normalizer_estimate) step += 1 if save_checkpoint: save_checkpoint(flow_params) particle_state = vfe_naive_importance(initial_sampler, initial_log_density, final_log_density, flow_apply, flow_params, key, config) results = AlgoResultsTuple( test_samples=particle_state.samples, test_log_weights=particle_state.log_weights, log_normalizer_estimate=particle_state.log_normalizer_estimate, delta_time=0., # These are currently set with placeholders. initial_time_diff=0.) return results
annealed_flow_transport-master
annealed_flow_transport/vi.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for annealed_flow_transport.flow_transport.""" import hashlib import os.path from absl.testing import absltest from absl.testing import parameterized from annealed_flow_transport.densities import AutoEncoderLikelihood from annealed_flow_transport.densities import ChallengingTwoDimensionalMixture from annealed_flow_transport.densities import FunnelDistribution from annealed_flow_transport.densities import MultivariateNormalDistribution from annealed_flow_transport.densities import NormalDistribution from annealed_flow_transport.densities import phi_four_log_density from annealed_flow_transport.densities import PhiFourTheory import jax import jax.numpy as jnp from jax.scipy.stats import norm import ml_collections import numpy as np ConfigDict = ml_collections.ConfigDict join = os.path.join dirname = os.path.dirname def _assert_equal_vec(tester, v1, v2, **kwargs): tester.assertTrue(jnp.allclose(v1, v2, **kwargs)) def get_normal_config(): config = ConfigDict() config.loc = 1. config.scale = 1. return config def get_multivariate_normal_config(): config = ConfigDict() config.shared_mean = 1. config.diagonal_cov = 1. return config class BasicShapesTest(parameterized.TestCase): @parameterized.named_parameters( ('Normal', NormalDistribution, 1, get_normal_config()), ('MultivariateNormal', MultivariateNormalDistribution, 2, get_multivariate_normal_config()), ('TwoDimensionalMixture', ChallengingTwoDimensionalMixture, 2, None), ('FunnelDistribution', FunnelDistribution, 10, None),) def test_shapes(self, test_class, num_dim: int, config): num_batch = 7 test_matrix = jnp.arange(num_dim * num_batch).reshape((num_batch, num_dim)) if not config: config = ConfigDict() test_density = test_class(config, (num_dim,)) output_log_densities = test_density(test_matrix) self.assertEqual(output_log_densities.shape, (num_batch,)) class VAETest(parameterized.TestCase): @parameterized.named_parameters( ('First digit', 0, '9ea2704b4fafa24f97c5e330506bd2c9'), ('Tenth digit', 9, '67a03001cd0eadedff8300f2b6cb7f03'), ('Main paper digit', 3689, 'c4ae91223d22b0ed227b401d18237e65'),) def test_digit_ordering(self, digit_index, target_md5_hash): """Confirm the digit determined by index has not changed using a hash.""" config = ConfigDict() config.params_filename = join(dirname(__file__), 'data/vae.pickle') config.image_index = digit_index vae_density = AutoEncoderLikelihood(config, (30,)) hex_digit_hash = hashlib.md5(vae_density._test_image).hexdigest() self.assertEqual(hex_digit_hash, target_md5_hash) def test_density_shape(self): num_batch = 7 num_dim = 30 total_points = num_batch * num_dim config = ConfigDict() config.params_filename = join(dirname(__file__), 'data/vae.pickle') config.image_index = 0 vae_density = AutoEncoderLikelihood(config, (num_dim,)) test_input = (jnp.arange(total_points).reshape(num_batch, num_dim) - 100.) / 100. test_output = vae_density(test_input) self.assertEqual(test_output.shape, (num_batch,)) def test_log_prior(self): num_dim = 30 config = ConfigDict() config.params_filename = join(dirname(__file__), 'data/vae.pickle') config.image_index = 0 vae_density = AutoEncoderLikelihood(config, (num_dim,)) test_input = (jnp.arange(num_dim)-num_dim)/num_dim test_output = vae_density.log_prior(test_input) reference_output = jnp.sum(jax.vmap(norm.logpdf)(test_input)) _assert_equal_vec(self, reference_output, test_output) def test_batching_consistency(self): """Paranoid test to check there is nothing wrong with batching/averages.""" num_batch = 7 num_dim = 30 total_points = num_batch * num_dim config = ConfigDict() config.params_filename = join(dirname(__file__), 'data/vae.pickle') config.image_index = 0 vae_density = AutoEncoderLikelihood(config, (num_dim,)) test_input = (jnp.arange(total_points).reshape(num_batch, num_dim) - 100.) / 100. test_output = vae_density(test_input) for batch_index in range(num_batch): current_log_density = vae_density.total_log_probability( test_input[batch_index, :]) _assert_equal_vec(self, test_output[batch_index], current_log_density) class PhiFourTest(parameterized.TestCase): def test_batched_configurable(self): config = ConfigDict() config.mass_squared = -4. config.bare_coupling = 5.1 batch_size = 7 num_dim = 16 trial_values = jnp.linspace(-2., 2., batch_size * num_dim).reshape( (batch_size, num_dim)) log_density = PhiFourTheory(config, (num_dim,)) log_density_val = log_density(trial_values) self.assertTrue(log_density_val.shape, (batch_size)) def test_zero(self): lattice_shape = (8, 6) trial_lattice_values = jnp.zeros(lattice_shape) mass_squared = -4. bare_coupling = 5.1 trial_log_density = phi_four_log_density(trial_lattice_values, mass_squared, bare_coupling) _assert_equal_vec(self, trial_log_density, 0.) def test_reflection_symmetry(self): lattice_shape = (8, 6) lattice_size = np.prod(lattice_shape) trial_lattice_values = jnp.linspace(-2., 2., lattice_size).reshape(lattice_shape) reflected_trial_lattice_values = -1.*trial_lattice_values mass_squared = -4. bare_coupling = 5.1 trial_log_density = phi_four_log_density(trial_lattice_values, mass_squared, bare_coupling) reflected_trial_log_density = phi_four_log_density( reflected_trial_lattice_values, mass_squared, bare_coupling) _assert_equal_vec(self, trial_log_density, reflected_trial_log_density) def test_translation_symmetry(self): lattice_shape = (8, 6) lattice_size = np.prod(lattice_shape) trial_lattice_values = jnp.linspace(-2., 2., lattice_size).reshape(lattice_shape) translated_lattice_values = jnp.roll(trial_lattice_values, shift=(1, 2), axis=(0, 1)) mass_squared = -4. bare_coupling = 5.1 trial_log_density = phi_four_log_density(trial_lattice_values, mass_squared, bare_coupling) translated_log_density = phi_four_log_density(translated_lattice_values, mass_squared, bare_coupling) _assert_equal_vec(self, trial_log_density, translated_log_density) if __name__ == '__main__': absltest.main()
annealed_flow_transport-master
annealed_flow_transport/densities_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for annealed_flow_transport.aft.""" from absl.testing import absltest from absl.testing import parameterized from annealed_flow_transport import aft import annealed_flow_transport.aft_types as tp import jax import jax.numpy as jnp import optax def _assert_equal_vec(tester, v1, v2, **kwargs): tester.assertTrue(jnp.allclose(v1, v2, **kwargs)) class AftTest(parameterized.TestCase): def setUp(self): super().setUp() num_dim = 1 num_samples = 4 self._train_samples = jnp.zeros((num_samples, num_dim)) self._train_log_weights = -jnp.log(num_samples)*jnp.ones((num_samples,)) self._validation_samples = self._train_samples self._validation_log_weights = self._train_log_weights self._true_target = jnp.ones((num_dim,)) self._initial_mean = jnp.zeros((num_dim,)) self._opt = optax.adam(1e-2) self._opt_init_state = self._opt.init(self._initial_mean) self.dummy_free_energy_and_grad = jax.value_and_grad(self.dummy_free_energy) self._dummy_outer_step = 0 self._iterations = 500 def dummy_free_energy(self, mean, samples, log_weights, unused_step): integrands = jnp.square(samples + mean - self._true_target[None, :])[:, 0] return jnp.sum(jax.nn.softmax(log_weights) * integrands) def test_early_stopping(self): best_mean_greedy, unused_opt_values = aft.optimize_free_energy( opt_update=self._opt.update, opt_init_state=self._opt_init_state, flow_init_params=self._initial_mean, free_energy_and_grad=self.dummy_free_energy_and_grad, free_energy_eval=self.dummy_free_energy, train_samples=self._train_samples, train_log_weights=self._train_log_weights, validation_samples=self._validation_samples, validation_log_weights=self._validation_log_weights, outer_step=self._dummy_outer_step, opt_iters=self._iterations, stopping_criterion='greedy_time') best_mean_time, opt_values = aft.optimize_free_energy( opt_update=self._opt.update, opt_init_state=self._opt_init_state, flow_init_params=self._initial_mean, free_energy_and_grad=self.dummy_free_energy_and_grad, free_energy_eval=self.dummy_free_energy, train_samples=self._train_samples, train_log_weights=self._train_log_weights, validation_samples=self._validation_samples, validation_log_weights=self._validation_log_weights, outer_step=self._dummy_outer_step, opt_iters=self._iterations, stopping_criterion='time') _assert_equal_vec(self, best_mean_greedy, self._true_target, atol=1e-5) _assert_equal_vec(self, best_mean_time, self._true_target, atol=1e-5) min_train_vfe = jnp.min(opt_values.train_vfes) min_validation_vfe = jnp.min(opt_values.validation_vfes) true_minimium = 0. _assert_equal_vec(self, min_train_vfe, true_minimium, atol=1e-5) _assert_equal_vec(self, min_validation_vfe, true_minimium, atol=1e-5) def test_opt_step(self): initial_vfes = tp.VfesTuple(jnp.zeros(self._iterations), jnp.zeros(self._iterations)) initial_loop_state = aft.OptimizationLoopState( self._opt_init_state, self._initial_mean, inner_step=0, opt_vfes=initial_vfes, best_params=self._initial_mean, best_validation_vfe=jnp.inf, best_index=-1) loop_state_b = aft.flow_estimate_step( loop_state=initial_loop_state, free_energy_and_grad=self.dummy_free_energy_and_grad, train_samples=self._train_samples, train_log_weights=self._train_log_weights, outer_step=self._dummy_outer_step, validation_samples=self._validation_samples, validation_log_weights=self._validation_log_weights, free_energy_eval=self.dummy_free_energy, opt_update=self._opt.update) self.assertEqual(loop_state_b.inner_step, 1) array_one = jnp.array(1.) _assert_equal_vec(self, loop_state_b.opt_vfes.train_vfes[0], array_one) _assert_equal_vec(self, loop_state_b.opt_vfes.validation_vfes[0], array_one) _assert_equal_vec(self, loop_state_b.best_params, self._initial_mean) _assert_equal_vec(self, loop_state_b.best_validation_vfe, array_one) self.assertEqual(loop_state_b.best_index, 0) loop_state_c = aft.flow_estimate_step( loop_state=loop_state_b, free_energy_and_grad=self.dummy_free_energy_and_grad, train_samples=self._train_samples, train_log_weights=self._train_log_weights, outer_step=self._dummy_outer_step, validation_samples=self._validation_samples, validation_log_weights=self._validation_log_weights, free_energy_eval=self.dummy_free_energy, opt_update=self._opt.update) self.assertEqual(loop_state_c.inner_step, 2) self.assertLess(loop_state_c.best_validation_vfe, array_one) self.assertEqual(loop_state_c.best_index, 1) if __name__ == '__main__': absltest.main()
annealed_flow_transport-master
annealed_flow_transport/aft_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Train a convolutional variational autoencoder for likelihood experiments. Some Jax/Haiku programming idioms inspired by OSS Apache 2.0 Haiku vae example. A pretrained version of this model is already included in data/vae.pickle. To run one of the sampling algorithms on that trained model use configs/vae.py This training script is included for full reproducibility. """ import os import pickle import time from typing import Any, Tuple from absl import app from absl import flags from absl import logging from annealed_flow_transport import vae import annealed_flow_transport.aft_types as tp import haiku as hk import jax from matplotlib import pylab as plt from ml_collections.config_flags import config_flags import optax import tensorflow_datasets as tfds Array = tp.Array Batch = tp.VaeBatch MNIST_IMAGE_SHAPE = tp.MNIST_IMAGE_SHAPE RandomKey = tp.RandomKey OptState = tp.OptState Params = Any UpdateFn = tp.UpdateFn VAEResult = tp.VAEResult def train_step(vae_apply, vae_params, opt_state: OptState, opt_update: UpdateFn, batch: Batch, random_key: RandomKey) -> Tuple[Params, OptState, Array]: """A single step of training for the VAE.""" def params_loss(loc_params): scaled_image = batch['image'] output: VAEResult = vae_apply(loc_params, random_key, scaled_image) loss = vae.vae_loss(batch['image'], output.logits, output.latent_mean, output.latent_std) return loss value, grads = jax.value_and_grad(params_loss)(vae_params) updates, new_opt_state = opt_update(grads, opt_state) new_params = optax.apply_updates(vae_params, updates) return new_params, new_opt_state, value def save_image(reconst_image: Array, train_image: Array, sample_image: Array, num_plot: int, opt_iter: int, output_directory: str): """Show image plots.""" overall_size = 1.5 unused_fig, axes = plt.subplots( 3, num_plot, figsize=(overall_size*num_plot, overall_size*3)) def plot_image(curr_plot_index, sub_index, data): axes[sub_index, curr_plot_index].imshow(data, cmap='gray', vmin=0., vmax=1.) for plot_index in range(num_plot): for (sub_index, datum) in zip(range(3), (train_image, reconst_image, sample_image)): plot_image(plot_index, sub_index, datum[plot_index, :, :, 0]) plt.savefig(output_directory+str(opt_iter)+'.png') plt.close() def train_vae(batch_size: int, num_latents: int, random_seed: int, step_size: float, output_dir_stub, train_iters: int, report_period: int ): """Train the VAE on binarized MNIST. Args: batch_size: Batch size for training and validation. num_latents: Number of latents for VAE latent space. random_seed: Random seed for training. step_size: Step size for ADAM optimizer. output_dir_stub: Where to store files if truthy otherwise don't store files. train_iters: Number of iterations to run training for. report_period: Period between reporting losses and storing files. """ train_dataset = vae.load_dataset(tfds.Split.TRAIN, batch_size) validation_dataset = vae.load_dataset(tfds.Split.TEST, batch_size) def call_vae(x): res_vae = vae.ConvVAE(num_latents=num_latents) return res_vae(x) vae_fn = hk.transform(call_vae) rng_seq = hk.PRNGSequence(random_seed) vae_params = vae_fn.init( next(rng_seq), next(train_dataset)['image']) opt = optax.chain( optax.clip_by_global_norm(1e5), optax.scale_by_adam(b1=0.9, b2=0.999, eps=1e-8), optax.scale(-step_size) ) opt_state = opt.init(vae_params) opt_update = opt.update def train_step_short(curr_params, curr_opt_state, curr_batch, curr_key): return train_step(vae_fn.apply, curr_params, curr_opt_state, opt_update, curr_batch, curr_key) def compute_validation(curr_params, curr_batch, curr_key): output: VAEResult = vae_fn.apply(curr_params, curr_key, curr_batch['image']) loss = vae.vae_loss(curr_batch['image'], output.logits, output.latent_mean, output.latent_std) return loss, output.reconst_sample, curr_batch['image'], output.sample_image train_step_jit = jax.jit(train_step_short) compute_validation_jit = jax.jit(compute_validation) if output_dir_stub: output_directory = output_dir_stub + time.strftime('%a_%d_%b_%Y_%H:%M:%S/', time.gmtime()) if not os.path.exists(output_directory): os.makedirs(output_directory) for opt_iter in range(train_iters): vae_params, opt_state, train_loss = train_step_jit( vae_params, opt_state, next(train_dataset), next(rng_seq)) if opt_iter % report_period == 0: validation_loss, reconst_sample, example, sample = compute_validation_jit( vae_params, next(validation_dataset), next(rng_seq)) logging.info('Step: %5d: Training VFE: %.3f', opt_iter, train_loss) logging.info('Step: %5d: Validation VFE: %.3f', opt_iter, validation_loss) if output_dir_stub: save_image(reconst_sample, example, sample, 8, opt_iter, output_directory) if output_dir_stub: save_result(vae_params, output_directory) def get_checkpoint_filename(): return 'vae.pickle' def save_result(state, output_directory: str): ckpt_filename = os.path.join(output_directory, get_checkpoint_filename()) with open(ckpt_filename, 'wb') as f: pickle.dump(state, f) def main(argv): config = FLAGS.train_vae_config info = 'Displaying config '+str(config) if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') train_vae( batch_size=config.batch_size, num_latents=config.num_latents, random_seed=config.random_seed, step_size=config.step_size, output_dir_stub=config.output_dir_stub, train_iters=config.train_iters, report_period=config.report_period) if __name__ == '__main__': FLAGS = flags.FLAGS config_flags.DEFINE_config_file('train_vae_config', './train_vae_configs/vae_config.py', 'VAE training configuration.') app.run(main)
annealed_flow_transport-master
annealed_flow_transport/train_vae.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Sequential Monte Carlo (SMC) sampler algorithm. For background see: Del Moral, Doucet and Jasra. 2006. Sequential Monte Carlo samplers. Journal of the Royal Statistical Society B. """ import time from typing import Tuple from absl import logging from annealed_flow_transport import flow_transport from annealed_flow_transport import resampling import annealed_flow_transport.aft_types as tp import chex import jax import jax.numpy as jnp import numpy as np Array = tp.Array LogDensityNoStep = tp.LogDensityNoStep InitialSampler = tp.InitialSampler RandomKey = tp.RandomKey MarkovKernelApply = tp.MarkovKernelApply LogDensityByStep = tp.LogDensityByStep assert_equal_shape = chex.assert_equal_shape assert_trees_all_equal_shapes = chex.assert_trees_all_equal_shapes AlgoResultsTuple = tp.AlgoResultsTuple ParticleState = tp.ParticleState def inner_loop( key: RandomKey, markov_kernel_apply: MarkovKernelApply, samples: Array, log_weights: Array, log_density: LogDensityByStep, step: int, config ) -> Tuple[Array, Array, Array, Array]: """Inner loop of the algorithm. Args: key: A JAX random key. markov_kernel_apply: functional that applies the Markov transition kernel. samples: Array containing samples. log_weights: Array containing log_weights. log_density: function returning the log_density of a sample at given step. step: int giving current step of algorithm. config: experiment configuration. Returns: samples_final: samples after the full inner loop has been performed. log_weights_final: log_weights after the full inner loop has been performed. log_normalizer_increment: Scalar log of normalizing constant increment. Acceptance_rates: Acceptance rates of samplers. """ deltas = flow_transport.get_delta_no_flow(samples, log_density, step) log_normalizer_increment = flow_transport.get_log_normalizer_increment_no_flow( deltas, log_weights) log_weights_new = flow_transport.reweight_no_flow(log_weights, deltas) if config.use_resampling: subkey, key = jax.random.split(key) resampled_samples, log_weights_resampled = resampling.optionally_resample( subkey, log_weights_new, samples, config.resample_threshold) assert_trees_all_equal_shapes(resampled_samples, samples) assert_equal_shape([log_weights_resampled, log_weights_new]) else: resampled_samples = samples log_weights_resampled = log_weights_new markov_samples, acceptance_tuple = markov_kernel_apply( step, key, resampled_samples) return markov_samples, log_weights_resampled, log_normalizer_increment, acceptance_tuple def get_short_inner_loop(markov_kernel_by_step: MarkovKernelApply, density_by_step: LogDensityByStep, config): """Get a short version of inner loop.""" def short_inner_loop(rng_key: RandomKey, loc_samples: Array, loc_log_weights: Array, loc_step: int): return inner_loop(rng_key, markov_kernel_by_step, loc_samples, loc_log_weights, density_by_step, loc_step, config) return short_inner_loop def fast_outer_loop_smc(density_by_step: LogDensityByStep, initial_sampler: InitialSampler, markov_kernel_by_step: MarkovKernelApply, key: RandomKey, config) -> ParticleState: """A fast SMC loop for evaluation or use inside other algorithms.""" key, subkey = jax.random.split(key) samples = initial_sampler(subkey, config.batch_size, config.sample_shape) log_weights = -jnp.log(config.batch_size) * jnp.ones(config.batch_size) short_inner_loop = get_short_inner_loop(markov_kernel_by_step, density_by_step, config) keys = jax.random.split(key, config.num_temps-1) def scan_step(passed_state, per_step_input): samples, log_weights = passed_state current_step, current_key = per_step_input new_samples, new_log_weights, log_z_increment, _ = short_inner_loop( current_key, samples, log_weights, current_step) new_passed_state = (new_samples, new_log_weights) return new_passed_state, log_z_increment init_state = (samples, log_weights) per_step_inputs = (np.arange(1, config.num_temps), keys) final_state, log_normalizer_increments = jax.lax.scan(scan_step, init_state, per_step_inputs ) log_normalizer_estimate = jnp.sum(log_normalizer_increments) particle_state = ParticleState( samples=final_state[0], log_weights=final_state[1], log_normalizer_estimate=log_normalizer_estimate) return particle_state def outer_loop_smc(density_by_step: LogDensityByStep, initial_sampler: InitialSampler, markov_kernel_by_step: MarkovKernelApply, key: RandomKey, config) -> AlgoResultsTuple: """The outer loop for Annealed Flow Transport Monte Carlo. Args: density_by_step: The log density for each annealing step. initial_sampler: A function that produces the initial samples. markov_kernel_by_step: Markov transition kernel for each annealing step. key: A Jax random key. config: A ConfigDict containing the configuration. Returns: An AlgoResults tuple containing a summary of the results. """ num_temps = config.num_temps key, subkey = jax.random.split(key) initial_sampler_start = time.time() samples = initial_sampler(subkey, config.batch_size, config.sample_shape) initial_sampler_finish = time.time() initial_sampler_time_diff = initial_sampler_finish - initial_sampler_start logging.info('Initial sampler time / seconds %f: ', initial_sampler_time_diff) log_weights = -jnp.log(config.batch_size) * jnp.ones(config.batch_size) logging.info('Jitting step...') inner_loop_jit = jax.jit( get_short_inner_loop(markov_kernel_by_step, density_by_step, config)) logging.info('Performing initial step redundantly for accurate timing...') initial_start_time = time.time() inner_loop_jit(key, samples, log_weights, 1) initial_finish_time = time.time() initial_time_diff = initial_finish_time - initial_start_time logging.info('Initial step time / seconds %f: ', initial_time_diff) logging.info('Launching training...') log_normalizer_estimate = 0. start_time = time.time() for step in range(1, num_temps): subkey, key = jax.random.split(key) samples, log_weights, log_normalizer_increment, acceptance = inner_loop_jit( subkey, samples, log_weights, step) acceptance_hmc = float(np.asarray(acceptance[0])) acceptance_rwm = float(np.asarray(acceptance[1])) log_normalizer_estimate += log_normalizer_increment if step % config.report_step == 0: beta = density_by_step.get_beta(step) # pytype: disable=attribute-error logging.info( 'Step %05d: beta %f Acceptance rate HMC %f Acceptance rate RWM %f', step, beta, acceptance_hmc, acceptance_rwm) finish_time = time.time() delta_time = finish_time - start_time logging.info('Delta time / seconds %f: ', delta_time) logging.info('Log normalizer estimate %f: ', log_normalizer_estimate) results = AlgoResultsTuple( test_samples=samples, test_log_weights=log_weights, log_normalizer_estimate=log_normalizer_estimate, delta_time=delta_time, initial_time_diff=initial_time_diff) return results
annealed_flow_transport-master
annealed_flow_transport/smc.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Particle independent Metropolis-Hasting algorithm code.""" import annealed_flow_transport.aft_types as tp import jax import jax.numpy as jnp Array = tp.Array ParticleState = tp.ParticleState RandomKey = tp.RandomKey def particle_metropolis_step(key: RandomKey, current_particle_state: ParticleState, proposed_particle_state) -> ParticleState: """A Particle independent Metropolis Hasting step. Accept the proposed particles with probability a(x', x_t) where x' is the proposed particle state, x_t is the current state and a(x', x_t) = min( 1, Z(x')/Z(x_t)) with Z being the normalizing constant estimate for that particle state. For numerical stability we transform the transformation to log space i.e.: u sim Uniform[0,1] Accept if a greater than u Becomes: log u sim -Exponential(1) Accept if log a greater than log u For more background see Andrieu, Doucet and Holenstein: 2010 "Particle Markov chain Monte Carlo Methods" JRSS B. Args: key: A Jax random key. current_particle_state: Corresponds to x_t proposed_particle_state: Corresponds to x' Returns: next_particle_state: Results of the update step. """ log_u = -1.*jax.random.exponential(key) log_a = proposed_particle_state.log_normalizer_estimate - current_particle_state.log_normalizer_estimate accept = log_a > log_u next_samples = jnp.where(accept, proposed_particle_state.samples, current_particle_state.samples) next_log_weights = jnp.where(accept, proposed_particle_state.log_weights, current_particle_state.log_weights) next_log_z = jnp.where(accept, proposed_particle_state.log_normalizer_estimate, current_particle_state.log_normalizer_estimate) next_particle_state = ParticleState(samples=next_samples, log_weights=next_log_weights, log_normalizer_estimate=next_log_z) return next_particle_state def particle_metropolis_loop(key: RandomKey, particle_propose, num_samples: int, record_expectations, ): """Run a particle independent Metropolis-Hastings chain. Args: key: A Jax random key. particle_propose: Takes a RandomKey and returns a ParticleState. num_samples: Number of iterations to run for. record_expectations: Takes a ParticleState and logs required expectations. """ subkey, key = jax.random.split(key) particle_state = particle_propose(subkey) record_expectations(particle_state) for unused_sample_index in range(num_samples): subkey, key = jax.random.split(key) proposed_particle_state = particle_propose(subkey) subkey, key = jax.random.split(key) particle_state = particle_metropolis_step(subkey, particle_state, proposed_particle_state) record_expectations(particle_state)
annealed_flow_transport-master
annealed_flow_transport/pimh.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code from running standard MCMC at the final target temperature.""" import time from absl import logging from annealed_flow_transport import densities from annealed_flow_transport import markov_kernel from annealed_flow_transport import samplers import annealed_flow_transport.aft_types as tp import chex import jax import jax.numpy as jnp import numpy as np Array = tp.Array LogDensityNoStep = tp.LogDensityNoStep InitialSampler = tp.InitialSampler RandomKey = tp.RandomKey MarkovKernelApply = tp.MarkovKernelApply assert_equal_shape = chex.assert_equal_shape AlgoResultsTuple = tp.AlgoResultsTuple ParticleState = tp.ParticleState def outer_loop_mcmc(key: RandomKey, num_iters: int, record_expectations, config) -> AlgoResultsTuple: """The outer loop for Annealed Flow Transport Monte Carlo. Args: key: A Jax random key. num_iters: Number of iterations of MCMC to run. record_expectations: Function for recording values of expectations. config: A ConfigDict containing the configuration. Returns: An AlgoResults tuple containing a summary of the results. """ final_log_density = getattr(densities, config.final_config.density)( config.final_config, config.sample_shape[0]) initial_sampler = getattr(samplers, config.initial_sampler_config.initial_sampler)( config.initial_sampler_config) num_temps = 2 key, subkey = jax.random.split(key) samples = initial_sampler(subkey, config.batch_size, config.sample_shape) log_weights = -jnp.log(config.batch_size) * jnp.ones(config.batch_size) dummy_density_by_step = lambda unused_step, x: final_log_density(x) final_step = 1 markov_kernel_dummy_step = markov_kernel.MarkovTransitionKernel( config.mcmc_config, dummy_density_by_step, num_temps) logging.info('Jitting step...') fast_markov_kernel = jax.jit( lambda x, y: markov_kernel_dummy_step(final_step, x, y)) logging.info('Performing initial step redundantly for accurate timing...') initial_start_time = time.time() fast_markov_kernel(key, samples) initial_finish_time = time.time() initial_time_diff = initial_finish_time - initial_start_time logging.info('Initial step time / seconds %f: ', initial_time_diff) logging.info('Launching training...') log_normalizer_estimate = 0. start_time = time.time() for step in range(num_iters): subkey, key = jax.random.split(key) samples, acceptance = fast_markov_kernel(subkey, samples) acceptance_nuts = float(np.asarray(acceptance[0])) acceptance_hmc = float(np.asarray(acceptance[1])) particle_state = ParticleState( samples=samples, log_weights=log_weights, log_normalizer_estimate=log_normalizer_estimate) record_expectations(particle_state) if step % config.report_step == 0: logging.info( 'Step %05d: Acceptance rate NUTS %f Acceptance rate HMC %f', step, acceptance_nuts, acceptance_hmc ) finish_time = time.time() delta_time = finish_time - start_time logging.info('Delta time / seconds %f: ', delta_time) logging.info('Log normalizer estimate %f: ', log_normalizer_estimate) results = AlgoResultsTuple( test_samples=samples, test_log_weights=log_weights, log_normalizer_estimate=log_normalizer_estimate, delta_time=delta_time, initial_time_diff=initial_time_diff) return results
annealed_flow_transport-master
annealed_flow_transport/mcmc.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Expectations to be estimated from samples and log weights.""" import math from annealed_flow_transport import qft_observables import annealed_flow_transport.aft_types as tp import jax import jax.numpy as jnp import numpy as np ConfigDict = tp.ConfigDict Array = tp.Array ParticleState = tp.ParticleState class SingleComponentMean(): """Simple computation of the expectation of one component of the vector.""" def __init__(self, config, num_dim: int): del num_dim self._config = config def __call__(self, samples: Array, log_weights: Array) -> Array: normalized_weights = jax.nn.softmax(log_weights) component_values = samples[:, self._config.component_index] return jnp.sum(normalized_weights * component_values) class TwoPointSusceptibility(): """A wrapper for the two point susceptibility observable.""" def __init__(self, config, num_dim: int): self._config = config self._num_grid_per_dim = int(math.sqrt(num_dim)) assert self._num_grid_per_dim ** 2 == num_dim def __call__(self, samples: Array, log_weights: Array) -> Array: num_batch = np.shape(samples)[0] reshaped_samples = jnp.reshape(samples, (num_batch, self._num_grid_per_dim, self._num_grid_per_dim)) return qft_observables.estimate_two_point_susceptibility( reshaped_samples, log_weights, self._num_grid_per_dim) class IsingEnergyDensity(): """A wrapper for the Ising energy density observable.""" def __init__(self, config, num_dim: int): self._config = config self._num_grid_per_dim = int(math.sqrt(num_dim)) assert self._num_grid_per_dim ** 2 == num_dim def __call__(self, samples: Array, log_weights: Array) -> Array: num_batch = np.shape(samples)[0] reshaped_samples = jnp.reshape(samples, (num_batch, self._num_grid_per_dim, self._num_grid_per_dim)) return qft_observables.estimate_ising_energy_density( reshaped_samples, log_weights)
annealed_flow_transport-master
annealed_flow_transport/expectations.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Annealed Flow Transport (AFT) Monte Carlo algorithm. For more detail see: Arbel, Matthews and Doucet. 2021. Annealed Flow Transport Monte Carlo. International Conference on Machine Learning. """ import time from typing import NamedTuple, Tuple from absl import logging from annealed_flow_transport import flow_transport import annealed_flow_transport.aft_types as tp import jax import jax.numpy as jnp import numpy as np import optax Array = tp.Array UpdateFn = tp.UpdateFn OptState = tp.OptState FlowParams = tp.FlowParams FlowApply = tp.FlowApply LogDensityNoStep = tp.LogDensityNoStep InitialSampler = tp.InitialSampler RandomKey = tp.RandomKey SamplesTuple = tp.SamplesTuple FreeEnergyAndGrad = tp.FreeEnergyAndGrad MarkovKernelApply = tp.MarkovKernelApply FreeEnergyEval = tp.FreeEnergyEval VfesTuple = tp.VfesTuple LogDensityByStep = tp.LogDensityByStep AcceptanceTuple = tp.AcceptanceTuple LogWeightsTuple = tp.LogWeightsTuple AlgoResultsTuple = tp.AlgoResultsTuple def get_initial_samples_log_weight_tuples( initial_sampler: InitialSampler, key: RandomKey, config) -> Tuple[SamplesTuple, LogWeightsTuple]: """Get initial train/validation/test state depending on config.""" batch_sizes = (config.estimation_batch_size, config.estimation_batch_size, config.batch_size) subkeys = jax.random.split(key, 3) samples_tuple = SamplesTuple(*[ initial_sampler(elem, batch, config.sample_shape) for elem, batch in zip(subkeys, batch_sizes) ]) log_weights_tuple = LogWeightsTuple(*[-jnp.log(batch) * jnp.ones( batch) for batch in batch_sizes]) return samples_tuple, log_weights_tuple def update_tuples( samples_tuple: SamplesTuple, log_weights_tuple: LogWeightsTuple, key: RandomKey, flow_apply: FlowApply, flow_params: FlowParams, markov_kernel_apply: MarkovKernelApply, log_density: LogDensityByStep, step: int, config) -> Tuple[SamplesTuple, LogWeightsTuple, AcceptanceTuple]: """Update the samples and log weights and return diagnostics.""" samples_list = [] log_weights_list = [] acceptance_tuple_list = [] subkeys = jax.random.split(key, 3) for curr_samples, curr_log_weights, subkey in zip(samples_tuple, log_weights_tuple, subkeys): new_samples, new_log_weights, acceptance_tuple = flow_transport.update_samples_log_weights( flow_apply=flow_apply, markov_kernel_apply=markov_kernel_apply, flow_params=flow_params, samples=curr_samples, log_weights=curr_log_weights, key=subkey, log_density=log_density, step=step, use_resampling=config.use_resampling, use_markov=config.use_markov, resample_threshold=config.resample_threshold) samples_list.append(new_samples) log_weights_list.append(new_log_weights) acceptance_tuple_list.append(acceptance_tuple) samples_tuple = SamplesTuple(*samples_list) log_weights_tuple = LogWeightsTuple(*log_weights_list) test_acceptance_tuple = acceptance_tuple_list[-1] return samples_tuple, log_weights_tuple, test_acceptance_tuple class OptimizationLoopState(NamedTuple): opt_state: OptState flow_params: FlowParams inner_step: int opt_vfes: VfesTuple best_params: FlowParams best_validation_vfe: Array best_index: int def flow_estimate_step(loop_state: OptimizationLoopState, free_energy_and_grad: FreeEnergyAndGrad, train_samples: Array, train_log_weights: Array, outer_step: int, validation_samples: Array, validation_log_weights: Array, free_energy_eval: FreeEnergyEval, opt_update: UpdateFn) -> OptimizationLoopState: """A single step of the flow estimation loop.""" # Evaluate the flow on train and validation particles. train_vfe, flow_grads = free_energy_and_grad(loop_state.flow_params, train_samples, train_log_weights, outer_step) validation_vfe = free_energy_eval(loop_state.flow_params, validation_samples, validation_log_weights, outer_step) # Update the best parameters, best validation vfe and index # if the measured validation vfe is better. validation_vfe_is_better = validation_vfe < loop_state.best_validation_vfe new_best_params = jax.lax.cond(validation_vfe_is_better, lambda _: loop_state.flow_params, lambda _: loop_state.best_params, operand=None) new_best_validation_vfe = jnp.where(validation_vfe_is_better, validation_vfe, loop_state.best_validation_vfe) new_best_index = jnp.where(validation_vfe_is_better, loop_state.inner_step, loop_state.best_index) # Update the logs of train and validation vfes. new_train_vfes = loop_state.opt_vfes.train_vfes.at[loop_state.inner_step].set( train_vfe) new_validation_vfes = loop_state.opt_vfes.validation_vfes.at[ loop_state.inner_step].set(validation_vfe) new_opt_vfes = VfesTuple(train_vfes=new_train_vfes, validation_vfes=new_validation_vfes) # Apply gradients ready for next round of flow evaluations in the next step. updates, new_opt_state = opt_update(flow_grads, loop_state.opt_state) new_flow_params = optax.apply_updates(loop_state.flow_params, updates) new_inner_step = loop_state.inner_step + 1 # Pack everything into the next loop state. new_state_tuple = OptimizationLoopState(new_opt_state, new_flow_params, new_inner_step, new_opt_vfes, new_best_params, new_best_validation_vfe, new_best_index) return new_state_tuple def flow_estimation_should_continue(loop_state: OptimizationLoopState, opt_iters: int, stopping_criterion: str) -> bool: """Based on stopping criterion control termination of flow estimation.""" if stopping_criterion == 'time': return loop_state.inner_step < opt_iters elif stopping_criterion == 'greedy_time': index = loop_state.inner_step best_index = loop_state.best_index return jnp.logical_and(best_index == index-1, index < opt_iters) else: raise NotImplementedError def optimize_free_energy( opt_update: UpdateFn, opt_init_state: OptState, flow_init_params: FlowParams, free_energy_and_grad: FreeEnergyAndGrad, free_energy_eval: FreeEnergyEval, train_samples: Array, train_log_weights: Array, validation_samples: Array, validation_log_weights: Array, outer_step: int, opt_iters: int, stopping_criterion: str) -> Tuple[FlowParams, VfesTuple]: """Optimize an estimate of the free energy. Args: opt_update: function that updates the state of flow based on gradients etc. opt_init_state: initial state variables of the optimizer. flow_init_params: initial parameters of the flow. free_energy_and_grad: function giving estimate of free energy and gradient. free_energy_eval: function giving estimate of free energy only. train_samples: Array of shape (batch,)+sample_shape train_log_weights: Array of shape (batch,) validation_samples: Array of shape (batch,) validation_log_weights: Array of shape (batch,) outer_step: int giving current outer step of algorithm. opt_iters: number of flow estimation iters. stopping_criterion: One of 'time' or 'greedy-time'. Returns: flow_params: optimized flow parameters. free_energies: array containing all estimates of free energy. """ opt_state = opt_init_state flow_params = flow_init_params train_vfes = jnp.zeros(opt_iters) validation_vfes = jnp.zeros(opt_iters) opt_vfes = VfesTuple(train_vfes, validation_vfes) def body_fun(loop_state: OptimizationLoopState) -> OptimizationLoopState: return flow_estimate_step(loop_state, free_energy_and_grad, train_samples, train_log_weights, outer_step, validation_samples, validation_log_weights, free_energy_eval, opt_update) def cond_fun(loop_state: OptimizationLoopState) -> bool: return flow_estimation_should_continue(loop_state, opt_iters, stopping_criterion) initial_loop_state = OptimizationLoopState(opt_state, flow_params, 0, opt_vfes, flow_params, jnp.inf, -1) final_loop_state = jax.lax.while_loop(cond_fun, body_fun, initial_loop_state) return final_loop_state.best_params, final_loop_state.opt_vfes def inner_loop( key: RandomKey, free_energy_and_grad: FreeEnergyAndGrad, free_energy_eval: FreeEnergyEval, opt_update: UpdateFn, opt_init_state: OptState, flow_init_params: FlowParams, flow_apply: FlowApply, markov_kernel_apply: MarkovKernelApply, samples_tuple: SamplesTuple, log_weights_tuple: LogWeightsTuple, log_density: LogDensityByStep, step: int, config ) -> Tuple[FlowParams, OptState, VfesTuple, Array, AcceptanceTuple]: """Inner loop of the algorithm. Args: key: A JAX random key. free_energy_and_grad: function giving estimate of free energy and gradient. free_energy_eval: function giving estimate of free energy only. opt_update: function that updates the state of flow based on gradients etc. opt_init_state: initial state variables of the optimizer. flow_init_params: initial parameters of the flow. flow_apply: function that applies the flow. markov_kernel_apply: functional that applies the Markov transition kernel. samples_tuple: Tuple containing train/validation/test samples. log_weights_tuple: Tuple containing train/validation/test log_weights. log_density: function returning the log_density of a sample at given step. step: int giving current step of algorithm. config: experiment configuration. Returns: samples_final: samples after the full inner loop has been performed. log_weights_final: log_weights after the full inner loop has been performed. free_energies: array containing all estimates of free energy. log_normalizer_increment: Scalar log of normalizing constant increment. """ flow_params, vfes_tuple = optimize_free_energy( opt_update=opt_update, opt_init_state=opt_init_state, flow_init_params=flow_init_params, free_energy_and_grad=free_energy_and_grad, free_energy_eval=free_energy_eval, train_samples=samples_tuple.train_samples, train_log_weights=log_weights_tuple.train_log_weights, validation_samples=samples_tuple.validation_samples, validation_log_weights=log_weights_tuple.validation_log_weights, outer_step=step, opt_iters=config.optimization_config.free_energy_iters, stopping_criterion=config.stopping_criterion) log_normalizer_increment = flow_transport.get_log_normalizer_increment( samples_tuple.test_samples, log_weights_tuple.test_log_weights, flow_apply, flow_params, log_density, step) samples_tuple, log_weights_tuple, test_acceptance_tuple = update_tuples( samples_tuple=samples_tuple, log_weights_tuple=log_weights_tuple, key=key, flow_apply=flow_apply, flow_params=flow_params, markov_kernel_apply=markov_kernel_apply, log_density=log_density, step=step, config=config) return samples_tuple, log_weights_tuple, vfes_tuple, log_normalizer_increment, test_acceptance_tuple def outer_loop_aft(opt_update: UpdateFn, opt_init_state: OptState, flow_init_params: FlowParams, flow_apply: FlowApply, density_by_step: LogDensityByStep, markov_kernel_by_step: MarkovKernelApply, initial_sampler: InitialSampler, key: RandomKey, config, log_step_output) -> AlgoResultsTuple: """The outer loop for Annealed Flow Transport Monte Carlo. Args: opt_update: A Optax optimizer update function. opt_init_state: Optax initial state. flow_init_params: Initial parameters for the flow. flow_apply: Function that evaluates flow on parameters and samples. density_by_step: The log density for different annealing temperatures. markov_kernel_by_step: Markov kernel for different annealing temperatures. initial_sampler: A function that produces the initial samples. key: A Jax random key. config: A ConfigDict containing the configuration. log_step_output: Function to log step output or None. Returns: An AlgoResults tuple containing a summary of the results. """ num_temps = config.num_temps def free_energy_short(flow_params: FlowParams, samples: Array, log_weights: Array, step: int) -> Array: return flow_transport.transport_free_energy_estimator( samples, log_weights, flow_apply, None, flow_params, density_by_step, step, False) free_energy_eval = jax.jit(free_energy_short) free_energy_and_grad = jax.value_and_grad(free_energy_short) key, subkey = jax.random.split(key) samples_tuple, log_weights_tuple = get_initial_samples_log_weight_tuples( initial_sampler, subkey, config) def short_inner_loop(rng_key: RandomKey, loc_samples_tuple: SamplesTuple, loc_log_weights_tuple: LogWeightsTuple, loc_step: int): return inner_loop(key=rng_key, free_energy_and_grad=free_energy_and_grad, free_energy_eval=free_energy_eval, opt_update=opt_update, opt_init_state=opt_init_state, flow_init_params=flow_init_params, flow_apply=flow_apply, markov_kernel_apply=markov_kernel_by_step, samples_tuple=loc_samples_tuple, log_weights_tuple=loc_log_weights_tuple, log_density=density_by_step, step=loc_step, config=config) logging.info('Jitting step...') inner_loop_jit = jax.jit(short_inner_loop) opt_iters = config.optimization_config.free_energy_iters if log_step_output is not None: zero_vfe_tuple = VfesTuple(train_vfes=jnp.zeros(opt_iters), validation_vfes=jnp.zeros(opt_iters)) log_step_output(samples_tuple, log_weights_tuple, zero_vfe_tuple, 0., 1., 1.) logging.info('Performing initial step redundantly for accurate timing...') initial_start_time = time.time() inner_loop_jit(key, samples_tuple, log_weights_tuple, 1) initial_finish_time = time.time() initial_time_diff = initial_finish_time - initial_start_time logging.info('Initial step time / seconds %f: ', initial_time_diff) logging.info('Launching training...') log_normalizer_estimate = 0. start_time = time.time() for step in range(1, num_temps): subkey, key = jax.random.split(key) samples_tuple, log_weights_tuple, vfes_tuple, log_normalizer_increment, test_acceptance = inner_loop_jit( subkey, samples_tuple, log_weights_tuple, step) acceptance_hmc = float(np.asarray(test_acceptance[0])) acceptance_rwm = float(np.asarray(test_acceptance[1])) log_normalizer_estimate += log_normalizer_increment if step % config.report_step == 0: beta = density_by_step.get_beta(step) # pytype: disable=attribute-error logging.info( 'Step %05d: beta %f Acceptance rate HMC %f Acceptance rate RWM %f', step, beta, acceptance_hmc, acceptance_rwm ) if log_step_output is not None: log_step_output(samples_tuple, log_weights_tuple, vfes_tuple, log_normalizer_increment, acceptance_rwm, acceptance_hmc) finish_time = time.time() delta_time = finish_time - start_time logging.info('Delta time / seconds %f: ', delta_time) logging.info('Log normalizer estimate %f: ', log_normalizer_estimate) results = AlgoResultsTuple( test_samples=samples_tuple.test_samples, test_log_weights=log_weights_tuple.test_log_weights, log_normalizer_estimate=log_normalizer_estimate, delta_time=delta_time, initial_time_diff=initial_time_diff) return results
annealed_flow_transport-master
annealed_flow_transport/aft.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training for all SMC and flow algorithms.""" from typing import Callable, Tuple from annealed_flow_transport import aft from annealed_flow_transport import craft from annealed_flow_transport import densities from annealed_flow_transport import flow_transport from annealed_flow_transport import flows from annealed_flow_transport import markov_kernel from annealed_flow_transport import samplers from annealed_flow_transport import serialize from annealed_flow_transport import smc from annealed_flow_transport import snf from annealed_flow_transport import vi import annealed_flow_transport.aft_types as tp import chex import haiku as hk import jax import optax # Type defs. Array = tp.Array OptState = tp.OptState UpdateFn = tp.UpdateFn FlowParams = tp.FlowParams FlowApply = tp.FlowApply LogDensityByStep = tp.LogDensityByStep RandomKey = tp.RandomKey AcceptanceTuple = tp.AcceptanceTuple FreeEnergyAndGrad = tp.FreeEnergyAndGrad FreeEnergyEval = tp.FreeEnergyEval MarkovKernelApply = tp.MarkovKernelApply SamplesTuple = tp.SamplesTuple LogWeightsTuple = tp.LogWeightsTuple VfesTuple = tp.VfesTuple InitialSampler = tp.InitialSampler LogDensityNoStep = tp.LogDensityNoStep assert_equal_shape = chex.assert_equal_shape AlgoResultsTuple = tp.AlgoResultsTuple def get_optimizer(initial_learning_rate: float, boundaries_and_scales): """Get an optimizer possibly with learning rate schedule.""" if boundaries_and_scales is None: return optax.adam(initial_learning_rate) else: schedule_fn = optax.piecewise_constant_schedule( initial_learning_rate, boundaries_and_scales[0]) opt = optax.chain(optax.scale_by_adam(), optax.scale_by_schedule(schedule_fn), optax.scale(-1.)) return opt def value_or_none(value: str, config): if value in config: return config[value] else: return None def prepare_outer_loop(initial_sampler: InitialSampler, initial_log_density: Callable[[Array], Array], final_log_density: Callable[[Array], Array], flow_func: Callable[[Array], Tuple[Array, Array]], config) -> AlgoResultsTuple: """Shared code outer loops then calls the outer loops themselves. Args: initial_sampler: Function for producing initial sample. initial_log_density: Function for evaluating initial log density. final_log_density: Function for evaluating final log density. flow_func: Flow function to pass to Haiku transform. config: experiment configuration. Returns: An AlgoResultsTuple containing the experiment results. """ num_temps = config.num_temps if is_annealing_algorithm(config.algo): density_by_step = flow_transport.GeometricAnnealingSchedule( initial_log_density, final_log_density, num_temps) if is_markov_algorithm(config.algo): markov_kernel_by_step = markov_kernel.MarkovTransitionKernel( config.mcmc_config, density_by_step, num_temps) key = jax.random.PRNGKey(config.seed) flow_forward_fn = hk.without_apply_rng(hk.transform(flow_func)) key, subkey = jax.random.split(key) single_normal_sample = initial_sampler(subkey, config.batch_size, config.sample_shape) key, subkey = jax.random.split(key) flow_init_params = flow_forward_fn.init(subkey, single_normal_sample) if value_or_none('save_checkpoint', config): def save_checkpoint(params): return serialize.save_checkpoint(config.params_filename, params) else: save_checkpoint = None if config.algo == 'vi': # Add a save_checkpoint function here to enable saving final state. opt = get_optimizer( config.optimization_config.vi_step_size, None) opt_init_state = opt.init(flow_init_params) results = vi.outer_loop_vi(initial_sampler=initial_sampler, opt_update=opt.update, opt_init_state=opt_init_state, flow_init_params=flow_init_params, flow_apply=flow_forward_fn.apply, key=key, initial_log_density=initial_log_density, final_log_density=final_log_density, config=config, save_checkpoint=save_checkpoint) elif config.algo == 'smc': results = smc.outer_loop_smc(density_by_step=density_by_step, initial_sampler=initial_sampler, markov_kernel_by_step=markov_kernel_by_step, key=key, config=config) elif config.algo == 'snf': opt = get_optimizer( config.optimization_config.snf_step_size, value_or_none('snf_boundaries_and_scales', config.optimization_config)) log_step_output = None results = snf.outer_loop_snf(flow_init_params=flow_init_params, flow_apply=flow_forward_fn.apply, density_by_step=density_by_step, markov_kernel_by_step=markov_kernel_by_step, initial_sampler=initial_sampler, key=key, opt=opt, config=config, log_step_output=log_step_output, save_checkpoint=save_checkpoint) elif config.algo == 'aft': opt = get_optimizer( config.optimization_config.aft_step_size, None) opt_init_state = opt.init(flow_init_params) # Add a log_step_output function here to enable non-trivial step logging. log_step_output = None results = aft.outer_loop_aft(opt_update=opt.update, opt_init_state=opt_init_state, flow_init_params=flow_init_params, flow_apply=flow_forward_fn.apply, density_by_step=density_by_step, markov_kernel_by_step=markov_kernel_by_step, initial_sampler=initial_sampler, key=key, config=config, log_step_output=log_step_output) elif config.algo == 'craft': opt = get_optimizer( config.optimization_config.craft_step_size, value_or_none('craft_boundaries_and_scales', config.optimization_config)) opt_init_state = opt.init(flow_init_params) log_step_output = None results = craft.outer_loop_craft( opt_update=opt.update, opt_init_state=opt_init_state, flow_init_params=flow_init_params, flow_apply=flow_forward_fn.apply, flow_inv_apply=None, density_by_step=density_by_step, markov_kernel_by_step=markov_kernel_by_step, initial_sampler=initial_sampler, key=key, config=config, log_step_output=log_step_output, save_checkpoint=save_checkpoint) else: raise NotImplementedError return results def is_flow_algorithm(algo_name): return algo_name in ('aft', 'vi', 'craft', 'snf') def is_markov_algorithm(algo_name): return algo_name in ('aft', 'craft', 'snf', 'smc') def is_annealing_algorithm(algo_name): return algo_name in ('aft', 'craft', 'snf', 'smc') def run_experiment(config) -> AlgoResultsTuple: """Run a SMC flow experiment. Args: config: experiment configuration. Returns: An AlgoResultsTuple containing the experiment results. """ log_density_initial = getattr(densities, config.initial_config.density)( config.initial_config, config.sample_shape) log_density_final = getattr(densities, config.final_config.density)( config.final_config, config.sample_shape) initial_sampler = getattr(samplers, config.initial_sampler_config.initial_sampler)( config.initial_sampler_config) def flow_func(x): if is_flow_algorithm(config.algo): flow = getattr(flows, config.flow_config.type)(config.flow_config) return flow(x) else: return None results = prepare_outer_loop(initial_sampler, log_density_initial, log_density_final, flow_func, config) return results
annealed_flow_transport-master
annealed_flow_transport/train.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for annealed_flow_transport.flow_transport.""" from absl.testing import absltest from absl.testing import parameterized from annealed_flow_transport.flow_transport import GeometricAnnealingSchedule from annealed_flow_transport.flow_transport import get_delta from annealed_flow_transport.flow_transport import get_delta_path_grad from annealed_flow_transport.flow_transport import transport_free_energy_estimator from annealed_flow_transport.flows import DiagonalAffine import haiku as hk import jax import jax.numpy as jnp from jax.scipy.stats import norm import ml_collections ConfigDict = ml_collections.ConfigDict def _assert_equal_vec(tester, v1, v2, **kwargs): tester.assertTrue(jnp.allclose(v1, v2, **kwargs)) class FlowTransportTest(parameterized.TestCase): def test_transport_free_energy_estimator(self): # parameters for various normal distribution. mean_a = 0. mean_b = -1. mean_c = 2. mean_d = 0.1 var_a = 1. var_b = 4. var_c = 5. var_d = 1. num_samples = 10000 dimension = 1 key = jax.random.PRNGKey(1) # First we sample from normal distribution d # and then perform an importance correction to normal distribution a. samples = jax.random.normal(key, shape=(num_samples, dimension))+mean_d def log_importance_correction(samples): first_terms = norm.logpdf( samples, loc=mean_a, scale=jnp.sqrt(var_a)).flatten() second_terms = norm.logpdf( samples, loc=mean_d, scale=jnp.sqrt(var_d)).flatten() return first_terms-second_terms log_weights = log_importance_correction(samples) # this will change the normal distribution a to normal distribution b # because it is an affine transformation. def flow_apply(unused_params, samples): return 2.*samples-1., jnp.log(2)*jnp.ones((num_samples,)) def analytic_gauss_kl(mean0, var0, mean1, var1): return 0.5 * ( var0 / var1 + jnp.square(mean1 - mean0) / var1 - 1. + jnp.log(var1) - jnp.log(var0)) def initial_density(x): return norm.logpdf(x, loc=mean_a, scale=jnp.sqrt(var_a)).flatten() def final_density(x): return norm.logpdf(x, loc=mean_c, scale=jnp.sqrt(var_c)).flatten() def step_density(step, x): if step == 0: return initial_density(x) if step == 1: return final_density(x) estimator_value = transport_free_energy_estimator(samples=samples, log_weights=log_weights, flow_apply=flow_apply, inv_flow_apply=None, flow_params=None, log_density=step_density, step=1, use_path_gradient=False) # the target KL is analytically tractable as it is between two Gaussians. # the target KL is between normal b and c. analytic_value = analytic_gauss_kl(mean0=mean_b, var0=var_b, mean1=mean_c, var1=var_c) _assert_equal_vec(self, estimator_value, analytic_value, atol=1e-2) def test_geometric_annealing_schedule(self): def initial_density(x): return norm.logpdf(x, loc=-1., scale=2.).flatten() def final_density(x): return norm.logpdf(x, loc=1.5, scale=3.).flatten() num_temps = 5. annealing_schedule = GeometricAnnealingSchedule(initial_density, final_density, num_temps) num_samples = 10000 dimension = 1 key = jax.random.PRNGKey(1) samples = jax.random.normal(key, shape=(num_samples, dimension)) interpolated_densities_initial = annealing_schedule(0, samples) test_densities_initial = initial_density(samples) interpolated_densities_final = annealing_schedule(4, samples) test_densities_final = final_density(samples) _assert_equal_vec(self, interpolated_densities_initial, test_densities_initial) _assert_equal_vec(self, interpolated_densities_final, test_densities_final) class PathGradientTest(parameterized.TestCase): def test_forward_consistency(self): def initial_density(x): return norm.logpdf(x, loc=-1., scale=2.).flatten() def final_density(x): return norm.logpdf(x, loc=1.5, scale=3.).flatten() num_temps = 5. annealing_schedule = GeometricAnnealingSchedule(initial_density, final_density, num_temps) key = jax.random.PRNGKey(13) num_batch = 7 num_dim = 1 subkey, key = jax.random.split(key) samples = jax.random.normal(subkey, shape=(num_batch, num_dim)) temp_index = 2 flow_config = ConfigDict() flow_config.sample_shape = (num_dim,) def flow_func(x): flow = DiagonalAffine(flow_config) return flow(x) def inv_flow_func(x): flow = DiagonalAffine(flow_config) return flow.inverse(x) flow_fn = hk.without_apply_rng(hk.transform(flow_func)) inv_flow_fn = hk.without_apply_rng(hk.transform(inv_flow_func)) flow_init_params = flow_fn.init(key, samples) shift = 0.3 new_params = jax.tree_util.tree_map(lambda x: x+shift, flow_init_params) flow_apply = flow_fn.apply inv_flow_apply = inv_flow_fn.apply delta_original = get_delta(samples, flow_apply, new_params, annealing_schedule, temp_index) delta_path = get_delta_path_grad(samples, flow_apply, inv_flow_apply, new_params, annealing_schedule, temp_index) print('delta_original ', delta_original) print('delta_path ', delta_path) _assert_equal_vec(self, delta_original, delta_path) def test_optimal_gradient(self): pass if __name__ == '__main__': absltest.main()
annealed_flow_transport-master
annealed_flow_transport/flow_transport_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code for normalizing flows. For a review of normalizing flows see: https://arxiv.org/abs/1912.02762 The abstract base class ConfigurableFlow demonstrates our minimal interface. Although the standard change of variables formula requires that normalizing flows are invertible, none of the algorithms in train.py require evaluating that inverse explicitly so inverses are not implemented. """ import abc from typing import Callable, List, Tuple import annealed_flow_transport.aft_types as tp import chex import haiku as hk import jax import jax.numpy as jnp import numpy as np Array = tp.Array Samples = tp.Samples ConfigDict = tp.ConfigDict class ConfigurableFlow(hk.Module, abc.ABC): """Abstract base clase for configurable normalizing flows. This is the interface expected by all flow based algorithms called in train.py """ def __init__(self, config: ConfigDict): super().__init__() self._check_configuration(config) self._config = config def _check_input(self, x: Samples): chex.assert_rank(x, 2) def _check_outputs(self, x: Samples, transformed_x: Samples, log_abs_det_jac: Array): chex.assert_rank(x, 2) chex.assert_equal_shape([x, transformed_x]) num_batch = x.shape[0] chex.assert_shape(log_abs_det_jac, (num_batch,)) def _check_members_types(self, config: ConfigDict, expected_members_types): for elem, elem_type in expected_members_types: if elem not in config: raise ValueError('Flow config element not found: ', elem) if not isinstance(config[elem], elem_type): msg = 'Flow config element '+elem+' is not of type '+str(elem_type) raise TypeError(msg) def __call__(self, x: Samples) -> Tuple[Samples, Array]: """Call transform_and_log abs_det_jac with automatic shape checking. This calls transform_and_log_abs_det_jac which needs to be implemented in derived classes. Args: x: input samples to flow. Returns: output samples and (num_batch,) log abs det Jacobian. """ self._check_input(x) vmapped = hk.vmap(self.transform_and_log_abs_det_jac, split_rng=False) output, log_abs_det_jac = vmapped(x) self._check_outputs(x, output, log_abs_det_jac) return output, log_abs_det_jac def inverse(self, x: Samples) -> Tuple[Samples, Array]: """Call transform_and_log abs_det_jac with automatic shape checking. This calls transform_and_log_abs_det_jac which needs to be implemented in derived classes. Args: x: input to flow Returns: output and (num_batch,) log abs det Jacobian. """ self._check_input(x) vmapped = hk.vmap(self.inv_transform_and_log_abs_det_jac, split_rng=False) output, log_abs_det_jac = vmapped(x) self._check_outputs(x, output, log_abs_det_jac) return output, log_abs_det_jac @abc.abstractmethod def transform_and_log_abs_det_jac(self, x: Array) -> Tuple[Array, Array]: """Transform x through the flow and compute log abs determinant of Jacobian. Args: x: (num_dim,) input to the flow. Returns: Array size (num_dim,) containing output and Scalar log abs det Jacobian. """ def inv_transform_and_log_abs_det_jac(self, x: Array) -> Tuple[Array, Array]: """Transform x through inverse and compute log abs determinant of Jacobian. Args: x: (num_dim,) input to the flow. Returns: Array size (num_dim,) containing output and Scalar log abs det Jacobian. """ raise NotImplementedError @abc.abstractmethod def _check_configuration(self, config: ConfigDict): """Check the configuration includes the necessary fields. Will typically raise Assertion like errors. Args: config: A ConfigDict include the fields required by the flow. """ class DiagonalAffine(ConfigurableFlow): """An affine transformation with a positive diagonal matrix.""" def __init__(self, config: ConfigDict): super().__init__(config) num_elem = config.sample_shape[0] unconst_diag_init = hk.initializers.Constant(jnp.zeros((num_elem,))) bias_init = hk.initializers.Constant(jnp.zeros((num_elem,))) self._unconst_diag = hk.get_parameter( 'unconst_diag', shape=[num_elem], dtype=jnp.float32, # TODO(alexmatthews) nicer way to infer dtype init=unconst_diag_init) self._bias = hk.get_parameter( 'bias', shape=[num_elem], dtype=jnp.float32, # TODO(alexmatthews) nicer way to infer dtype init=bias_init) def _check_configuration(self, unused_config: ConfigDict): pass def transform_and_log_abs_det_jac(self, x: Array) -> Tuple[Array, Array]: output = jnp.exp(self._unconst_diag)*x + self._bias log_abs_det = jnp.sum(self._unconst_diag) return output, log_abs_det def inv_transform_and_log_abs_det_jac(self, x: Array) -> Tuple[Array, Array]: output = jnp.exp(-self._unconst_diag)*(x - self._bias) log_abs_det = -1.*jnp.sum(self._unconst_diag) return output, log_abs_det def rational_quadratic_spline(x: Array, bin_positions: Array, bin_heights: Array, derivatives: Array) -> Tuple[Array, Array]: """Compute a rational quadratic spline. See https://arxiv.org/abs/1906.04032 Args: x: A single real number. bin_positions: A sorted array of bin positions of length num_bins+1. bin_heights: An array of bin heights of length num_bins+1. derivatives: An array of derivatives at bin positions of length num_bins+1. Returns: Value of the rational quadratic spline at x. Derivative with respect to x of rational quadratic spline at x. """ bin_index = jnp.searchsorted(bin_positions, x) array_index = bin_index % len(bin_positions) lower_x = bin_positions[array_index-1] upper_x = bin_positions[array_index] lower_y = bin_heights[array_index-1] upper_y = bin_heights[array_index] lower_deriv = derivatives[array_index-1] upper_deriv = derivatives[array_index] delta_x = upper_x - lower_x delta_y = upper_y - lower_y slope = delta_y / delta_x alpha = (x - lower_x)/delta_x alpha_squared = jnp.square(alpha) beta = alpha * (1.-alpha) gamma = jnp.square(1.-alpha) epsilon = upper_deriv+lower_deriv -2. *slope numerator_quadratic = delta_y * (slope*alpha_squared + lower_deriv*beta) denominator_quadratic = slope + epsilon*beta interp_x = lower_y + numerator_quadratic/denominator_quadratic # now compute derivative numerator_deriv = jnp.square(slope) * ( upper_deriv * alpha_squared + 2. * slope * beta + lower_deriv * gamma) sqrt_denominator_deriv = slope + epsilon*beta denominator_deriv = jnp.square(sqrt_denominator_deriv) deriv = numerator_deriv / denominator_deriv return interp_x, deriv def identity_padded_rational_quadratic_spline( x: Array, bin_positions: Array, bin_heights: Array, derivatives: Array) -> Tuple[Array, Array]: """An identity padded rational quadratic spline. Args: x: the value to evaluate the spline at. bin_positions: sorted values of bin x positions of length num_bins+1. bin_heights: absolute height of bin of length num_bins-1. derivatives: derivatives at internal bin edge of length num_bins-1. Returns: The value of the spline at x. The derivative with respect to x of the spline at x. """ lower_limit = bin_positions[0] upper_limit = bin_positions[-1] bin_height_sequence = (jnp.atleast_1d(jnp.array(lower_limit)), bin_heights, jnp.atleast_1d(jnp.array(upper_limit))) full_bin_heights = jnp.concatenate(bin_height_sequence) derivative_sequence = (jnp.ones((1,)), derivatives, jnp.ones((1,))) full_derivatives = jnp.concatenate(derivative_sequence) in_range = jnp.logical_and(jnp.greater(x, lower_limit), jnp.less(x, upper_limit)) multiplier = in_range*1. multiplier_complement = jnp.logical_not(in_range)*1. spline_val, spline_deriv = rational_quadratic_spline(x, bin_positions, full_bin_heights, full_derivatives) identity_val = x identity_deriv = 1. val = spline_val*multiplier + multiplier_complement*identity_val deriv = spline_deriv*multiplier + multiplier_complement*identity_deriv return val, deriv class AutoregressiveMLP(hk.Module): """An MLP which is constrained to have autoregressive dependency.""" def __init__(self, num_hiddens_per_input_dim: List[int], include_self_links: bool, non_linearity, zero_final: bool, bias_last: bool, name=None): super().__init__(name=name) self._num_hiddens_per_input_dim = num_hiddens_per_input_dim self._include_self_links = include_self_links self._non_linearity = non_linearity self._zero_final = zero_final self._bias_last = bias_last def __call__(self, x: Array) -> Array: input_dim = x.shape[0] hidden_representation = jnp.atleast_2d(x).T prev_hid_per_dim = 1 num_hidden_layers = len(self._num_hiddens_per_input_dim) final_index = num_hidden_layers-1 for layer_index in range(num_hidden_layers): is_last_layer = (final_index == layer_index) hid_per_dim = self._num_hiddens_per_input_dim[layer_index] name_stub = '_'+str(layer_index) layer_shape = (input_dim, prev_hid_per_dim, input_dim, hid_per_dim) in_degree = prev_hid_per_dim * input_dim if is_last_layer and self._zero_final: w_init = jnp.zeros else: w_init = hk.initializers.TruncatedNormal(1. / np.sqrt(in_degree)) bias_init = hk.initializers.Constant(jnp.zeros((input_dim, hid_per_dim,))) weights = hk.get_parameter(name='weights'+name_stub, shape=layer_shape, dtype=x.dtype, init=w_init) if is_last_layer and not self._bias_last: biases = jnp.zeros((input_dim, hid_per_dim,)) else: biases = hk.get_parameter(name='biases'+name_stub, shape=(input_dim, hid_per_dim), dtype=x.dtype, init=bias_init) if not(self._include_self_links) and is_last_layer: k = -1 else: k = 0 mask = jnp.tril(jnp.ones((input_dim, input_dim)), k=k) masked_weights = mask[:, None, :, None] * weights new_hidden_representation = jnp.einsum('ijkl,ij->kl', masked_weights, hidden_representation) + biases prev_hid_per_dim = hid_per_dim if not is_last_layer: hidden_representation = self._non_linearity(new_hidden_representation) else: hidden_representation = new_hidden_representation return hidden_representation class InverseAutogressiveFlow(object): """A generic inverse autoregressive flow. See https://arxiv.org/abs/1606.04934 Takes two functions as input. 1) autoregressive_func takes array of (num_dim,) and returns array (num_dim, num_features) it is autoregressive in the sense that the output[i, :] depends only on the input[:i]. This is not checked. 2) transform_func takes array of (num_dim, num_features) and an array of (num_dim,) and returns output of shape (num_dim,) and a single log_det_jacobian value. The represents the transformation acting on the inputs with given parameters. """ def __init__(self, autoregressive_func: Callable[[Array], Array], transform_func: Callable[[Array, Array], Tuple[Array, Array]]): self._autoregressive_func = autoregressive_func self._transform_func = transform_func def __call__(self, x: Array) -> Tuple[Array, Array]: """x is of shape (num_dim,).""" transform_features = self._autoregressive_func(x) output, log_abs_det = self._transform_func(transform_features, x) return output, log_abs_det class SplineInverseAutoregressiveFlow(ConfigurableFlow): """An inverse autoregressive flow with spline transformer. config must contain the following fields: num_spline_bins: Number of bins for rational quadratic spline. intermediate_hids_per_dim: See AutoregresiveMLP. num_layers: Number of layers for AutoregressiveMLP. identity_init: Whether to initalize the flow to the identity. bias_last: Whether to include biases on the last later of AutoregressiveMLP lower_lim: Lower limit of active region for rational quadratic spline. upper_lim: Upper limit of active region for rational quadratic spline. min_bin_size: Minimum bin size for rational quadratic spline. min_derivative: Minimum derivative for rational quadratic spline. """ def __init__(self, config: ConfigDict): super().__init__(config) self._num_spline_bins = config.num_spline_bins num_spline_parameters = 3 * config.num_spline_bins - 1 num_hids_per_input_dim = [config.intermediate_hids_per_dim ] * config.num_layers + [ num_spline_parameters ] self._autoregressive_mlp = AutoregressiveMLP( num_hids_per_input_dim, include_self_links=False, non_linearity=jax.nn.leaky_relu, zero_final=config.identity_init, bias_last=config.bias_last) self._lower_lim = config.lower_lim self._upper_lim = config.upper_lim self._min_bin_size = config.min_bin_size self._min_derivative = config.min_derivative def _check_configuration(self, config: ConfigDict): expected_members_types = [ ('num_spline_bins', int), ('intermediate_hids_per_dim', int), ('num_layers', int), ('identity_init', bool), ('bias_last', bool), ('lower_lim', float), ('upper_lim', float), ('min_bin_size', float), ('min_derivative', float) ] self._check_members_types(config, expected_members_types) def _unpack_spline_params(self, raw_param_vec) -> Tuple[Array, Array, Array]: unconst_bin_size_x = raw_param_vec[:self._num_spline_bins] unconst_bin_size_y = raw_param_vec[self._num_spline_bins:2 * self._num_spline_bins] unconst_derivs = raw_param_vec[2 * self._num_spline_bins:( 3 * self._num_spline_bins - 1)] return unconst_bin_size_x, unconst_bin_size_y, unconst_derivs def _transform_raw_to_spline_params( self, raw_param_vec: Array) -> Tuple[Array, Array, Array]: unconst_bin_size_x, unconst_bin_size_y, unconst_derivs = ( self._unpack_spline_params(raw_param_vec) ) def normalize_bin_sizes(unconst_bin_sizes: Array) -> Array: bin_range = self._upper_lim - self._lower_lim reduced_bin_range = ( bin_range - self._num_spline_bins * self._min_bin_size) return jax.nn.softmax( unconst_bin_sizes) * reduced_bin_range + self._min_bin_size bin_size_x = normalize_bin_sizes(unconst_bin_size_x) bin_size_y = normalize_bin_sizes(unconst_bin_size_y) # get the x bin positions. array_sequence = (jnp.ones((1,))*self._lower_lim, bin_size_x) x_bin_pos = jnp.cumsum(jnp.concatenate(array_sequence)) # get the y bin positions, ignoring redundant terms. stripped_y_bin_pos = self._lower_lim + jnp.cumsum(bin_size_y[:-1]) def forward_positive_transform(unconst_value: Array, min_value: Array) -> Array: return jax.nn.softplus(unconst_value) + min_value def inverse_positive_transform(const_value: Array, min_value: Array) -> Array: return jnp.log(jnp.expm1(const_value-min_value)) inverted_one = inverse_positive_transform(1., self._min_derivative) derivatives = forward_positive_transform(unconst_derivs + inverted_one, self._min_derivative) return x_bin_pos, stripped_y_bin_pos, derivatives def _get_spline_values(self, raw_parameters: Array, x: Array) -> Tuple[Array, Array]: bat_get_parameters = jax.vmap(self._transform_raw_to_spline_params) bat_x_bin_pos, bat_stripped_y, bat_derivatives = bat_get_parameters( raw_parameters) # Vectorize spline over data and parameters. bat_get_spline_vals = jax.vmap(identity_padded_rational_quadratic_spline, in_axes=[0, 0, 0, 0]) spline_vals, derivs = bat_get_spline_vals(x, bat_x_bin_pos, bat_stripped_y, bat_derivatives) log_abs_det = jnp.sum(jnp.log(jnp.abs(derivs))) return spline_vals, log_abs_det def transform_and_log_abs_det_jac(self, x: Array) -> Tuple[Array, Array]: iaf = InverseAutogressiveFlow(self._autoregressive_mlp, self._get_spline_values) return iaf(x) class AffineInverseAutoregressiveFlow(ConfigurableFlow): """An inverse autoregressive flow with affine transformer. config must contain the following fields: intermediate_hids_per_dim: See AutoregresiveMLP. num_layers: Number of layers for AutoregressiveMLP. identity_init: Whether to initalize the flow to the identity. bias_last: Whether to include biases on the last later of AutoregressiveMLP """ def __init__(self, config: ConfigDict): super().__init__(config) num_affine_params = 2 num_hids_per_input_dim = [config.intermediate_hids_per_dim ] * config.num_layers + [num_affine_params] self._autoregressive_mlp = AutoregressiveMLP( num_hids_per_input_dim, include_self_links=False, non_linearity=jax.nn.leaky_relu, zero_final=config.identity_init, bias_last=config.bias_last) def _check_configuration(self, config: ConfigDict): expected_members_types = [('intermediate_hids_per_dim', int), ('num_layers', int), ('identity_init', bool), ('bias_last', bool) ] self._check_members_types(config, expected_members_types) def _get_affine_transformation(self, raw_parameters: Array, x: Array) -> Tuple[Array, Array]: shifts = raw_parameters[:, 0] scales = raw_parameters[:, 1] + jnp.ones_like(raw_parameters[:, 1]) log_abs_det = jnp.sum(jnp.log(jnp.abs(scales))) output = x * scales + shifts return output, log_abs_det def transform_and_log_abs_det_jac(self, x: Array) -> Tuple[Array, Array]: iaf = InverseAutogressiveFlow(self._autoregressive_mlp, self._get_affine_transformation) return iaf(x) def affine_transformation(params: Array, x: Array) -> Tuple[Array, Array]: shift = params[0] # Assuming params start as zero adding 1 to scale gives identity transform. scale = params[1] + 1. output = x * scale + shift return output, jnp.log(jnp.abs(scale)) def inverse_affine_transformation(params: Array, y: Array) -> Tuple[Array, Array]: shift = params[0] # Assuming params start as zero adding 1 to scale gives identity transform. scale = params[1] + 1. output = (y - shift) / scale return output, -1.*jnp.log(jnp.abs(scale)) class AffineTransformer: def __call__(self, params: Array, x: Array) -> Tuple[Array, Array]: vectorized_affine = jnp.vectorize(affine_transformation, signature='(k),()->(),()') return vectorized_affine(params, x) def inverse(self, params: Array, y: Array) -> Tuple[Array, Array]: vectorized_affine = jnp.vectorize(inverse_affine_transformation, signature='(k),()->(),()') return vectorized_affine(params, y) class RationalQuadraticSpline(ConfigurableFlow): """A learnt monotonic rational quadratic spline with identity padding. Each input dimension is operated on by a separate spline. The spline is initialized to the identity. config must contain the following fields: num_bins: Number of bins for rational quadratic spline. lower_lim: Lower limit of active region for rational quadratic spline. upper_lim: Upper limit of active region for rational quadratic spline. min_bin_size: Minimum bin size for rational quadratic spline. min_derivative: Minimum derivative for rational quadratic spline. """ def __init__(self, config: ConfigDict): super().__init__(config) self._num_bins = config.num_bins self._lower_lim = config.lower_lim self._upper_lim = config.upper_lim self._min_bin_size = config.min_bin_size self._min_derivative = config.min_derivative def _check_configuration(self, config: ConfigDict): expected_members_types = [ ('num_bins', int), ('lower_lim', float), ('upper_lim', float), ('min_bin_size', float), ('min_derivative', float) ] self._check_members_types(config, expected_members_types) def transform_and_log_abs_det_jac(self, x: Array) -> Tuple[Array, Array]: """Apply the spline transformation. Args: x: (num_dim,) DeviceArray representing flow input. Returns: output: (num_dim,) transformed sample through flow. log_prob_out: new Scalar representing log_probability of output. """ num_dim = x.shape[0] bin_parameter_shape = (num_dim, self._num_bins) # Setup the bin position and height parameters. bin_init = hk.initializers.Constant(jnp.ones(bin_parameter_shape)) unconst_bin_size_x = hk.get_parameter( 'unconst_bin_size_x', shape=bin_parameter_shape, dtype=x.dtype, init=bin_init) unconst_bin_size_y = hk.get_parameter( 'unconst_bin_size_y', shape=bin_parameter_shape, dtype=x.dtype, init=bin_init) def normalize_bin_sizes(unconst_bin_sizes): bin_range = self._upper_lim - self._lower_lim reduced_bin_range = (bin_range - self._num_bins * self._min_bin_size) return jax.nn.softmax( unconst_bin_sizes) * reduced_bin_range + self._min_bin_size batched_normalize = jax.vmap(normalize_bin_sizes) bin_size_x = batched_normalize(unconst_bin_size_x) bin_size_y = batched_normalize(unconst_bin_size_y) array_sequence = (jnp.ones((num_dim, 1)) * self._lower_lim, bin_size_x) bin_positions = jnp.cumsum(jnp.concatenate(array_sequence, axis=1), axis=1) # Don't include the redundant bin heights. stripped_bin_heights = self._lower_lim + jnp.cumsum( bin_size_y[:, :-1], axis=1) # Setup the derivative parameters. def forward_positive_transform(unconst_value, min_value): return jax.nn.softplus(unconst_value) + min_value def inverse_positive_transform(const_value, min_value): return jnp.log(jnp.expm1(const_value - min_value)) deriv_parameter_shape = (num_dim, self._num_bins - 1) inverted_one = inverse_positive_transform(1., self._min_derivative) deriv_init = hk.initializers.Constant( jnp.ones(deriv_parameter_shape) * inverted_one) unconst_deriv = hk.get_parameter( 'unconst_deriv', shape=deriv_parameter_shape, dtype=x.dtype, init=deriv_init) batched_positive_transform = jax.vmap( forward_positive_transform, in_axes=[0, None]) deriv = batched_positive_transform(unconst_deriv, self._min_derivative) # Setup batching then apply the spline. batch_padded_rq_spline = jax.vmap( identity_padded_rational_quadratic_spline, in_axes=[0, 0, 0, 0]) output, jac_terms = batch_padded_rq_spline(x, bin_positions, stripped_bin_heights, deriv) log_abs_det_jac = jnp.sum(jnp.log(jac_terms)) return output, log_abs_det_jac def expand_periodic_dim(x: Array, num_extra_vals: int): if num_extra_vals == 0: return x first = x[-num_extra_vals:, :] last = x[:num_extra_vals, :] return jnp.vstack([first, x, last]) def pad_periodic_2d(x: Array, kernel_shape) -> Array: """Pad x to be have the required extra terms at the edges.""" assert len(kernel_shape) == 2 chex.assert_rank(x, 2) # this code is unbatched # we require that kernel shape has odd rows/cols. is_even = False for elem in kernel_shape: is_even = is_even or (elem % 2 == 0) if is_even: raise ValueError('kernel_shape is assumed to have odd rows and cols') # calculate num extra rows/cols each side. num_extra_row = (kernel_shape[0] - 1) // 2 num_extra_col = (kernel_shape[1] -1) // 2 row_expanded_x = expand_periodic_dim(x, num_extra_row) col_expanded_x = expand_periodic_dim(row_expanded_x.T, num_extra_col).T return col_expanded_x def batch_pad_periodic_2d(x: Array, kernel_shape) -> Array: assert len(kernel_shape) == 2 chex.assert_rank(x, 4) batch_func = jax.vmap(pad_periodic_2d, in_axes=(0, None)) batch_channel_func = jax.vmap(batch_func, in_axes=(3, None), out_axes=3) return batch_channel_func(x, kernel_shape) class Conv2DTorus(hk.Conv2D): """Convolution in 2D with periodic boundary conditions. Strides are ignored and this is not checked. kernel_shapes is a tuple (a, b) where a and b are odd positive integers. """ def __init__(self, *args, **kwargs): super().__init__(*args, padding='VALID', **kwargs) def __call__(self, x: Array) -> Array: padded_x = batch_pad_periodic_2d(x, self.kernel_shape) return super().__call__(padded_x) class FullyConvolutionalNetwork(hk.Module): """A fully convolutional network with ResNet middle layers.""" def __init__(self, num_middle_channels: int = 5, num_middle_layers: int = 2, num_final_channels: int = 2, kernel_shape: Tuple[int] = (3, 3), zero_final: bool = True, is_torus: bool = False): # pytype: disable=annotation-type-mismatch super().__init__() self._num_middle_channels = num_middle_channels self._num_middle_layers = num_middle_layers self._num_final_channels = num_final_channels self._kernel_shape = kernel_shape self._zero_final = zero_final self._is_torus = is_torus def __call__(self, x: Array): """Call the residual network on x. Args: x: is of shape (length_a, length_b) Returns: Array of shape (length_a, length_b, num_channels[-1]) """ chex.assert_rank(x, 2) length_a, length_b = jnp.shape(x) non_linearity = jax.nn.relu if self._is_torus: conv_two_d = Conv2DTorus else: conv_two_d = hk.Conv2D # Cast to batch size of one and one channel in last index. representation = x[None, :, :, None] for middle_layer_index in range(self._num_middle_layers): if middle_layer_index == 0: representation = conv_two_d( output_channels=self._num_middle_channels, stride=1, kernel_shape=self._kernel_shape, with_bias=True)(representation) representation = non_linearity(representation) else: conv_result = conv_two_d( output_channels=self._num_middle_channels, stride=1, kernel_shape=self._kernel_shape, with_bias=True)(representation) representation = representation + non_linearity(conv_result) if self._zero_final: representation = conv_two_d( output_channels=self._num_final_channels, stride=1, kernel_shape=self._kernel_shape, with_bias=True, w_init=jnp.zeros, b_init=jnp.zeros)(representation) else: representation = conv_two_d( output_channels=self._num_final_channels, stride=1, kernel_shape=self._kernel_shape, with_bias=True)(representation) chex.assert_shape(representation, [1, length_a, length_b, self._num_final_channels]) # Remove extraneous batch index of size 1. representation = representation[0, :, :, :] return representation class CouplingLayer(object): """A generic coupling layer. Takes the following functions as inputs. 1) A conditioner network mapping from event_shape->event_shape + (num_params,) 2) Mask of shape event_shape. 3) transformer A map from event_shape -> event_shape that acts elementwise on the terms to give a diagonal Jacobian expressed as shape event_shape and in abs-log space. It is parameterised by parameters of shape params_shape. """ def __init__(self, conditioner_network: Callable[[Array], Array], mask: Array, transformer): self._conditioner_network = conditioner_network self._mask = mask self._transformer = transformer def __call__(self, x): """Transform x with coupling layer. Args: x: event_shape Array. Returns: output_x: event_shape Array corresponding to the output. log_abs_det: scalar corresponding to the log abs det Jacobian. """ mask_complement = 1. - self._mask masked_x = x * self._mask chex.assert_equal_shape([masked_x, x]) transformer_params = self._conditioner_network(masked_x) transformed_x, log_abs_dets = self._transformer(transformer_params, x) output_x = masked_x + mask_complement * transformed_x chex.assert_equal_shape([transformed_x, output_x, x, log_abs_dets]) log_abs_det = jnp.sum(log_abs_dets * mask_complement) return output_x, log_abs_det def inverse(self, y): """Transform y with inverse coupling layer. Args: y: event_shape Array. Returns: output_y: event_shape Array corresponding to the output. log_abs_det: scalar corresponding to the log abs det Jacobian. """ mask_complement = 1. - self._mask masked_y = y * self._mask chex.assert_equal_shape([masked_y, y]) transformer_params = self._conditioner_network(masked_y) transformed_y, log_abs_dets = self._transformer.inverse(transformer_params, y) output_y = masked_y + mask_complement * transformed_y chex.assert_equal_shape([transformed_y, output_y, y, log_abs_dets]) log_abs_det = jnp.sum(log_abs_dets * mask_complement) return output_y, log_abs_det class ConvAffineCoupling(CouplingLayer): """A convolutional affine coupling layer.""" def __init__(self, mask: Array, conv_num_middle_channels: int = 5, conv_num_middle_layers: int = 2, conv_kernel_shape: Tuple[int] = (3, 3), identity_init: bool = True, is_torus: bool = False): # pytype: disable=annotation-type-mismatch conv_net = FullyConvolutionalNetwork( num_middle_channels=conv_num_middle_channels, num_middle_layers=conv_num_middle_layers, num_final_channels=2, kernel_shape=conv_kernel_shape, zero_final=identity_init, is_torus=is_torus) vectorized_affine = AffineTransformer() super().__init__(conv_net, mask, vectorized_affine) def get_checkerboard_mask(overall_shape: Tuple[int, int], period: int): range_a = jnp.arange(overall_shape[0]) range_b = jnp.arange(overall_shape[1]) def modulo_func(index_a, index_b): return jnp.mod(index_a+index_b+period, 2) func = lambda y: jax.vmap(modulo_func, in_axes=[0, None])(range_a, y) vals = func(range_b) chex.assert_shape(vals, overall_shape) return vals class ConvAffineCouplingStack(ConfigurableFlow): """A stack of convolutional affine coupling layers.""" def __init__(self, config: ConfigDict): super().__init__(config) num_elem = config.num_elem num_grid_per_dim = int(np.sqrt(num_elem)) assert num_grid_per_dim * num_grid_per_dim == num_elem self._true_shape = (num_grid_per_dim, num_grid_per_dim) self._coupling_layers = [] for index in range(self._config.num_coupling_layers): mask = get_checkerboard_mask(self._true_shape, index) coupling_layer = ConvAffineCoupling( mask, conv_kernel_shape=self._config.conv_kernel_shape, conv_num_middle_layers=self._config.conv_num_middle_layers, conv_num_middle_channels=self._config.conv_num_middle_channels, is_torus=self._config.is_torus, identity_init=self._config.identity_init ) self._coupling_layers.append(coupling_layer) def _check_configuration(self, config: ConfigDict): expected_members_types = [ ('conv_kernel_shape', list), ('conv_num_middle_layers', int), ('conv_num_middle_channels', int), ('is_torus', bool), ('identity_init', bool) ] self._check_members_types(config, expected_members_types) def transform_and_log_abs_det_jac(self, x: Array) -> Tuple[Array, Array]: reshaped_x = jnp.reshape(x, self._true_shape) transformed_x = reshaped_x log_abs_det = 0. for index in range(self._config.num_coupling_layers): coupling_layer = self._coupling_layers[index] transformed_x, log_det_increment = coupling_layer(transformed_x) chex.assert_equal_shape([transformed_x, reshaped_x]) log_abs_det += log_det_increment restored_x = jnp.reshape(transformed_x, x.shape) return restored_x, log_abs_det def inv_transform_and_log_abs_det_jac(self, x: Array) -> tuple[Array, Array]: reshaped_x = jnp.reshape(x, self._true_shape) transformed_x = reshaped_x log_abs_det = 0. for index in range(self._config.num_coupling_layers-1, -1, -1): coupling_layer = self._coupling_layers[index] transformed_x, log_det_increment = coupling_layer.inverse(transformed_x) chex.assert_equal_shape([transformed_x, reshaped_x]) log_abs_det += log_det_increment restored_x = jnp.reshape(transformed_x, x.shape) return restored_x, log_abs_det class ComposedFlows(): """Class to compose flows based on a list of configs. config should contain flow_configs a list of flow configs to compose. """ def __init__(self, config: ConfigDict): self._config = config self._flows = [] for flow_config in self._config.flow_configs: base_flow_class = globals()[flow_config.type] flow = base_flow_class(flow_config) self._flows.append(flow) def __call__(self, x: Samples) -> Tuple[Samples, Array]: log_abs_det = jnp.zeros(x.shape[0]) progress = x for flow in self._flows: progress, log_abs_det_increment = flow(progress) log_abs_det += log_abs_det_increment chex.assert_equal_shape((x, progress)) chex.assert_shape(log_abs_det, (x.shape[0],)) return progress, log_abs_det
annealed_flow_transport-master
annealed_flow_transport/flows.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for annealed_flow_transport.train_vae.""" from absl.testing import absltest from absl.testing import parameterized from annealed_flow_transport import train_vae class TestEntryPoint(parameterized.TestCase): """Test that the main VAE training loop runs on a tiny example.""" def test_entry_point(self): random_seed = 1 batch_size = 2 num_latents = 5 step_size = 0.00005 # output_dir_stub = False train_iters = 7 report_period = 3 train_vae.train_vae(batch_size=batch_size, num_latents=num_latents, random_seed=random_seed, step_size=step_size, output_dir_stub=output_dir_stub, train_iters=train_iters, report_period=report_period) if __name__ == '__main__': absltest.main()
annealed_flow_transport-master
annealed_flow_transport/train_vae_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for annealed_flow_transport.resampling.""" from absl.testing import absltest from absl.testing import parameterized from annealed_flow_transport import resampling import chex import jax import jax.numpy as jnp def _assert_equal_vec(tester, v1, v2, **kwargs): tester.assertTrue(jnp.allclose(v1, v2, **kwargs)) class ResamplingTest(parameterized.TestCase): def test_ess(self): # Test equal unnormalized weights come out correctly. num_samples = 32 arbitrary_number = -3.7 log_weights = -arbitrary_number*jnp.ones(num_samples) test_log_ess = resampling.log_effective_sample_size(log_weights) true_log_ess = jnp.log(num_samples) _assert_equal_vec(self, test_log_ess, true_log_ess) # Test an arbitrary simple case. weights = jnp.array([0.3, 0.2, 0.5]) true_log_ess_b = jnp.log(1./jnp.sum(weights**2)) log_weights_b = jnp.log(weights) + arbitrary_number test_log_ess_b = resampling.log_effective_sample_size(log_weights_b) _assert_equal_vec(self, true_log_ess_b, test_log_ess_b) def test_simple_resampling(self): arbitrary_number = -5.2 num_samples = 10000 key = jax.random.PRNGKey(1) # First we sample from normal distribution d # and then perform an importance correction to normal distribution a. dimension = 1 key, subkey = jax.random.split(key, 2) samples = jax.random.normal(subkey, shape=(num_samples, dimension)) weights = jnp.array([0.5, 0.25, 0.25]+[0.]*(num_samples-3)) log_unnormalized_weights = jnp.log(weights)+arbitrary_number target_mean = 0.5*samples[0] + 0.25*samples[1] + 0.25*samples[2] target_variance = 0.5 * (samples[0] - target_mean)**2 + 0.25 * ( samples[1] - target_mean)**2 + 0.25 * (samples[2] - target_mean)**2 target_weights = -1.*jnp.ones(num_samples)*jnp.log(num_samples) resampled, log_weights_new = resampling.simple_resampling( key, log_unnormalized_weights, samples) empirical_mean = jnp.mean(resampled) empirical_variance = jnp.var(resampled) _assert_equal_vec(self, empirical_mean, target_mean, atol=1e-2) _assert_equal_vec(self, empirical_variance, target_variance, atol=1e-2) _assert_equal_vec(self, log_weights_new, target_weights) def test_optionally_resample(self): num_samples = 100 dimension = 2 key = jax.random.PRNGKey(1) key, subkey = jax.random.split(key, 2) samples = jax.random.normal(subkey, shape=(num_samples, dimension)) key, subkey = jax.random.split(key, 2) log_weights = jax.random.normal(subkey, shape=(num_samples,)) log_ess = resampling.log_effective_sample_size(log_weights) resamples, log_uniform_weights = resampling.simple_resampling(key, log_weights, samples) threshold_lower = 0.9/num_samples*jnp.exp(log_ess) threshold_upper = 1.1/num_samples*jnp.exp(log_ess) should_be_samples, should_be_log_weights = resampling.optionally_resample( key, log_weights, samples, threshold_lower) should_be_resamples, should_be_uniform_weights = resampling.optionally_resample( key, log_weights, samples, threshold_upper) _assert_equal_vec(self, should_be_samples, samples) _assert_equal_vec(self, should_be_resamples, resamples) _assert_equal_vec(self, log_uniform_weights, should_be_uniform_weights) _assert_equal_vec(self, should_be_log_weights, log_weights) def test_tree_resampling(self): log_weights = jnp.array([0, -jnp.inf, -jnp.inf]) tree_component = jnp.arange(6).reshape((3, 2)) expected_tree_component = jnp.repeat(jnp.atleast_2d(tree_component[0, :]), 3, axis=0) tree = (tree_component, (tree_component, tree_component)) expected_tree = (expected_tree_component, (expected_tree_component, expected_tree_component)) key = jax.random.PRNGKey(1) resampled_tree = resampling.simple_resampling(key, log_weights, tree)[0] chex.assert_trees_all_equal(expected_tree, resampled_tree) if __name__ == '__main__': absltest.main()
annealed_flow_transport-master
annealed_flow_transport/resampling_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code for cox process density utilities.""" import itertools import annealed_flow_transport.aft_types as tp import chex import jax import jax.numpy as jnp import jax.scipy.linalg as slinalg import numpy as np # TypeDefs NpArray = np.ndarray Array = tp.Array def get_bin_counts(array_in: NpArray, num_bins_per_dim: int) -> NpArray: """Divide two dimensional input space into a grid and count points in each. Point on the upper edge, which does happen in the data, go into the lower bin. The occurrence of these points is an artefact of the rescaling done on data. Args: array_in: (num_points,2) containing points in square [0,1]^2 num_bins_per_dim: the number of bins per dimension for the grid. Returns: Numpy array of shape containing (num_bins_per_dim, num_bins_per_dim) counts. """ chex.assert_rank(array_in, 2) scaled_array = array_in * num_bins_per_dim counts = np.zeros((num_bins_per_dim, num_bins_per_dim)) for elem in scaled_array: flt_row, col_row = np.floor(elem) row = int(flt_row) col = int(col_row) # Deal with the case where the point lies exactly on upper/rightmost edge. if row == num_bins_per_dim: row -= 1 if col == num_bins_per_dim: col -= 1 counts[row, col] += 1 return counts def get_bin_vals(num_bins: int) -> NpArray: grid_indices = jnp.arange(num_bins) bin_vals = jnp.array([ jnp.array(elem) for elem in itertools.product(grid_indices, grid_indices) ]) return bin_vals def gram(kernel, xs: Array) -> Array: """Given a kernel function and an array of points compute a gram matrix.""" return jax.vmap(lambda x: jax.vmap(lambda y: kernel(x, y))(xs))(xs) def kernel_func(x: Array, y: Array, signal_variance: Array, num_grid_per_dim: int, raw_length_scale: Array) -> Array: """Compute covariance/kernel function. K(m,n) = signal_variance * exp(-|m-n|/(num_grid_per_dim*raw_length_scale)) Args: x: First point shape (num_spatial_dim,) y: Second point shape (num_spatial_dim,) signal_variance: non-negative scalar. num_grid_per_dim: Number of grid points per spatial dimension. raw_length_scale: Length scale of the undiscretized process. Returns: Scalar value of covariance function. """ chex.assert_equal_shape([x, y]) chex.assert_rank(x, 1) normalized_distance = jnp.linalg.norm(x - y, 2) / ( num_grid_per_dim * raw_length_scale) return signal_variance * jnp.exp(-normalized_distance) def poisson_process_log_likelihood(latent_function: Array, bin_area: Array, flat_bin_counts: Array) -> Array: """Discretized Poisson process log likelihood. Args: latent_function: Intensity per unit area of shape (total_dimensions,) bin_area: Scalar bin_area. flat_bin_counts: Non negative integer counts of shape (total_dimensions,) Returns: Total log likelihood of points. """ chex.assert_rank([latent_function, bin_area], [1, 0]) chex.assert_equal_shape([latent_function, flat_bin_counts]) first_term = latent_function * flat_bin_counts second_term = -bin_area * jnp.exp(latent_function) return jnp.sum(first_term+second_term) def get_latents_from_white(white: Array, const_mean: Array, cholesky_gram: Array) -> Array: """Get latents from whitened representation. Let f = L e + mu where e is distributed as standard multivariate normal. Then Cov[f] = LL^T . In the present case L is assumed to be lower triangular and is given by the input cholesky_gram. mu_zero is a constant so that mu_i = const_mean for all i. Args: white: shape (total_dimensions,) e.g. (900,) for a 30x30 grid. const_mean: scalar. cholesky_gram: shape (total_dimensions, total_dimensions) Returns: points in the whitened space of shape (total_dimensions,) """ chex.assert_rank([white, const_mean, cholesky_gram], [1, 0, 2]) latent_function = jnp.matmul(cholesky_gram, white) + const_mean chex.assert_equal_shape([latent_function, white]) return latent_function def get_white_from_latents(latents: Array, const_mean: Array, cholesky_gram: Array) -> Array: """Get whitened representation from function representation. Let f = L e + mu where e is distributed as standard multivariate normal. Then Cov[f] = LL^T and e = L^-1(f-mu). In the present case L is assumed to be lower triangular and is given by the input cholesky_gram. mu_zero is a constant so that mu_i = const_mean for all i. Args: latents: shape (total_dimensions,) e.g. (900,) for a 30x30 grid. const_mean: scalar. cholesky_gram: shape (total_dimensions, total_dimensions) Returns: points in the whitened space of shape (total_dimensions,) """ chex.assert_rank([latents, const_mean, cholesky_gram], [1, 0, 2]) white = slinalg.solve_triangular( cholesky_gram, latents - const_mean, lower=True) chex.assert_equal_shape([latents, white]) return white
annealed_flow_transport-master
annealed_flow_transport/cox_process_utils.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convolutional variational autoencoder code for likelihood experiments. Some Jax/Haiku programming idioms inspired by OSS Apache 2.0 Haiku vae example. A pretrained version of this model is already included in data/vae.pickle. To run one of the sampling algorithms on that trained model use configs/vae.py This training script is included for full reproducibility. """ from typing import Any, Tuple import annealed_flow_transport.aft_types as tp import chex import haiku as hk import jax import jax.numpy as jnp import tensorflow_datasets as tfds Array = tp.Array MNIST_IMAGE_SHAPE = tp.MNIST_IMAGE_SHAPE Batch = tp.VaeBatch RandomKey = tp.RandomKey OptState = tp.OptState Params = Any UpdateFn = tp.UpdateFn VAEResult = tp.VAEResult def kl_divergence_standard_gaussian(mean, std) -> Array: """KL divergence from diagonal Gaussian with mean std to standard normal. Independence means the KL is a sum of KL divergences for each dimension. expectation_{q(x)}log prod_i q_i(x_i)/p_i(x_i) = sum_{i=1}^{N} expectation_{q_i(x_i)} log q_i(x_i) / p_i(x_i) So we have a sum of KL divergence between univariate Gaussians where p_i(x_i) is a standar normal. So each term is 0.5 * ((std)^2 + (mean)^2 - 1 - 2 ln (std) ) Args: mean: Array of length (ndim,) std: Array of length (ndim,) Returns: KL-divergence Array of shape (). """ chex.assert_rank([mean, std], [1, 1]) terms = 0.5 * (jnp.square(std) + jnp.square(mean) - 1. - 2. * jnp.log(std)) return jnp.sum(terms) def batch_kl_divergence_standard_gaussian(mean, std) -> Array: """Mean KL divergence diagonal Gaussian with mean std to standard normal. Works for batches of mean/std. Independence means the KL is a sum of KL divergences for each dimension. expectation_{q(x)}log prod_i q_i(x_i)/p_i(x_i) = sum_{i=1}^{N} expectation_{q_i(x_i)} log q_i(x_i) / p_i(x_i) So we have a sum of KL divergence between univariate Gaussians where p_i(x_i) is a standar normal. So each term is 0.5 * ((std)^2 + (mean)^2 - 1 - 2 ln (std) ) Args: mean: Array of length (batch,ndim) std: Array of length (batch,ndim) Returns: KL-divergence Array of shape (). """ chex.assert_rank([mean, std], [2, 2]) chex.assert_equal_shape([mean, std]) batch_kls = jax.vmap(kl_divergence_standard_gaussian)(mean, std) return jnp.mean(batch_kls) def generate_binarized_images(key: RandomKey, logits: Array) -> Array: return jax.random.bernoulli(key, jax.nn.sigmoid(logits)) def load_dataset(split: str, batch_size: int): """Load the dataset.""" read_config = tfds.ReadConfig(shuffle_seed=1) ds = tfds.load( 'binarized_mnist', split=split, shuffle_files=True, read_config=read_config) ds = ds.shuffle(buffer_size=10 * batch_size, seed=1) ds = ds.batch(batch_size) ds = ds.prefetch(buffer_size=5) ds = ds.repeat() return iter(tfds.as_numpy(ds)) class ConvEncoder(hk.Module): """A residual network encoder with mean stdev outputs.""" def __init__(self, num_latents: int = 20): super().__init__() self._num_latents = num_latents def __call__(self, x: Array) -> Tuple[Array, Array]: conv_a = hk.Conv2D(kernel_shape=(4, 4), stride=(2, 2), output_channels=16, padding='valid') conv_b = hk.Conv2D(kernel_shape=(4, 4), stride=(2, 2), output_channels=32, padding='valid') flatten = hk.Flatten() sequential = hk.Sequential([conv_a, jax.nn.relu, conv_b, jax.nn.relu, flatten]) progress = sequential(x) def get_output_params(progress_in, name=None): flat_output = hk.Linear(self._num_latents, name=name)(progress_in) flat_output = hk.LayerNorm(create_scale=True, create_offset=True, axis=1)(flat_output) return flat_output latent_mean = get_output_params(progress) unconst_std_dev = get_output_params(progress) latent_std = jax.nn.softplus(unconst_std_dev) return latent_mean, latent_std class ConvDecoder(hk.Module): """A residual network decoder with logit outputs.""" def __init__(self, image_shape: Tuple[int, int, int] = MNIST_IMAGE_SHAPE): super().__init__() self._image_shape = image_shape def __call__(self, z: Array) -> Tuple[Array, Array, Array]: linear_features = 7 * 7 * 32 linear = hk.Linear(linear_features) progress = linear(z) hk.LayerNorm(create_scale=True, create_offset=True, axis=1)(progress) progress = jnp.reshape(progress, (-1, 7, 7, 32)) deconv_a = hk.Conv2DTranspose( kernel_shape=(3, 3), stride=(2, 2), output_channels=64) deconv_b = hk.Conv2DTranspose( kernel_shape=(3, 3), stride=(2, 2), output_channels=32) deconv_c = hk.Conv2DTranspose( kernel_shape=(3, 3), stride=(1, 1), output_channels=1) sequential = hk.Sequential([deconv_a, jax.nn.relu, deconv_b, jax.nn.relu, deconv_c]) progress = sequential(progress) return progress class ConvVAE(hk.Module): """A VAE with residual nets, diagonal normal q and logistic mixture output.""" def __init__(self, num_latents: int = 30, output_shape: Tuple[int, int, int] = MNIST_IMAGE_SHAPE): super().__init__() self._num_latents = num_latents self._output_shape = output_shape self.encoder = ConvEncoder(self._num_latents) self.decoder = ConvDecoder() def __call__(self, x: Array) -> VAEResult: x = x.astype(jnp.float32) latent_mean, latent_std = self.encoder(x) latent = latent_mean + latent_std * jax.random.normal( hk.next_rng_key(), latent_mean.shape) free_latent = jax.random.normal(hk.next_rng_key(), latent_mean.shape) logits = self.decoder(latent) free_logits = self.decoder(free_latent) reconst_sample = jax.nn.sigmoid(logits) sample_image = jax.nn.sigmoid(free_logits) return VAEResult(sample_image, reconst_sample, latent_mean, latent_std, logits) def binary_cross_entropy_from_logits(logits: Array, labels: Array) -> Array: """Numerically stable implementation of binary cross entropy with logits. For an individual term we follow a standard manipulation of the loss: H = -label * log sigmoid(logit) - (1-label) * log (1-sigmoid(logit)) = logit - label * logit + log(1+exp(-logit)) or for logit < 0 we take a different version for numerical stability. = - label * logit + log(1+exp(logit)) combining to avoid a conditional. = max(logit, 0) - label * logit + log(1+exp(-abs(logit))) Args: logits: (batch, sample_shape) containing logits of class probs. labels: (batch, sample_shape) containing {0, 1} class labels. Returns: sum of loss over all shape indices then mean of loss over batch index. """ chex.assert_equal_shape([logits, labels]) max_logits_zero = jax.nn.relu(logits) negative_abs_logits = -jnp.abs(logits) terms = max_logits_zero - logits*labels + jax.nn.softplus(negative_abs_logits) return jnp.sum(jnp.mean(terms, axis=0)) def vae_loss(target: Array, logits: Array, latent_mean: Array, latent_std: Array) -> Array: log_loss = binary_cross_entropy_from_logits(logits, target) kl_term = batch_kl_divergence_standard_gaussian(latent_mean, latent_std) free_energy = log_loss + kl_term return free_energy
annealed_flow_transport-master
annealed_flow_transport/vae.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code for exact sampling from initial distributions.""" from typing import Tuple import annealed_flow_transport.aft_types as tp import jax RandomKey = tp.RandomKey Array = tp.Array class NormalDistribution(object): """A wrapper for the univariate normal sampler.""" def __init__(self, config): self._config = config def __call__(self, key: RandomKey, num_samples: int, sample_shape: Tuple[int]) -> Array: batched_sample_shape = (num_samples,) + sample_shape return jax.random.normal(key, shape=batched_sample_shape) class MultivariateNormalDistribution(object): """A wrapper for the multivariate normal sampler.""" def __init__(self, config): self._config = config def __call__(self, key: RandomKey, num_samples: int, sample_shape: Tuple[int]) -> Array: batched_sample_shape = (num_samples,) + sample_shape return jax.random.normal(key, shape=batched_sample_shape)
annealed_flow_transport-master
annealed_flow_transport/samplers.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code for Markov transition kernels.""" from typing import Tuple import annealed_flow_transport.aft_types as tp import chex import jax import jax.numpy as jnp import numpy as np import tensorflow_probability.substrates.jax as tfp mcmc = tfp.mcmc ConfigDict = tp.ConfigDict Array = tp.Array LogDensityByStep = tp.LogDensityByStep RandomKey = tp.RandomKey MarkovKernelApply = tp.MarkovKernelApply Samples = tp.Samples assert_trees_all_equal_shapes = chex.assert_trees_all_equal_shapes class InterpolatedStepSize(object): """Interpolate MCMC step sizes.""" def __init__(self, config: ConfigDict, total_num_time_steps: int): self._config = config self._total_num_time_steps = total_num_time_steps def __call__(self, time_step: int): final_step = self._total_num_time_steps-1. beta = time_step/final_step return jnp.interp(beta, jnp.array(self._config.step_times), jnp.array(self._config.step_sizes)) def tree_add(tree_a, tree_b): assert_trees_all_equal_shapes(tree_a, tree_b) return jax.tree_map(lambda a, b: a+b, tree_a, tree_b) def tree_scalar_mul(tree, scalar): res = jax.tree_map(lambda x: x * scalar, tree) assert_trees_all_equal_shapes(tree, res) return res def random_walk_metropolis(samples_in: Array, proposal_scale: Array, log_density_by_step: LogDensityByStep, temp_step: int, num_mh_steps: int, key: RandomKey) -> Tuple[Array, Array]: """Corrected random walk Metropolis-Hastings algorithm. Args: samples_in: (num_batch, num_dim) proposal_scale: Scalar representing scale of isotropic normal proposal. log_density_by_step: Target log density. temp_step: Step of outer annealing algorithm. num_mh_steps: Number of Metropolis-Hastings steps. key: Jax Random Key. Returns: samples_out: (num_batch, num_dim) acceptance: Average acceptance rate of chains. """ chex.assert_rank(proposal_scale, 0) num_batch = np.shape(jax.tree_util.tree_leaves(samples_in)[0])[0] def rwm_step(previous_samples: Array, curr_key: RandomKey): normal_key, acceptance_key = jax.random.split(curr_key) standard_normal_tree = random_normal_like_tree(normal_key, previous_samples) normal_deltas = tree_scalar_mul(standard_normal_tree, proposal_scale) exponential_rvs = jax.random.exponential(key=acceptance_key, shape=(num_batch,)) proposed_samples = tree_add(previous_samples, normal_deltas) assert_trees_all_equal_shapes(previous_samples, proposed_samples) log_density_proposed = log_density_by_step(temp_step, proposed_samples) log_density_previous = log_density_by_step(temp_step, previous_samples) delta_log_prob = log_density_proposed - log_density_previous chex.assert_shape(delta_log_prob, (num_batch,)) is_accepted = jnp.greater(delta_log_prob, -1.*exponential_rvs) chex.assert_shape(is_accepted, (num_batch,)) step_acceptance_rate = jnp.mean(is_accepted * 1.) samples_next = jnp.where(is_accepted[:, None], proposed_samples, previous_samples) return samples_next, step_acceptance_rate keys = jax.random.split(key, num_mh_steps) samples_out, acceptance_rates = jax.lax.scan(rwm_step, samples_in, keys) acceptance_rate = jnp.mean(acceptance_rates) chex.assert_equal_shape((samples_out, samples_in)) chex.assert_rank(acceptance_rate, 0) return samples_out, acceptance_rate def momentum_step(samples_in: Array, momentum_in: Array, step_coefficient: Array, epsilon: Array, grad_log_density) -> Array: """A momentum update with variable momentum step_coefficient. Args: samples_in: (num_batch, num_dim) momentum_in: (num_batch, num_dim) step_coefficient: A Scalar which is typically either 0.5 (half step) or 1.0 epsilon: A Scalar representing the constant step size. grad_log_density: (num_batch, num_dim) -> (num_batch, num_dim) Returns: momentum_out (num_batch, num_dim) """ chex.assert_rank((step_coefficient, epsilon), (0, 0)) assert_trees_all_equal_shapes(samples_in, momentum_in) gradient_val = grad_log_density(samples_in) momentum_out = tree_add( momentum_in, tree_scalar_mul(gradient_val, step_coefficient * epsilon)) assert_trees_all_equal_shapes(momentum_in, momentum_out) return momentum_out def leapfrog_step(samples_in: Array, momentum_in: Array, step_coefficient: Array, epsilon: Array, grad_log_density) -> Tuple[Array, Array]: """A step of the Leapfrog iteration with variable momentum step_coefficient. Args: samples_in: (num_batch, num_dim) momentum_in: (num_batch, num_dim) step_coefficient: A Scalar which is typically either 0.5 (half step) or 1.0 epsilon: A Scalar representing the constant step size. grad_log_density: (num_batch, num_dim) -> (num_batch, num_dim) Returns: samples_out: (num_batch, num_dim) momentum_out (num_batch, num_dim) """ chex.assert_rank((step_coefficient, epsilon), (0, 0)) assert_trees_all_equal_shapes(samples_in, momentum_in) samples_out = tree_add(samples_in, tree_scalar_mul(momentum_in, epsilon)) momentum_out = momentum_step(samples_out, momentum_in, step_coefficient, epsilon, grad_log_density) assert_trees_all_equal_shapes(samples_in, samples_out) return samples_out, momentum_out def random_normal_like_tree(key, tree): tree_struct = jax.tree_util.tree_structure(tree) split_keys = jax.random.split(key, tree_struct.num_leaves) tree_keys = jax.tree_util.tree_unflatten(tree_struct, split_keys) tree_normals = jax.tree_util.tree_map( lambda x, y: jax.random.normal(key=y, shape=x.shape), tree, tree_keys) return tree_normals def hmc_step(samples_in: Array, key: RandomKey, epsilon: Array, log_density, grad_log_density, num_leapfrog_iters: int) -> Tuple[Array, Array]: """A single step of Hamiltonian Monte Carlo. Args: samples_in: (num_batch, num_dim) key: A Jax random key. epsilon: A Scalar representing the constant step size. log_density: (num_batch, num_dim) -> (num_batch,) grad_log_density: (num_batch, num_dim) -> (num_batch, num_dim) num_leapfrog_iters: Number of leapfrog iterations. Returns: samples_out: (num_batch, num_dim) """ chex.assert_rank(epsilon, 0) samples_state = samples_in momentum_key, acceptance_key = jax.random.split(key) initial_momentum = random_normal_like_tree(momentum_key, samples_in) # A half momentum step. momentum_state = momentum_step(samples_state, initial_momentum, step_coefficient=0.5, epsilon=epsilon, grad_log_density=grad_log_density) def scan_step(passed_state, unused_input): pos, mom = passed_state new_pos, new_mom = leapfrog_step(pos, mom, step_coefficient=1.0, epsilon=epsilon, grad_log_density=grad_log_density) return (new_pos, new_mom), None state_in = (samples_state, momentum_state) scan_length = num_leapfrog_iters - 1 # (num_leapfrog_iters - 1) whole position and momentum steps. new_state, _ = jax.lax.scan( scan_step, state_in, [None] * scan_length, length=scan_length) samples_state, momentum_state = new_state # A whole position step and half momentum step. samples_state, momentum_state = leapfrog_step( samples_state, momentum_state, step_coefficient=0.5, epsilon=epsilon, grad_log_density=grad_log_density) # We don't negate the momentum here because it has no effect. # This would be required if momentum was used other than for just the energy. # Decide if we accept the proposed update using Metropolis correction. def get_combined_log_densities(pos, mom): pos_log_densities = log_density(pos) def leaf_log_density(x): summation_axes = tuple(range(1, len(np.shape(x)))) return -0.5 * jnp.sum(jnp.square(x), axis=summation_axes) per_leaf_mom_log_densities = jax.tree_util.tree_map(leaf_log_density, mom) mom_log_densities = jax.tree_util.tree_reduce( jnp.add, per_leaf_mom_log_densities) chex.assert_equal_shape((pos_log_densities, mom_log_densities)) return pos_log_densities + mom_log_densities current_log_densities = get_combined_log_densities(samples_in, initial_momentum) proposed_log_densities = get_combined_log_densities(samples_state, momentum_state) num_batch = np.shape(current_log_densities)[0] exponential_rvs = jax.random.exponential(key=acceptance_key, shape=(num_batch,)) delta_log_prob = proposed_log_densities - current_log_densities chex.assert_shape(delta_log_prob, (num_batch,)) is_accepted = jnp.greater(delta_log_prob, -1.*exponential_rvs) chex.assert_shape(is_accepted, (num_batch,)) step_acceptance_rate = jnp.mean(is_accepted * 1.) def acceptance(a, b): broadcast_axes = tuple(range(1, len(a.shape))) broadcast_is_accepted = jnp.expand_dims(is_accepted, axis=broadcast_axes) return jnp.where(broadcast_is_accepted, a, b) samples_next = jax.tree_util.tree_map(acceptance, samples_state, samples_in) return samples_next, step_acceptance_rate def hmc(samples_in: Array, key: RandomKey, epsilon: Array, log_density, grad_log_density, num_leapfrog_iters: int, num_hmc_iters: int) -> Tuple[Array, Array]: """Hamiltonian Monte Carlo as described in Neal 2011. Args: samples_in: (num_batch, num_dim) key: A Jax random key. epsilon: A Scalar representing the constant step size. log_density: (num_batch, num_dim) -> (num_batch,) grad_log_density: (num_batch, num_dim) -> (num_batch, num_dim) num_leapfrog_iters: Number of leapfrog iterations. num_hmc_iters: Number of steps of Hamiltonian Monte Carlo. Returns: samples_out: (num_batch, num_dim) """ step_keys = jax.random.split(key, num_hmc_iters) def short_hmc_step(loc_samples, loc_key): return hmc_step(loc_samples, loc_key, epsilon=epsilon, log_density=log_density, grad_log_density=grad_log_density, num_leapfrog_iters=num_leapfrog_iters) samples_final, acceptance_rates = jax.lax.scan(short_hmc_step, samples_in, step_keys) return samples_final, np.mean(acceptance_rates) def hmc_wrapped(samples_in: Samples, key: RandomKey, epsilon: Array, log_density_by_step: LogDensityByStep, temp_step: int, num_leapfrog_iters: int, num_hmc_iters: int ) -> Tuple[Array, Array]: """A wrapper for HMC that deals with all the interfacing with the codebase. Args: samples_in: Samples. key: A Jax random key. epsilon: Scalar step size. log_density_by_step: Density at a given temperature. temp_step: Specifies the current temperature. num_leapfrog_iters: Number of leapfrog iterations. num_hmc_iters: Number of Hamiltonian Monte Carlo iterations. Returns: tfp_samples_out: (0, num_batch, num_dim) """ log_density = lambda x: log_density_by_step(temp_step, x) def unbatched_log_density(unbatched_tree_in): # Takes an unbatched tree and returns a single scalar value. batch_one_tree = jax.tree_util.tree_map(lambda x: x[None], unbatched_tree_in) return log_density(batch_one_tree)[0] grad_log_density = jax.vmap(jax.grad(unbatched_log_density)) samples_out, acceptance = hmc( samples_in, key=key, epsilon=epsilon, log_density=log_density, grad_log_density=grad_log_density, num_leapfrog_iters=num_leapfrog_iters, num_hmc_iters=num_hmc_iters) return samples_out, acceptance class MarkovTransitionKernel(object): """Wraps TFP slice sampling and NUTS allowing configuration/composition.""" def __init__(self, config: ConfigDict, density_by_step: LogDensityByStep, total_time_steps: int): self._config = config self._density_by_step = density_by_step if hasattr(config, 'hmc_step_config'): self._hmc_step_size = InterpolatedStepSize( config.hmc_step_config, total_time_steps) if hasattr(config, 'rwm_step_config'): self._rwm_step_size = InterpolatedStepSize( config.rwm_step_config, total_time_steps) def __call__(self, step: int, key: RandomKey, samples: Samples) -> Array: """A single step of slice sampling followed by NUTS. Args: step: The time step of the overall algorithm. key: A JAX random key. samples: The current samples. Returns: New samples. """ if self._config.rwm_steps_per_iter != 0: subkey, key = jax.random.split(key) samples, rwm_acc = random_walk_metropolis( samples, self._rwm_step_size(step), self._density_by_step, step, self._config.rwm_steps_per_iter, subkey) else: rwm_acc = 1. if self._config.hmc_steps_per_iter != 0: samples, hmc_acc = hmc_wrapped(samples, key, self._hmc_step_size(step), self._density_by_step, step, self._config.hmc_num_leapfrog_steps, self._config.hmc_steps_per_iter) else: hmc_acc = 1. acceptance_tuple = (hmc_acc, rwm_acc) return samples, acceptance_tuple
annealed_flow_transport-master
annealed_flow_transport/markov_kernel.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Quantum field theory (QFT) observables, particularly phi^four theory.""" from typing import Tuple import annealed_flow_transport.aft_types as tp import chex import jax import jax.numpy as jnp import numpy as np Array = tp.Array def estimate_two_point_green(offset_x: Tuple[int, int], samples: Array, log_weights: Array) -> Array: """Estimate the connected two point Green's function from weighted samples. This equals 1/V sum_y ( <phi(y) phi(y+x) > - <phi(y)><phi(y+x)>). Where V is the lattice volume. phi are the values of the field on the lattice. For more details see: Equation 22. Albergo, Kanwar and Shanahan (2019) Phys. Rev. D ''Flow-based generative models for Markov chain Monte Carlo in lattice field theory.'' Args: offset_x: 2-tuple containing lattice offset x. samples: Array of size (num_batch, L_x, L_y)- particle values on 2D lattice. log_weights: Array of size (num_batch,) - particle log weights. Returns: Scalar estimate of two point greens function at offset_x. """ chex.assert_rank([samples, log_weights], [3, 1]) offset_samples = jnp.roll(samples, shift=offset_x, axis=(1, 2)) normalized_log_weights = jax.nn.softmax(log_weights) # In this case means are all taken to be zero by symmetry. covariance = jnp.sum( normalized_log_weights[:, None, None] * samples * offset_samples, axis=0) # take spatial mean 1/V sum_y ... two_point_green = jnp.mean(covariance) return two_point_green def estimate_zero_momentum_green(samples: Array, log_weights: Array, time_offset: int) -> Array: """Estimate the momentum space two point Green's function at momentum zero. We adopt the convention that the first grid axis corresponds to space. Usually it doesn't matter which one you choose along as you are consistent. It is important not to mix up lattice sizes when they are unequal. For more details see: Equation 23. Albergo, Kanwar and Shanahan (2019) Phys. Rev. D ''Flow-based generative models for Markov chain Monte Carlo in lattice field theory.'' Args: samples: Array of size (num_batch, L_x, L_y)- particle values on 2D lattice. log_weights: Array of size (num_batch,) - particle log weights. time_offset: Offset in lattice units in the time dimension. Returns: Scalar estimate of the zero momentum Green's function. """ chex.assert_rank([samples, log_weights], [3, 1]) num_space_indices = np.shape(samples)[2] offset_indices = [(elem, time_offset) for elem in range(num_space_indices)] # The complex exponential term is 1 because of zero momentum assumption. running_total = 0. for offset in offset_indices: running_total += estimate_two_point_green(offset, samples, log_weights) return running_total/num_space_indices def estimate_time_vals(samples: Array, log_weights: Array, num_time_indices: int) -> Array: """Estimate zero momentum Green for a range of different time offsets.""" time_vals = np.zeros(num_time_indices) for time_offset in range(num_time_indices): time_vals[time_offset] = estimate_zero_momentum_green(samples, log_weights, time_offset) return time_vals def estimate_two_point_susceptibility(samples: Array, log_weights: Array, num_grid_per_dim: int) -> Array: """Estimate the two point susceptibility.""" total = 0. for row_index in range(num_grid_per_dim): for col_index in range(num_grid_per_dim): offset = (row_index, col_index) total += estimate_two_point_green(offset, samples, log_weights) return total def estimate_ising_energy_density(samples: Array, log_weights: Array) -> Array: """Estimate Ising energy density.""" total = 0. unit_displacements = [(0, 1), (1, 0)] for offset in unit_displacements: total += estimate_two_point_green(offset, samples, log_weights) return total/len(unit_displacements)
annealed_flow_transport-master
annealed_flow_transport/qft_observables.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An experiment setup for the phi^four theory experiment.""" import ml_collections ConfigDict = ml_collections.ConfigDict def get_config(): """Returns a standard normal experiment config as ConfigDict.""" config = ConfigDict() config.seed = 1 config.evaluation_seed = 1 config.batch_size = 2000 config.estimation_batch_size = 2000 config.sample_shape = (14*14,) config.report_step = 1 config.vi_report_step = 100 config.num_layers = 1 config.step_logging = True config.num_temps = 11 config.resample_threshold = 0.3 config.write_samples = True config.stopping_criterion = 'time' config.use_resampling = True config.use_markov = True config.algo = 'craft' config.use_path_gradient = False config.evaluation_algo = 'pimh' config.num_evaluation_samples = 1000 config.optim_markov = False config.craft_num_iters = 1000 config.craft_batch_size = 2000 config.vi_iters = 30000 config.checkpoint_interval = 200000 config.vi_estimator = 'importance' optimization_config = ConfigDict() optimization_config.free_energy_iters = 100 optimization_config.aft_step_size = 1e-3 optimization_config.craft_step_size = 1e-3 optimization_config.vi_step_size = 1e-4 config.optimization_config = optimization_config initial_config = ConfigDict() initial_config.density = 'MultivariateNormalDistribution' initial_config.shared_mean = 0. initial_config.diagonal_cov = 1. config.initial_config = initial_config final_config = ConfigDict() final_config.density = 'PhiFourTheory' final_config.bare_coupling = 5.1 final_config.mass_squared = -4.75 config.final_config = final_config flow_config = ConfigDict() flow_config.type = 'ConvAffineCouplingStack' flow_config.conv_kernel_shape = [3, 3] flow_config.conv_num_middle_layers = 1 flow_config.conv_num_middle_channels = 10 flow_config.num_coupling_layers = 2 flow_config.is_torus = True flow_config.identity_init = True flow_config.num_elem = config.sample_shape[0] config.flow_config = flow_config initial_sampler_config = ConfigDict() initial_sampler_config.initial_sampler = 'MultivariateNormalDistribution' config.initial_sampler_config = initial_sampler_config mcmc_config = ConfigDict() hmc_step_config = ConfigDict() # Parameters for 14 x 14 m^2 = -4.75 hmc_step_config.step_times = [0., 0.3, 1.] hmc_step_config.step_sizes = [0.3, 0.15, 0.1] nuts_step_config = ConfigDict() nuts_step_config.step_times = [0., 0.25, 0.5, 1.] nuts_step_config.step_sizes = [0.7, 0.7, 0.5, 0.5] mcmc_config.hmc_step_config = hmc_step_config mcmc_config.slice_step_config = hmc_step_config mcmc_config.nuts_step_config = nuts_step_config mcmc_config.hmc_steps_per_iter = 10 mcmc_config.rwm_steps_per_iter = 0 mcmc_config.hmc_num_leapfrog_steps = 10 mcmc_config.slice_steps_per_iter = 0 mcmc_config.nuts_steps_per_iter = 0 mcmc_config.slice_max_doublings = 5 mcmc_config.nuts_max_tree_depth = 4 mcmc_config.iters = 1 config.mcmc_config = mcmc_config config.save_params = True config.params_filename = '' expectation_config = ConfigDict() expectation_config.expectation_report_step = 50 two_point_config = ConfigDict() two_point_config.name = 'TwoPointSusceptibility' ising_config = ConfigDict() ising_config.name = 'IsingEnergyDensity' one_site_config = ConfigDict() one_site_config.name = 'SingleComponentMean' one_site_config.component_index = 0 expectation_config.configurations = [two_point_config, ising_config] config.expectation_config = expectation_config return config
annealed_flow_transport-master
configs/phi_four_theory.py
# Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An experiment setup for the many well example.""" import ml_collections ConfigDict = ml_collections.ConfigDict def get_config(): """Returns a many well experiment config as ConfigDict.""" config = ConfigDict() config.seed = 1 config.batch_size = 2000 config.estimation_batch_size = 2000 config.sample_shape = (32,) config.report_step = 1 config.vi_report_step = 100 config.use_x64 = False config.num_layers = 1 config.step_logging = True config.num_temps = 11 config.resample_threshold = 0.3 config.write_samples = False config.stopping_criterion = 'time' config.use_resampling = True config.use_markov = True config.algo = 'craft' config.optim_markov = False config.craft_num_iters = 200 config.snf_num_iters = 1000 config.fcraft_num_iters = 500 config.craft_batch_size = 2000 config.snf_batch_size = 2000 config.fcraft_batch_size = 2000 config.vi_iters = 100000 config.checkpoint_interval = 200000 config.vi_estimator = 'importance' config.use_path_gradient = False optimization_config = ConfigDict() optimization_config.free_energy_iters = 500 optimization_config.aft_step_size = 1e-2 optimization_config.craft_step_size = 1e-4 optimization_config.vi_step_size = 1e-4 config.optimization_config = optimization_config initial_config = ConfigDict() initial_config.density = 'MultivariateNormalDistribution' initial_config.shared_mean = 0. initial_config.diagonal_cov = 1. config.initial_config = initial_config final_config = ConfigDict() final_config.density = 'ManyWell' config.final_config = final_config flow_config = ConfigDict() flow_config.type = 'SplineInverseAutoregressiveFlow' flow_config.num_spline_bins = 10 flow_config.lower_lim = -3. flow_config.intermediate_hids_per_dim = 30 flow_config.num_layers = 3 flow_config.identity_init = True flow_config.bias_last = True flow_config.upper_lim = 3. flow_config.min_bin_size = 1e-2 flow_config.min_derivative = 1e-2 flow_config.num_elem = config.sample_shape[0] flow_config.sample_shape = config.sample_shape config.flow_config = flow_config initial_sampler_config = ConfigDict() initial_sampler_config.initial_sampler = 'MultivariateNormalDistribution' config.initial_sampler_config = initial_sampler_config mcmc_config = ConfigDict() hmc_step_config = ConfigDict() hmc_step_config.step_times = [0., 0.25, 0.5, 1.] hmc_step_config.step_sizes = [0.3, 0.3, 0.2, 0.2] nuts_step_config = ConfigDict() nuts_step_config.step_times = [0., 0.25, 0.5, 1.] nuts_step_config.step_sizes = [0.7, 0.7, 0.5, 0.5] rwm_step_config = ConfigDict() rwm_step_config.step_times = [0., 0.25, 0.5, 1.] rwm_step_config.step_sizes = [0.03, 0.03, 0.03, 0.03] mcmc_config.hmc_step_config = hmc_step_config mcmc_config.slice_step_config = hmc_step_config mcmc_config.nuts_step_config = nuts_step_config mcmc_config.rwm_step_config = rwm_step_config mcmc_config.hmc_steps_per_iter = 1 mcmc_config.use_jax_hmc = True mcmc_config.rwm_steps_per_iter = 0 mcmc_config.hmc_num_leapfrog_steps = 10 mcmc_config.slice_steps_per_iter = 0 mcmc_config.nuts_steps_per_iter = 0 mcmc_config.slice_max_doublings = 5 mcmc_config.nuts_max_tree_depth = 4 mcmc_config.iters = 1 config.mcmc_config = mcmc_config config.save_params = False return config
annealed_flow_transport-master
configs/many_well.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An experiment setup for the standard normal distribution.""" import ml_collections ConfigDict = ml_collections.ConfigDict def get_config(): """Returns a standard normal experiment config as ConfigDict.""" config = ConfigDict() config.seed = 1 config.evaluation_seed = 1 config.batch_size = 2000 config.estimation_batch_size = 2000 config.sample_shape = (1,) config.report_step = 1 config.vi_report_step = 50 config.checkpoint_interval = 500 config.num_temps = 10 config.step_logging = False config.resample_threshold = 0.3 config.stopping_criterion = 'time' config.use_resampling = True config.use_markov = True config.use_path_gradient = False config.algo = 'craft' config.evaluation_algo = 'pimh' config.num_evaluation_samples = 1000 config.vi_estimator = 'importance' config.vi_iters = 1000 config.craft_num_iters = 1000 config.snf_num_iters = 1000 config.craft_batch_size = 2000 config.snf_batch_size = 2000 optimization_config = ConfigDict() optimization_config.free_energy_iters = 100 optimization_config.aft_step_size = 1e-2 optimization_config.craft_step_size = 1e-2 optimization_config.snf_step_size = 1e-2 optimization_config.vi_step_size = 1e-2 config.optimization_config = optimization_config initial_config = ConfigDict() initial_config.density = 'NormalDistribution' initial_config.loc = 0. initial_config.scale = 1. config.initial_config = initial_config final_config = ConfigDict() final_config.density = 'NormalDistribution' final_config.loc = 5. final_config.scale = 1. config.final_config = final_config flow_config = ConfigDict() flow_config.type = 'DiagonalAffine' flow_config.sample_shape = config.sample_shape config.flow_config = flow_config mcmc_config = ConfigDict() hmc_step_config = ConfigDict() hmc_step_config.step_times = [0., 0.25, 0.5, 1.] hmc_step_config.step_sizes = [1.5, 1.5, 1.5, 1.5] mcmc_config.hmc_step_config = hmc_step_config nuts_step_config = ConfigDict() nuts_step_config.step_times = [0., 0.25, 0.5, 1.] nuts_step_config.step_sizes = [2.0, 2.0, 2.0, 2.0] mcmc_config.hmc_steps_per_iter = 10 mcmc_config.rwm_steps_per_iter = 0 mcmc_config.hmc_num_leapfrog_steps = 10 mcmc_config.use_jax_hmc = True mcmc_config.slice_steps_per_iter = 0 mcmc_config.nuts_steps_per_iter = 0 mcmc_config.slice_max_doublings = 5 mcmc_config.nuts_max_tree_depth = 4 config.mcmc_config = mcmc_config initial_sampler_config = ConfigDict() initial_sampler_config.initial_sampler = 'NormalDistribution' config.initial_sampler_config = initial_sampler_config expectation_config = ConfigDict() expectation_config.expectation_report_step = 50 mean_config = ConfigDict() mean_config.name = 'SingleComponentMean' mean_config.component_index = 0 expectation_config.configurations = [mean_config] config.expectation_config = expectation_config return config
annealed_flow_transport-master
configs/single_normal.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An experiment setup for a two dimensional distribution.""" import ml_collections ConfigDict = ml_collections.ConfigDict def get_config(): """Returns a standard normal experiment config as ConfigDict.""" config = ConfigDict() num_dim = 2 config.seed = 1 config.batch_size = 2000 config.craft_batch_size = 2000 config.estimation_batch_size = 2000 config.sample_shape = (num_dim,) config.report_step = 1 config.vi_report_step = 50 config.num_temps = 5 config.step_logging = False config.resample_threshold = 0.3 config.stopping_criterion = 'time' config.use_resampling = True config.use_markov = True config.use_path_gradient = False config.algo = 'craft' config.vi_iters = 1000 config.craft_num_iters = 1000 config.vi_estimator = 'importance' optimization_config = ConfigDict() optimization_config.free_energy_iters = 1000 optimization_config.aft_step_size = 1e-3 optimization_config.vi_step_size = 1e-3 optimization_config.craft_step_size = 1e-2 config.optimization_config = optimization_config initial_config = ConfigDict() initial_config.density = 'MultivariateNormalDistribution' initial_config.shared_mean = 0. initial_config.diagonal_cov = 1. config.initial_config = initial_config final_config = ConfigDict() final_config.density = 'ChallengingTwoDimensionalMixture' config.final_config = final_config flow_config = ConfigDict() flow_config.type = 'SplineInverseAutoregressiveFlow' flow_config.num_spline_bins = 10 flow_config.num_bins = 10 flow_config.intermediate_hids_per_dim = 30 flow_config.num_layers = 3 flow_config.identity_init = True flow_config.lower_lim = -4. flow_config.upper_lim = 4. flow_config.min_bin_size = 1e-4 flow_config.min_derivative = 1e-4 flow_config.bias_last = True config.flow_config = flow_config mcmc_config = ConfigDict() hmc_step_config = ConfigDict() hmc_step_config.step_times = [0., 0.25, 0.5, 1.] hmc_step_config.step_sizes = [0.5, 0.5, 0.5, 0.3] mcmc_config.hmc_step_config = hmc_step_config nuts_step_config = ConfigDict() nuts_step_config.step_times = [0., 0.25, 0.5, 1.] nuts_step_config.step_sizes = [2.0, 2.0, 2.0, 2.0] mcmc_config.hmc_steps_per_iter = 10 mcmc_config.hmc_num_leapfrog_steps = 10 mcmc_config.rwm_steps_per_iter = 0 mcmc_config.slice_steps_per_iter = 0 mcmc_config.nuts_steps_per_iter = 0 mcmc_config.slice_max_doublings = 5 mcmc_config.nuts_max_tree_depth = 4 config.mcmc_config = mcmc_config initial_sampler_config = ConfigDict() initial_sampler_config.initial_sampler = 'MultivariateNormalDistribution' config.initial_sampler_config = initial_sampler_config return config
annealed_flow_transport-master
configs/two_dimensional_challenging.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An experiment setup for the funnel distribution.""" import ml_collections ConfigDict = ml_collections.ConfigDict def get_config(): """Returns a standard normal experiment config as ConfigDict.""" config = ConfigDict() num_dim = 10 config.seed = 1 config.batch_size = 2000 config.craft_batch_size = 2000 config.estimation_batch_size = 6000 config.sample_shape = (num_dim,) config.report_step = 1 config.vi_report_step = 10 config.num_temps = 5 config.resample_threshold = 0.3 config.stopping_criterion = 'time' config.write_samples = False config.use_resampling = True config.use_markov = True config.use_path_gradient = False config.algo = 'craft' config.vi_iters = 2000 config.craft_num_iters = 2000 config.vi_estimator = 'importance' optimization_config = ConfigDict() optimization_config.free_energy_iters = 4000 optimization_config.aft_step_size = 1e-3 optimization_config.vi_step_size = 1e-3 optimization_config.craft_step_size = 1e-3 config.optimization_config = optimization_config initial_config = ConfigDict() initial_config.density = 'MultivariateNormalDistribution' initial_config.shared_mean = 0. initial_config.diagonal_cov = 1. config.initial_config = initial_config final_config = ConfigDict() final_config.density = 'FunnelDistribution' config.final_config = final_config base_flow_config = ConfigDict() base_flow_config.type = 'AffineInverseAutoregressiveFlow' base_flow_config.intermediate_hids_per_dim = 30 base_flow_config.num_layers = 3 base_flow_config.identity_init = True base_flow_config.bias_last = True flow_config = ConfigDict() flow_config.type = 'ComposedFlows' num_stack = 1 # When comparing to VI raise this to match expressivity of AFT. flow_config.flow_configs = [base_flow_config] * num_stack config.flow_config = flow_config initial_sampler_config = ConfigDict() initial_sampler_config.initial_sampler = 'MultivariateNormalDistribution' config.initial_sampler_config = initial_sampler_config mcmc_config = ConfigDict() hmc_step_config = ConfigDict() hmc_step_config.step_times = [0., 0.25, 0.5, 0.75, 1.] hmc_step_config.step_sizes = [0.9, 0.7, 0.6, 0.5, 0.4] mcmc_config.hmc_step_config = hmc_step_config nuts_step_config = ConfigDict() nuts_step_config.step_times = [0., 0.25, 0.5, 1.] nuts_step_config.step_sizes = [2.0, 2.0, 2.0, 2.0] mcmc_config.hmc_steps_per_iter = 1 mcmc_config.hmc_num_leapfrog_steps = 10 slice_step_config = ConfigDict() slice_step_config.step_times = [0., 0.25, 0.5, 0.75, 1.] slice_step_config.step_sizes = [0.9, 0.7, 0.6, 0.5, 0.4] mcmc_config.slice_step_config = slice_step_config mcmc_config.slice_steps_per_iter = 0 mcmc_config.nuts_steps_per_iter = 0 mcmc_config.slice_max_doublings = 5 mcmc_config.nuts_max_tree_depth = 4 mcmc_config.rwm_steps_per_iter = 0 mcmc_config.iters = 1 config.mcmc_config = mcmc_config return config
annealed_flow_transport-master
configs/funnel.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An experiment setup for the Cox process posterior distribution.""" import ml_collections ConfigDict = ml_collections.ConfigDict def get_config(): """Returns a standard normal experiment config as ConfigDict.""" config = ConfigDict() config.seed = 1 config.batch_size = 2000 config.estimation_batch_size = 2000 config.sample_shape = (32*32,) config.report_step = 1 config.vi_report_step = 100 config.num_layers = 1 config.step_logging = False config.num_temps = 11 config.resample_threshold = 0.3 config.write_samples = True config.stopping_criterion = 'time' config.use_resampling = True config.use_markov = True config.use_path_gradient = False config.algo = 'craft' config.craft_num_iters = 200 config.snf_num_iters = 1000 config.craft_batch_size = 2000 config.snf_batch_size = 2000 config.vi_iters = 100000 config.checkpoint_interval = 200000 config.vi_estimator = 'importance' optimization_config = ConfigDict() optimization_config.free_energy_iters = 500 optimization_config.aft_step_size = 1e-2 optimization_config.craft_step_size = 5e-2 optimization_config.craft_boundaries_and_scales = ({100: 1e-2},) optimization_config.snf_step_size = 0.1 optimization_config.snf_boundaries_and_scales = ({70: 5e-2, 100: 1e-2},) optimization_config.vi_step_size = 1e-4 config.optimization_config = optimization_config initial_config = ConfigDict() initial_config.density = 'MultivariateNormalDistribution' initial_config.shared_mean = 0. initial_config.diagonal_cov = 1. config.initial_config = initial_config final_config = ConfigDict() final_config.density = 'LogGaussianCoxPines' final_config.use_whitened = False final_config.file_path = '' config.final_config = final_config flow_config = ConfigDict() flow_config.type = 'DiagonalAffine' flow_config.sample_shape = config.sample_shape config.flow_config = flow_config initial_sampler_config = ConfigDict() initial_sampler_config.initial_sampler = 'MultivariateNormalDistribution' config.initial_sampler_config = initial_sampler_config mcmc_config = ConfigDict() hmc_step_config = ConfigDict() hmc_step_config.step_times = [0., 0.25, 0.5, 1.] hmc_step_config.step_sizes = [0.3, 0.3, 0.2, 0.2] nuts_step_config = ConfigDict() nuts_step_config.step_times = [0., 0.25, 0.5, 1.] nuts_step_config.step_sizes = [0.7, 0.7, 0.5, 0.5] mcmc_config.hmc_step_config = hmc_step_config mcmc_config.slice_step_config = hmc_step_config mcmc_config.nuts_step_config = nuts_step_config mcmc_config.hmc_steps_per_iter = 1 mcmc_config.use_jax_hmc = True mcmc_config.rwm_steps_per_iter = 0 mcmc_config.hmc_num_leapfrog_steps = 10 mcmc_config.slice_steps_per_iter = 0 mcmc_config.nuts_steps_per_iter = 0 mcmc_config.slice_max_doublings = 5 mcmc_config.nuts_max_tree_depth = 4 config.mcmc_config = mcmc_config config.save_params = False return config
annealed_flow_transport-master
configs/lgcp_pines.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An experiment setup for the VAE distribution.""" import ml_collections ConfigDict = ml_collections.ConfigDict def get_config(): """Returns a standard normal experiment config as ConfigDict.""" config = ConfigDict() config.seed = 1 config.batch_size = 100 config.estimation_batch_size = 100 config.sample_shape = (30,) config.report_step = 1 config.vi_report_step = 10 config.num_layers = 1 config.step_logging = True config.num_temps = 3 config.resample_threshold = 0.3 config.write_samples = False config.stopping_criterion = 'time' config.use_resampling = True config.use_markov = True config.algo = 'craft' config.vi_iters = 100000 config.vi_estimator = 'importance' config.checkpoint_interval = 200000 config.craft_num_iters = 100 config.snf_num_iters = 500 config.craft_batch_size = 100 config.snf_batch_size = 100 optimization_config = ConfigDict() optimization_config.free_energy_iters = 1000 optimization_config.vi_step_size = 1e-4 optimization_config.aft_step_size = 1e-3 optimization_config.craft_step_size = 1e-2 optimization_config.snf_step_size = 1e-3 optimization_config.snf_boundaries_and_scales = ({200: 5e-4},) initial_config = ConfigDict() initial_config.density = 'MultivariateNormalDistribution' initial_config.shared_mean = 0. initial_config.diagonal_cov = 1. config.initial_config = initial_config final_config = ConfigDict() final_config.density = 'AutoEncoderLikelihood' final_config.params_filename = 'annealed_flow_transport/data/vae.pickle' final_config.image_index = 3689 config.final_config = final_config flow_config = ConfigDict() flow_config.type = 'DiagonalAffine' flow_config.sample_shape = config.sample_shape config.flow_config = flow_config initial_sampler_config = ConfigDict() initial_sampler_config.initial_sampler = 'MultivariateNormalDistribution' config.initial_sampler_config = initial_sampler_config mcmc_config = ConfigDict() hmc_step_config = ConfigDict() hmc_step_config.step_times = [0., 0.25, 0.5, 1.] hmc_step_config.step_sizes = [0.15, 0.1, 0.1, 0.05] nuts_step_config = ConfigDict() nuts_step_config.step_times = [0., 0.25, 0.5, 1.] nuts_step_config.step_sizes = [0.7, 0.7, 0.5, 0.5] mcmc_config.hmc_step_config = hmc_step_config mcmc_config.slice_step_config = hmc_step_config mcmc_config.nuts_step_config = nuts_step_config mcmc_config.hmc_steps_per_iter = 2 mcmc_config.use_jax_hmc = True mcmc_config.hmc_num_leapfrog_steps = 10 mcmc_config.rwm_steps_per_iter = 0 mcmc_config.slice_steps_per_iter = 0 mcmc_config.nuts_steps_per_iter = 0 mcmc_config.slice_max_doublings = 5 mcmc_config.nuts_max_tree_depth = 4 config.mcmc_config = mcmc_config config.save_params = False return config
annealed_flow_transport-master
configs/vae.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup script to install the dm_nevis library.""" import setuptools with open("README.md", "r") as fh: long_description = fh.read() with open("requirements.txt", "r") as f: dependencies = list(map(lambda x: x.strip(), f.readlines())) setuptools.setup( name="dm_nevis", version="0.1", author="DeepMind Nevis Team", author_email="See authors emails in paper", description="A benchmark for continual learning.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/deepmind/dm_nevis", packages=setuptools.find_packages(), scripts=["dm_nevis/datasets_storage/download_dataset.py"], classifiers=[ "Programming Language :: Python :: 3", ], python_requires=">=3.8", install_requires=dependencies)
dm_nevis-master
setup.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
dm_nevis-master
dm_nevis/__init__.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
dm_nevis-master
dm_nevis/benchmarker/__init__.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Aggregation of metrics in the benchmarker. The ultimate goal of running the benchmarker is to publish metrics computed from the prediction events from a task stream. This package provides a uniform interface for defining the metrics that may be computed, and also provides standard implementations for common metrics that may be used. Metrics in the benchmarker are manipulated using a stateless dataclass of pure functions called the MetricsAggregator. Each time a prediction event is encountered by the environment, the predictions are fed to the metrics aggregator, along with the prior state stored by the metrics aggregator. This allows the metrics aggregator to keep track of all statistics over all prediction tasks that the environment has encountered. At the end of a benchmark run, the metrics aggregator's "compute_results" function will be called with the state that the metrics aggregator has accumulated up to the current point. It is in the compute_results function that the metrics aggregator may compute a "final" statistical summary over every prediction event that occurred in the whole task stream may be summarized, and returned. For full generality, the result is allowed to be any pytree. The environment commits to running aggregate exactly once for each prediction event that is encountered, and the metrics aggregator is allowed to log any intermediate metrics that it wishes, to allow "online" debugging of model progresss, and intermediate results to be visualized before a full task stream run has been completed. """ import dataclasses from typing import Callable, Iterator import chex from dm_nevis.benchmarker.datasets import streams from dm_nevis.benchmarker.learners import learner_interface State = chex.ArrayTree Results = chex.ArrayTree InitFn = Callable[[], State] AggregateTrainEventFn = Callable[ [State, streams.TrainingEvent, learner_interface.ResourceUsage], State] AggregatePredictEventFn = Callable[ [State, streams.PredictionEvent, Iterator[learner_interface.Predictions]], State] ComputeResultsFn = Callable[[State], Results] @dataclasses.dataclass class MetricsAggregator: """Metrics class collecting together pure functions for manipulating metrics. Similarly to other JAX libraries, this class does not contain state internally, but rather provides pure functions that expclitly manipulate the state. The state may be initialized by calling the init() function. Attributes: init: A function to initialize the metrics state. aggregate_train_event: A function to combine together an existing state and new predictions, for a given training event. aggregate_predict_event: A function to combine together existing state and predictions. compute_results: A function to compute the results given the state observed up to this point is assumed to be called once all data has been added to the state. """ init: InitFn aggregate_train_event: AggregateTrainEventFn aggregate_predict_event: AggregatePredictEventFn compute_results: ComputeResultsFn def noop_metrics_aggregator() -> MetricsAggregator: """Creates a metrics aggregator that does nothing.""" def init(): return None def aggregate_train_event(state, event, resources_used): del event, resources_used return state def aggregate_predict_event(state, event, predictions): del event for _ in predictions: continue return state def compute_results(state): del state return {} return MetricsAggregator(init, aggregate_train_event, aggregate_predict_event, compute_results)
dm_nevis-master
dm_nevis/benchmarker/metrics/metrics_aggregators.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A module implementing standard metrics for multi-label tasks.""" from typing import Iterable, NamedTuple from dm_nevis.benchmarker.learners import learner_interface import numpy as np import sklearn.metrics class MultiLabelClassificationMetrics(NamedTuple): """Common classification metrics. Attributes: num_examples: The total number of examples used to compute the metrics. mean_average_precision: Mean average precision. """ num_examples: int mean_average_precision: float def compute_metrics( predictions: Iterable[learner_interface.Predictions] ) -> MultiLabelClassificationMetrics: """Computes standard multi-label classification metrics over predictions. Args: predictions: Predictions constist of the input batch and the learner's output on the given input. The input batch must contain labels confirming holding single integer labels corresponding to multi-label classification task. The outputs are expected to contain unnormalized logits, such as the output from a linear layer with no activations. Returns: A dataclass of classification metrics for multi-label binary classification tasks. """ all_probs = [] all_targets = [] for prediction in predictions: (multi_label_one_hot, probs) = (prediction.batch.multi_label_one_hot, prediction.output) probs = np.stack(probs, axis=1) if np.amin(probs) < 0.0 or np.amax(probs) > 1.0: raise ValueError('Probabilities must be in the range [0, 1].') all_probs.append(probs) all_targets.append(multi_label_one_hot) if not all_probs: return MultiLabelClassificationMetrics( num_examples=0, mean_average_precision=np.nan, ) all_probs = np.concatenate(all_probs, axis=0) all_targets = np.concatenate(all_targets, axis=0) mean_average_precision = sklearn.metrics.average_precision_score( all_targets, all_probs, ) return MultiLabelClassificationMetrics( num_examples=all_probs.shape[0], mean_average_precision=mean_average_precision, )
dm_nevis-master
dm_nevis/benchmarker/metrics/multi_label_classification_metrics.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A module implementing standard metrics for unary classification tasks.""" from typing import Iterable, NamedTuple import chex from dm_nevis.benchmarker.learners import learner_interface import jax import numpy as np import optax class ClassificationMetrics(NamedTuple): """Common classification metrics. Attributes: num_examples: The total number of examples used to compute the metrics. cross_entropy: The computed categorical cross entropy. top_one_accuracy: The number of examples that predicted the correct class first, normalized to [0, 1] by the number of examples. top_five_accuracy: The number of examples that predicted the correct class in the top five most likely classes, normalized to [0, 1] by the number of examples. top_one_correct: The integer number of predictions where the correct class was predicted first. top_five_correct: The integer number of predictions where the correct class was predicted in the top five predictions. """ num_examples: np.ndarray cross_entropy: np.ndarray top_one_accuracy: np.ndarray top_five_accuracy: np.ndarray top_one_correct: np.ndarray top_five_correct: np.ndarray def compute_metrics( predictions: Iterable[learner_interface.Predictions] ) -> ClassificationMetrics: """Computes standard unary classification metrics over predictions. Args: predictions: Predictions constist of the input batch and the learner's output on the given input. The input batch must contain labels confirming holding single integer labels corresponding to a single label multinomial classification task. The outputs are expected to contain unnormalized logits, such as the output from a linear layer with no activations. Returns: A dataclass of classification metrics for single label multinomial classification tasks. """ top_one_correct, top_five_correct, cross_entropy = 0.0, 0.0, 0.0 num_examples = 0 for prediction in predictions: label, logits = prediction.batch.label, prediction.output[0] chex.assert_rank(label, 1) chex.assert_rank(logits, 2) num_examples += logits.shape[0] cross_entropy += _softmax_cross_entropy(logits, label).sum() top_one_correct += _top_n_correct(logits, label, n=1) top_five_correct += _top_n_correct(logits, label, n=5) if num_examples: top_one_accuracy = top_one_correct / num_examples top_five_accuracy = top_five_correct / num_examples cross_entropy = cross_entropy / num_examples else: top_one_accuracy = np.nan top_five_accuracy = np.nan cross_entropy = np.nan return ClassificationMetrics( num_examples=np.array(num_examples, dtype=int), cross_entropy=np.array(cross_entropy), top_one_accuracy=np.array(top_one_accuracy), top_five_accuracy=np.array(top_five_accuracy), top_one_correct=np.array(top_one_correct), top_five_correct=np.array(top_five_correct), ) def _top_n_correct(logits: np.ndarray, targets: np.ndarray, *, n: int) -> np.ndarray: """Returns the number of predictions that predict the correct class in top n. Args: logits: Unnormalized logits of shape (<batch size>, <num classes>). targets: Unary class labels of shape (<batch size>), of integer type. n: The maximum index of the correct prediction in the sorted logits. if n is greater than or equal to the number of classes, then this function will return the batch size. Returns: The number of correct predictions (between 0 and <batch size>). A correct prediction is when the correct prediction falls within the top n largest values over the logits (by magnitude). """ if n < 1: raise ValueError(f"n must be larger than 0, got {n}") targets = targets.reshape((*targets.shape, 1)) top_n_predictions = np.argsort(logits, axis=-1)[:, -n:] return np.sum(targets == top_n_predictions) def _softmax_cross_entropy(logits: np.ndarray, targets: np.ndarray) -> np.ndarray: """Computes the softmax cross entropy for unnormalized logits. Note: This function uses jax internally, and will thus use hardware accleration, if one is available. Args: logits: Unnormalized logits of shape (<batch size>, <num classes>). These are interpreted as log probabilities, and could for example come from the output of a linear layer with no activations. targets: Unary class labels of shape (<batch size>), of integer type. Returns: The cross entropy computed between the softmax over the logits and the one-hot targets. """ chex.assert_rank(targets, 1) batch_size, num_classes = logits.shape targets_one_hot = jax.nn.one_hot(targets, num_classes) cross_entropy = optax.softmax_cross_entropy(logits, targets_one_hot) chex.assert_shape(cross_entropy, (batch_size,)) return np.array(cross_entropy)
dm_nevis-master
dm_nevis/benchmarker/metrics/classification_metrics.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dm_nevis.benchmarker.metrics.classification_metrics.""" from absl.testing import absltest from absl.testing import parameterized from dm_nevis.benchmarker.datasets import datasets from dm_nevis.benchmarker.learners import learner_interface from dm_nevis.benchmarker.metrics import classification_metrics import numpy as np def _prediction(label, logits): """Creates a prediction fixture for testing.""" return learner_interface.Predictions( batch=datasets.MiniBatch( image=None, label=np.array(label, dtype=np.int32), multi_label_one_hot=None, ), output=[np.array(logits, dtype=np.float32)], ) class ImageClassificationTest(parameterized.TestCase): @parameterized.named_parameters( { 'testcase_name': 'uneven_batches_all_predictions_incorrect', 'predictions': [ _prediction([0, 1], [[0.1, 0.9], [0.9, 0.1]]), _prediction([0, 1], [[0.4, 0.6], [0.9, 0.1]]), _prediction([1], [[1000, 0]]), ], 'expected_top_one_accuracy': 0.0, 'expected_top_five_accuracy': 1.0, 'expected_cross_entropy': 200.86228814, 'expected_top_one_correct': 0, 'expected_top_five_correct': 5, 'expected_num_examples': 5, }, { 'testcase_name': 'correct_prediction_not_on_array_boundary', 'predictions': [_prediction([2], [[0, 1, 5, 3]])], 'expected_top_one_accuracy': 1.0, 'expected_top_five_accuracy': 1.0, # verified: -log(exp(5) / (1 + exp(1) + exp(5) + exp(3))) 'expected_cross_entropy': 0.14875513, 'expected_top_one_correct': 1, 'expected_top_five_correct': 1, 'expected_num_examples': 1, }, { 'testcase_name': 'mixed_reults_within_a_single_batch', 'predictions': [ _prediction([2, 3], [[0, -1, 5, -3], [0, 1, 5, 3]]), _prediction([3], [[0, 0, 0, 1]]), ], 'expected_top_one_accuracy': 2 / 3, 'expected_top_five_accuracy': 1.0, 'expected_cross_entropy': 0.96731003, 'expected_top_one_correct': 2, 'expected_top_five_correct': 3, 'expected_num_examples': 3, }, { 'testcase_name': 'top_five_edge_case_1', 'predictions': [_prediction([0], [[0, 5, 1, 3, 2, 4]])], 'expected_top_one_accuracy': 0.0, 'expected_top_five_accuracy': 0.0, 'expected_cross_entropy': 5.45619345, 'expected_top_one_correct': 0, 'expected_top_five_correct': 0, 'expected_num_examples': 1, }, { 'testcase_name': 'top_five_edge_case_2', 'predictions': [_prediction([2], [[0, 5, 1, 3, 2, 4]])], 'expected_top_one_accuracy': 0.0, 'expected_top_five_accuracy': 1.0, 'expected_cross_entropy': 4.45619345, 'expected_top_one_correct': 0, 'expected_top_five_correct': 1, 'expected_num_examples': 1, }, { 'testcase_name': 'no_predictions', 'predictions': [], 'expected_top_one_accuracy': np.nan, 'expected_top_five_accuracy': np.nan, 'expected_cross_entropy': np.nan, 'expected_top_one_correct': 0, 'expected_top_five_correct': 0, 'expected_num_examples': 0, }, ) def test_compute_metrics(self, predictions, expected_top_one_accuracy, expected_top_five_accuracy, expected_cross_entropy, expected_top_one_correct, expected_top_five_correct, expected_num_examples): m = classification_metrics.compute_metrics(predictions) np.testing.assert_allclose(m.top_one_accuracy, expected_top_one_accuracy) np.testing.assert_allclose(m.top_five_accuracy, expected_top_five_accuracy) np.testing.assert_allclose(m.cross_entropy, expected_cross_entropy) np.testing.assert_allclose(m.num_examples, expected_num_examples) np.testing.assert_allclose(m.top_one_correct, expected_top_one_correct) np.testing.assert_allclose(m.top_five_correct, expected_top_five_correct) if __name__ == '__main__': absltest.main()
dm_nevis-master
dm_nevis/benchmarker/metrics/classification_metrics_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
dm_nevis-master
dm_nevis/benchmarker/metrics/__init__.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dm_nevis.benchmarker.metrics.multi_label_classification_metrics.""" import math from absl.testing import absltest from absl.testing import parameterized from dm_nevis.benchmarker.datasets import datasets from dm_nevis.benchmarker.datasets import tasks from dm_nevis.benchmarker.learners import learner_interface from dm_nevis.benchmarker.metrics import multi_label_classification_metrics import numpy as np TASK = tasks.TaskKey('task', tasks.TaskKind.MULTI_LABEL_CLASSIFICATION, tasks.MultiLabelClassificationMetadata(num_classes=4)) class MultiLabelClassificationMetrics(parameterized.TestCase): def test_mean_average_precision(self): gen = np.random.default_rng(0) num_classes = 2 batches = [ datasets.MiniBatch( image=gen.standard_normal(size=(1000, 4, 4, 3)), multi_label_one_hot=gen.integers( size=(1000, 4), low=0, high=num_classes), label=None, ), datasets.MiniBatch( image=gen.standard_normal(size=(300, 4, 4, 3)), multi_label_one_hot=gen.integers( size=(300, 4), low=0, high=num_classes), label=None, ), ] predictions = [] for batch in batches: output = [ np.random.uniform(size=(batch.image.shape[0],)) for _ in range(num_classes) ] predictions.append( learner_interface.Predictions(batch=batch, output=output)) metrics = multi_label_classification_metrics.compute_metrics(predictions) self.assertEqual(metrics.num_examples, 1300) # The mAP should be approximately 0.5 for randomly sampled data. self.assertAlmostEqual(metrics.mean_average_precision, 0.5, delta=0.05) def test_empty_predictions(self): metrics = multi_label_classification_metrics.compute_metrics([]) self.assertEqual(metrics.num_examples, 0) self.assertTrue(math.isnan(metrics.mean_average_precision)) if __name__ == '__main__': absltest.main()
dm_nevis-master
dm_nevis/benchmarker/metrics/multi_label_classification_metrics_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define interface for streams. Streams are defined to be sequences of datasets containing either train or predict entries. Each of these has a description, and a key which may be used to instantiate the relevant dataset. """ from typing import Any, Callable, Iterable, Iterator, Mapping, NamedTuple, Sequence, Union, Protocol from absl import logging from dm_nevis.benchmarker.datasets import datasets from dm_nevis.benchmarker.datasets import tasks DatasetKey = str class TrainingEvent(NamedTuple): """A stream event corresponding to training a learner with new data. Attributes: train_dataset_key: The main default dataset to use for training. This does not include data from the `dev_dataset_key` dataset given below. train_and_dev_dataset_key: This is the full training dataset to be used by learners that wish to use their own logic to define a dev / train split. dev_dataset_key: A predefined dev (validation) dataset, to be used within a learner's train step for hyperparameter searching. """ train_dataset_key: DatasetKey train_and_dev_dataset_key: DatasetKey dev_dataset_key: DatasetKey class PredictionEvent(NamedTuple): """A stream event corresponding to running prediction with a learner. Attributes: dataset_key: The dataset key corresponding to either the `test` or `dev-test` split of the data (depending on the stream being executed). These events are used to measure the performance of learners on unseen data. """ dataset_key: DatasetKey Event = Union[TrainingEvent, PredictionEvent] class Stream(Protocol): def get_dataset_by_key(self, dataset_key: str) -> datasets.Dataset: ... def events(self) -> Iterator[Event]: ... class FilteredStream: """A stream for wrapping other streams, and removing unsupported tasks. This is provided to test learners that do not support all tasks in the input stream. """ def __init__( self, stream_ctor: Callable[..., Stream], supported_task_kinds: Iterable[tasks.TaskKind], **stream_kwargs: Mapping[str, Any], ): self._stream = stream_ctor(**stream_kwargs) self._supported_task_kinds = set(supported_task_kinds) def get_dataset_by_key(self, dataset_key: str) -> datasets.Dataset: result = self._stream.get_dataset_by_key(dataset_key) assert result.task_key.kind in self._supported_task_kinds return result def events(self) -> Iterator[Event]: """Returns an iterator over the (filtered) stream events.""" for event in self._stream.events(): # This relies on datasets having consistent task_keys # across all of the keys. If this assumption were to fail, an assertion # error would be raised in get_dataset_by_key() above. if isinstance(event, PredictionEvent): dataset = self._stream.get_dataset_by_key(event.dataset_key) else: dataset = self._stream.get_dataset_by_key(event.train_dataset_key) if dataset.task_key.kind not in self._supported_task_kinds: logging.warning("Skipping unsupported event: %s, task key: %s", event, dataset.task_key) continue yield event def all_dataset_keys(event: Event) -> Sequence[DatasetKey]: """Returns all dataset keys for an event.""" if isinstance(event, TrainingEvent): return [ event.train_dataset_key, event.train_and_dev_dataset_key, event.dev_dataset_key, ] elif isinstance(event, PredictionEvent): return [event.dataset_key] raise ValueError(f"Unknown event type: {type(event)}")
dm_nevis-master
dm_nevis/benchmarker/datasets/streams.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A module to define the available tasks.""" import enum from typing import Any, Dict, NamedTuple, Union class TaskKind(enum.Enum): CLASSIFICATION = 0 MULTI_LABEL_CLASSIFICATION = 1 class ClassificationMetadata(NamedTuple): num_classes: int class MultiLabelClassificationMetadata(NamedTuple): num_classes: int TaskMetadata = Union[ClassificationMetadata, MultiLabelClassificationMetadata] class TaskKey(NamedTuple): """A hashable key to uniquely identify a task. Task keys must uniquely define a task, and provide the minimal information required to initialize a prediction head. Attributes: name: The (unique) name of the task, which may be shared across multiple datasets if they define matching tasks. kind: The kind of task (such as classification). metadata: The metadata of the task. """ name: str kind: TaskKind metadata: TaskMetadata @classmethod def from_dict(cls, d: Dict[str, Any]) -> "TaskKey": """Deserializes a dict into a TaskKey.""" if d["kind"] == "Classification": return cls( name=d["name"], kind=TaskKind.CLASSIFICATION, metadata=ClassificationMetadata(num_classes=d["num_classes"])) elif d["kind"] == "MultiLabelClassification": return cls( name=d["name"], kind=TaskKind.MULTI_LABEL_CLASSIFICATION, metadata=MultiLabelClassificationMetadata( num_classes=d["num_classes"])) else: raise ValueError("Deserialization failed") def to_dict(self) -> Dict[str, Any]: """Serializes a TaskKey into a dictionary.""" if self.kind == TaskKind.CLASSIFICATION: return { "kind": "Classification", "name": self.name, "num_classes": self.metadata.num_classes, } elif self.kind == TaskKind.MULTI_LABEL_CLASSIFICATION: return { "kind": "MultiLabelClassification", "name": self.name, "num_classes": self.metadata.num_classes, } else: raise ValueError("Unknown TaskKind")
dm_nevis-master
dm_nevis/benchmarker/datasets/tasks.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dm_nevis.benchmarker.datasets.dataset_builders.""" from absl.testing import absltest from absl.testing import parameterized from dm_nevis.benchmarker.datasets import dataset_builders class DatasetBuildersTest(parameterized.TestCase): @parameterized.parameters([ dict( outer_start=0, inner_start=0, outer_end=0, inner_end=0, expected=(0, 0)), dict( outer_start=None, inner_start=None, outer_end=0, inner_end=0, expected=(None, 0)), dict( outer_start=None, inner_start=None, outer_end=None, inner_end=None, expected=(None, None)), dict( outer_start=5, inner_start=5, outer_end=20, inner_end=10, expected=(10, 15)), dict( outer_start=3, inner_start=5, outer_end=30, inner_end=10, expected=(8, 13)), dict( outer_start=3, inner_start=5, outer_end=12, inner_end=10, expected=(8, 12)), dict( outer_start=3, inner_start=5, outer_end=6, inner_end=10, expected=(6, 6)) ]) def test_combine_indices(self, outer_start, inner_start, outer_end, inner_end, expected): start, end = dataset_builders.combine_indices( outer_start=outer_start, inner_start=inner_start, outer_end=outer_end, inner_end=inner_end) self.assertEqual(start, expected[0]) self.assertEqual(end, expected[1]) if __name__ == '__main__': absltest.main()
dm_nevis-master
dm_nevis/benchmarker/datasets/dataset_builders_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wrappers to unify the interface of existing datasets.""" import collections import contextlib import threading from typing import Any, Callable, Iterator, NamedTuple, Optional, Tuple from absl import logging from dm_nevis.benchmarker.datasets import datasets import tensorflow as tf import tensorflow_datasets as tfds _LOCK = threading.RLock() _DATASET_NAME_TO_BUILDER_LOCK = collections.defaultdict(threading.RLock) class TFDSMetadata(NamedTuple): num_examples: Optional[int] def tfds_dataset_builder_fn( tfds_name: str, *, split: str, start: Optional[int], end: Optional[int], shuffle_buffer_size: int, to_minibatch_fn: Callable[[Any], datasets.MiniBatch], ) -> Tuple[datasets.DatasetBuilderFn, TFDSMetadata]: """Provides a standard way to initialize a builder_fn from a tfds dataset. TODO: Explicit test for this function that uses a mock dataset. For efficiency, slicing indices are materialized and combined lazily when the dataset is actually constructed, this allows for the most efficient possible construction of the dataset. Args: tfds_name: The dataset name to load from tfds. split: The name of the split to load. start: The start index in the underlying data. end: The maximum end index in the underlying data. shuffle_buffer_size: The size of the shuffle buffer to use. to_minibatch_fn: A function to be mapped to the underlying dataset and create a datasets.MiniBatch matching the other datasets. Returns: a dataset builder function, along with metadata about the dataset. """ builder = tfds.builder(tfds_name) metadata = _metadata_from_tfds_info(split, start, end, builder.info) outer_start, outer_end = start, end del start, end def builder_fn(shuffle: bool, start: Optional[int] = None, end: Optional[int] = None) -> tf.data.Dataset: indices = combine_indices(outer_start, start, outer_end, end) split_with_indices = _slice_str(split, *indices) with _lock_dataset_builder(tfds_name): builder.download_and_prepare() ds = builder.as_dataset(split=split_with_indices, shuffle_files=shuffle) if shuffle: ds = ds.shuffle(shuffle_buffer_size) return ds.map( to_minibatch_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE, deterministic=not shuffle) return builder_fn, metadata def combine_indices( outer_start: Optional[int], inner_start: Optional[int], outer_end: Optional[int], inner_end: Optional[int]) -> Tuple[Optional[int], Optional[int]]: """Combine starts and ends together. For an underlying sequence, this function combines an outer set of start:end and an inner set of start:end indices together, so that they may be applied in a single operation. Semantically: first the outer_start:outer_end sequence is selected, and then the inner_start:inner_end sequence is sampled from the result. In the diagram below, the returned (start, end) region is represented by the X's. |==============================================| ^ ^ |================XXXXXXXXXX=========| | ^ ^ | ` outer_start | | ` outer_end | | | | inner_start ' ` inner_end Args: outer_start: Optional start index in input sequence. inner_start: Optional start index in input sequence, relative to outer_start. outer_end: Optional end index in input sequence. inner_end: Optional end index in input sequence, relative to outer_start. Returns: The region combing the start and end indices together. """ # TODO: Support negative indices. assert (outer_start or 0) >= 0 and (inner_start or 0) >= 0 assert (outer_end or 0) >= 0 and (inner_end or 0) >= 0 combined_start = None if outer_start is not None or inner_start is not None: combined_start = (outer_start or 0) + (inner_start or 0) ends = [] if outer_end is not None: ends.append(outer_end) if inner_end is not None: ends.append((outer_start or 0) + inner_end) if ends: combined_end = min(ends) else: combined_end = None if combined_end is not None and combined_start is not None: combined_start = min(combined_start, combined_end) return combined_start, combined_end def _metadata_from_tfds_info(split: str, start: int, end: int, info: tfds.core.DatasetInfo) -> TFDSMetadata: try: split_info = info.splits[_slice_str(split, start, end)] except KeyError: logging.warning("Cannot extract info for split. Is this mock data?") return TFDSMetadata(num_examples=None) return TFDSMetadata(num_examples=split_info.num_examples) def _slice_str(split: str, start: Optional[int], end: Optional[int]) -> str: if start is None and end is None: return split return f"{split}[{start or ''}:{'' if end is None else end}]" @contextlib.contextmanager def _lock_dataset_builder(dataset_name: str) -> Iterator[None]: """Provides a process-level mutex around tfds dataset builders. tfds download_and_prepare() appears to give errors when called concurrently. This mutex provides a process-level lock for each dataset, so that single-host single-process binaries can avoid this problem. In the case of multi-process experiments, this strategy may no longer be sufficient. Args: dataset_name: The name of the dataset to acquire a lock for. Yields: A context manager to protect access to the given resource. """ with _LOCK: lock = _DATASET_NAME_TO_BUILDER_LOCK[dataset_name] try: lock.acquire() yield finally: lock.release()
dm_nevis-master
dm_nevis/benchmarker/datasets/dataset_builders.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Interface to access datasets.""" from typing import Any, NamedTuple, Optional, Union, Protocol import chex from dm_nevis.benchmarker.datasets import tasks import numpy as np import tensorflow as tf Array = Union[tf.Tensor, np.ndarray] class DatasetBuilderFn(Protocol): def __call__(self, *, shuffle: bool, start: Optional[int] = None, end: Optional[int] = None) -> tf.data.Dataset: """A function to build a tf.data.Dataset with an offset and max length. Args: shuffle: Whether or not to shuffle the data within the sampled region. start: Start at this index in the underlying dataset sequence end: Stop reading if the index in the underlying stream reaches this value. Returns: A tf.data.Dataset over ``dataset.MiniBatch`` objects of single unbatched examples. """ class Dataset(NamedTuple): """A handle for building a tf.data.Dataset. Attributes: builder_fn: A pure function to instantiate the dataset. Allows specifying of basic operations, such as enabling shuffling, and reading from specific sub-sequences of the underlying data. Each time the builder is called, a new separate dataset reader context is created, so users may call this multiple times to obtain separate dataset readers. task_key: Identifies the task that is containined in this dataset. num_examples: If available, provides the number of examples in iterable dataset constructed by the builder_fn. """ builder_fn: DatasetBuilderFn task_key: tasks.TaskKey num_examples: Optional[int] @chex.dataclass class MiniBatch: """A shared MiniBatch representation for all tasks and datasets. By definition, a minibatch may have any number of batch dimensions, including zero batch dimensions (which is the default case for datasets returned by dataset builder functions). Attributes: image: If the dataset has an image, it will be stored here. label: The task specific label, if available. multi_label_one_hot: Multi-label in a one-hot format, if available. """ image: Optional[Array] label: Optional[Any] multi_label_one_hot: Optional[Any] def __repr__(self): return _batch_repr(self) def _batch_repr(batch: MiniBatch) -> str: """Writes a human-readable representation of a batch to a string.""" feats = [] if batch.image is not None: feats.append(f"image ({batch.image.shape})") parts = [f"features: {', '.join(feats)}"] if batch.label is not None: parts.append(f"label: {batch.label}") if batch.multi_label_one_hot is not None: parts.append(f"multi_label_one_hot: {batch.multi_label_one_hot}") return f"<MiniBatch: {', '.join(parts)}>"
dm_nevis-master
dm_nevis/benchmarker/datasets/datasets.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
dm_nevis-master
dm_nevis/benchmarker/datasets/__init__.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dm_nevis.benchmarker.datasets.tasks.""" from absl.testing import absltest from absl.testing import parameterized from dm_nevis.benchmarker.datasets import tasks class TasksTest(parameterized.TestCase): @parameterized.parameters([ dict(task_key=tasks.TaskKey( name="task1", kind=tasks.TaskKind.CLASSIFICATION, metadata=tasks.ClassificationMetadata(num_classes=10))), dict(task_key=tasks.TaskKey( name="task2", kind=tasks.TaskKind.MULTI_LABEL_CLASSIFICATION, metadata=tasks.MultiLabelClassificationMetadata(num_classes=10))), ]) def test_serialization_roundtrip(self, task_key): d = task_key.to_dict() task_key_restored = tasks.TaskKey.from_dict(d) self.assertEqual(task_key, task_key_restored) if __name__ == "__main__": absltest.main()
dm_nevis-master
dm_nevis/benchmarker/datasets/tasks_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dm_nevis.benchmarker.streams.streams.""" from absl.testing import absltest from absl.testing import parameterized from dm_nevis.benchmarker.datasets import streams from dm_nevis.benchmarker.datasets import tasks from dm_nevis.benchmarker.datasets import test_stream class StreamsTest(parameterized.TestCase): def test_filtered_stream(self): stream = streams.FilteredStream( test_stream.TestStream, supported_task_kinds=[tasks.TaskKind.CLASSIFICATION]) self.assertLen(list(stream.events()), 4) stream = streams.FilteredStream( test_stream.TestStream, supported_task_kinds=[tasks.TaskKind.MULTI_LABEL_CLASSIFICATION]) self.assertEmpty(list(stream.events())) if __name__ == '__main__': absltest.main()
dm_nevis-master
dm_nevis/benchmarker/datasets/streams_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dm_nevis.streams.test_stream.""" from absl.testing import absltest from absl.testing import parameterized from dm_nevis.benchmarker.datasets import streams from dm_nevis.benchmarker.datasets import test_stream import tensorflow_datasets as tfds class TestStreamTest(parameterized.TestCase): def test_test_stream(self): stream = test_stream.TestStream() for event in stream.events(): for key in streams.all_dataset_keys(event): dataset = stream.get_dataset_by_key(key) ds = dataset.builder_fn(shuffle=False) examples = list(tfds.as_numpy(ds)) self.assertLen(examples, dataset.num_examples) if __name__ == '__main__': absltest.main()
dm_nevis-master
dm_nevis/benchmarker/datasets/test_stream_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines a stream where all data is constructed at runtime. This dataset has been created for use in unit tests. """ from typing import Iterator from dm_nevis.benchmarker.datasets import datasets from dm_nevis.benchmarker.datasets import streams from dm_nevis.benchmarker.datasets.builders import test_dataset class TestStream: """An stream over in-memory test datasets.""" def __init__(self): self._datasets_by_key = { 'train_0_10': test_dataset.get_dataset(split='train', start=0, end=5), 'test': test_dataset.get_dataset(split='test', start=0, end=5), 'train_10_20': test_dataset.get_dataset(split='train', start=2, end=7), } self._events = [ streams.TrainingEvent('train_0_10', 'train_0_10', 'train_0_10'), streams.PredictionEvent('test'), streams.TrainingEvent('train_10_20', 'train_10_20', 'train_10_20'), streams.PredictionEvent('test'), ] def get_dataset_by_key(self, dataset_key: streams.DatasetKey) -> datasets.Dataset: return self._datasets_by_key[dataset_key] def events(self) -> Iterator[streams.Event]: return iter(self._events)
dm_nevis-master
dm_nevis/benchmarker/datasets/test_stream.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataset builders for COIL100.""" from typing import Optional from dm_nevis.benchmarker.datasets import dataset_builders from dm_nevis.benchmarker.datasets import datasets from dm_nevis.benchmarker.datasets import tasks import numpy as np import tensorflow as tf import tensorflow_datasets as tfds DATASET_NAME = "coil100" TASK_METADATA = tasks.ClassificationMetadata(num_classes=1_00) TASK_KEY = tasks.TaskKey(DATASET_NAME, tasks.TaskKind.CLASSIFICATION, TASK_METADATA) SHUFFLE_BUFFER_SIZE = 10_000 # Angle ranges are between 0 and 71, since each unit corresponds to an increment # of 5 degrees (360/5=72). For instance, 0 means between 0 and 4, 1 between 5 # and 9, etc. # We take frontal views for training (around 0 degrees). # We take side views for dev and dev-test (opposite side), # and use for test all the reamining views. NUM_ANGLE_RANGES = 72 NUM_OBJS = 100 SPLIT_ANGLE_RANGES = {"train": [70, 71, 0, 1, 2], "dev": [16, 17, 18, 19, 20], "dev_test": [50, 51, 52, 53, 54]} def _keep(i: int) -> bool: return (i not in SPLIT_ANGLE_RANGES["train"] and (i not in SPLIT_ANGLE_RANGES["dev"]) and (i not in SPLIT_ANGLE_RANGES["dev_test"])) SPLIT_ANGLE_RANGES["test"] = [i for i in range(NUM_ANGLE_RANGES) if _keep(i)] SPLIT_ANGLE_RANGES["train_and_dev"] = SPLIT_ANGLE_RANGES[ "train"] + SPLIT_ANGLE_RANGES["dev"] def get_dataset(split: str, *, outer_start: Optional[int] = None, outer_end: Optional[int] = None) -> datasets.Dataset: """Get the COIL100 dataset.""" builder = tfds.builder(DATASET_NAME) # Since there are 100 images per pose, we calculate the number of sample for # each split. # TODO: Support use of start and stop indexes. num_samples = NUM_OBJS * len(SPLIT_ANGLE_RANGES[split]) metadata = dataset_builders.TFDSMetadata(num_samples) def builder_fn(shuffle: bool, start: Optional[int] = None, end: Optional[int] = None) -> tf.data.Dataset: # start/end are used to slice a dataset in the stream (done by # the learner), while outer_start/outer_end are used to slice a dataset # while constructing a stream (done by the designer of the stream). builder.download_and_prepare() ds = builder.as_dataset(split="train", shuffle_files=False) split_array = np.zeros((NUM_ANGLE_RANGES,)) # (0, …,0) # Turn the list of angle ranges into a binary vector with 1's indicating # which angle ranges we select for that split. # For instance, there is going to be a 1 in the first position if there are # images with views between [0, 4] degrees. np.put(split_array, SPLIT_ANGLE_RANGES[split], 1) # (0,0, 1, 0, 0, 0, 1..) def _filter_fn(example): angle = example["angle_label"] # integer from 0 to NUM_ANGLE_RANGES - 1 result = tf.gather(tf.convert_to_tensor(split_array), angle) # -> 0 | 1 return tf.cast(result, tf.bool) ds = ds.filter(_filter_fn) # leave the elements with desired angle # Slice if needed. indices = dataset_builders.combine_indices(outer_start, start, outer_end, end) # NOTE: Do not shuffle the data. Dataset needs to be deterministic for this # construction to work. if indices[0] is not None: ds = ds.skip(indices[0]) if indices[1] is not None: ds = ds.take(indices[1] - (indices[0] or 0)) if shuffle: # Note: We entirely rely on the shuffle buffer to randomize the order. ds = ds.shuffle(SHUFFLE_BUFFER_SIZE) def _to_minibatch_fn(data) -> datasets.MiniBatch: return datasets.MiniBatch( image=data["image"], label=data["object_id"], multi_label_one_hot=None, ) return ds.map(_to_minibatch_fn) return datasets.Dataset( builder_fn=builder_fn, task_key=TASK_KEY, num_examples=metadata.num_examples)
dm_nevis-master
dm_nevis/benchmarker/datasets/builders/coil100.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dm_nevis.benchmarker.datasets.builders.test_dataset.""" from absl.testing import absltest from absl.testing import parameterized from dm_nevis.benchmarker.datasets.builders import test_dataset import tensorflow_datasets as tfds class TestDatasetTest(parameterized.TestCase): def test_get_test_dataset(self): with self.subTest('test_split'): dataset = test_dataset.get_dataset(split='test') self.assertEqual(dataset.num_examples, test_dataset.SPLIT_DEFAULTS['test']['num_examples']) ds = dataset.builder_fn(shuffle=True, start=3, end=9) ds = ds.batch(batch_size=2) batches = list(tfds.as_numpy(ds)) self.assertLen(batches, 3) with self.subTest('train_split'): dataset = test_dataset.get_dataset(split='train') ds = dataset.builder_fn(shuffle=False) examples = list(tfds.as_numpy(ds)) self.assertLen(examples, test_dataset.SPLIT_DEFAULTS['train']['num_examples']) with self.subTest('val_sub_split'): dataset = test_dataset.get_dataset(split='val', start=3, end=10) self.assertEqual(dataset.num_examples, 10 - 3) elements = list(tfds.as_numpy(dataset.builder_fn(shuffle=False))) self.assertLen(elements, dataset.num_examples) ds = dataset.builder_fn(shuffle=True, start=1, end=3) examples = list(tfds.as_numpy(ds)) self.assertLen(examples, 2) if __name__ == '__main__': absltest.main()
dm_nevis-master
dm_nevis/benchmarker/datasets/builders/test_dataset_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
dm_nevis-master
dm_nevis/benchmarker/datasets/builders/__init__.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataset builders for DomainNet.""" from typing import List, Optional, Tuple from dm_nevis.benchmarker.datasets import dataset_builders from dm_nevis.benchmarker.datasets import datasets from dm_nevis.benchmarker.datasets import tasks from dm_nevis.benchmarker.datasets.builders import tfds_builder import tensorflow as tf import tensorflow_datasets as tfds DATASET_NAME = 'domainnet' DEFAULT_SHUFFLE_BUFFER_SIZE = 5_000 TASK_METADATA = tasks.ClassificationMetadata(num_classes=345) TRAIN_DOMAINS = ['real', 'painting', 'clipart', 'quickdraw', 'infograph'] TEST_DOMAIN_DATASET = DATASET_NAME + '/sketch' TASK_KEY = tasks.TaskKey(DATASET_NAME, tasks.TaskKind.CLASSIFICATION, TASK_METADATA) def merge_datasets(all_datasets: List[tf.data.Dataset]) -> tf.data.Dataset: assert all_datasets, 'The list of datasets to be merged is empty!' ds = all_datasets[0] for ds_i in all_datasets[1:]: ds = ds.concatenate(ds_i) return ds def get_dataset_from_domains( domain_split_ls: List[Tuple[str, str]]) -> datasets.Dataset: """Gets a dataset given a list of (domain, split) tuples.""" label_key = 'label' to_minibatch_fn = lambda x: _to_minibatch_single_label(x, label_key) num_examples = 0 num_examples_ls = [] builder_ls = [] # Compute the num_examples and collect builders for curr_domain, curr_split in domain_split_ls: domain_dataset = f'{DATASET_NAME}/{curr_domain}' builder = tfds.builder(domain_dataset) builder_ls.append(builder) num_examples_ls.append(builder.info.splits[curr_split].num_examples) num_examples += builder.info.splits[curr_split].num_examples def builder_fn(shuffle: bool, start: Optional[int] = None, end: Optional[int] = None) -> tf.data.Dataset: all_datasets = [] start = 0 if start is None else start end = num_examples if end is None else end for count, (_, curr_split) in enumerate(domain_split_ls): curr_domain_start = sum(num_examples_ls[:count]) curr_domain_end = sum(num_examples_ls[:count + 1]) # if the indices overlap with the current domain if start < curr_domain_end and end > curr_domain_start: local_start = max(start, curr_domain_start) - curr_domain_start local_end = min(end, curr_domain_end) - curr_domain_start indices = dataset_builders.combine_indices(None, local_start, None, local_end) split_with_indices = _slice_str(curr_split, *indices) builder_ls[count].download_and_prepare() all_datasets.append(builder_ls[count].as_dataset( split=split_with_indices, shuffle_files=shuffle)) # concatenate the datasets from different domains ds = merge_datasets(all_datasets) if shuffle: ds = ds.shuffle(DEFAULT_SHUFFLE_BUFFER_SIZE) return ds.map(to_minibatch_fn) return datasets.Dataset( builder_fn=builder_fn, task_key=TASK_KEY, num_examples=num_examples) def get_dataset(split: str) -> datasets.Dataset: """Gets the DomainNet dataset.""" if split == 'dev_test': dataset = tfds_builder.get_dataset(TEST_DOMAIN_DATASET, split='train') return dataset._replace(task_key=TASK_KEY) elif split == 'test': dataset = tfds_builder.get_dataset(TEST_DOMAIN_DATASET, split='test') return dataset._replace(task_key=TASK_KEY) elif split == 'dev': domain_splits = [(domain, 'test') for domain in TRAIN_DOMAINS] return get_dataset_from_domains(domain_splits) elif split == 'train': domain_splits = [(domain, 'train') for domain in TRAIN_DOMAINS] return get_dataset_from_domains(domain_splits) else: train_domain_splits = [(domain, 'train') for domain in TRAIN_DOMAINS] test_domain_splits = [(domain, 'test') for domain in TRAIN_DOMAINS] # Interleave the two (domain, split) lists domain_splits = [] for train_domain_split, test_domain_split in zip(train_domain_splits, test_domain_splits): domain_splits.append(train_domain_split) domain_splits.append(test_domain_split) return get_dataset_from_domains(domain_splits) def _slice_str(split: str, start: Optional[int], end: Optional[int]) -> str: if start is None and end is None: return split return f"{split}[{start or ''}:{'' if end is None else end}]" def _to_minibatch_single_label(data, label_key) -> datasets.MiniBatch: return datasets.MiniBatch( image=data['image'], label=data[label_key], multi_label_one_hot=None, )
dm_nevis-master
dm_nevis/benchmarker/datasets/builders/domainnet.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A test dataset that may be constructed entirely in-memory. The test dataset consists of images. The task is to predict the dominant color (red, green, or blue). """ import functools from typing import Iterator, Optional, Tuple from dm_nevis.benchmarker.datasets import dataset_builders from dm_nevis.benchmarker.datasets import datasets from dm_nevis.benchmarker.datasets import tasks import numpy as np import tensorflow as tf DATASET_NAME = 'test_dataset' DEFAULT_IMAGE_SIZE = 32 DEFAULT_SHUFFLE_BUFFER_SIZE = 10 SPLIT_DEFAULTS = { 'test': { 'noise_level': 64, 'num_examples': 100, 'seed': 0, }, 'train': { 'noise_level': 32, 'num_examples': 1000, 'seed': 1, }, 'val': { 'noise_level': 32, 'num_examples': 100, 'seed': 2, } } def get_dataset( split: str, *, start: Optional[int] = None, end: Optional[int] = None, image_size: int = DEFAULT_IMAGE_SIZE, task_kind: tasks.TaskKind = tasks.TaskKind.CLASSIFICATION ) -> datasets.Dataset: """Gets the test dataset. The task is to classify the color of a flood filled image as Red, Green, or Blue. The images in the dataset have been flood filled to one of these colors, and then perturbed with uniform noise. Args: split: One of ["test", "train", "val"]. start: An optional offset from the beginning of the dataset to start at. end: An optional offset from the beggning of the dataset to end at. image_size: Select the size of the image to be returned. task_kind: The task kind to use. Returns: A dataset containing at most end - start images. """ kwargs = SPLIT_DEFAULTS[split] builder_fn = _make_builder_fn( outer_start=start, outer_end=end, image_size=image_size, task_kind=task_kind, **kwargs, ) return datasets.Dataset( task_key=_task_key(task_kind), builder_fn=builder_fn, num_examples=_compute_num_examples(kwargs['num_examples'], start, end)) def _make_builder_fn( outer_start: Optional[int], outer_end: Optional[int], image_size: int, seed: int, num_examples: int, noise_level: int, task_kind: tasks.TaskKind, ) -> datasets.DatasetBuilderFn: """Constructs a builder function for the test dataset.""" def builder_fn(*, shuffle: bool, start: Optional[int] = None, end: Optional[int] = None) -> tf.data.Dataset: start, end = dataset_builders.combine_indices(outer_start, start, outer_end, end) def gen(): yield from _generate_data( seed, num_examples, image_size, noise_level, ) ds = tf.data.Dataset.from_generator( gen, output_signature=(tf.TensorSpec( shape=(image_size, image_size, 3), dtype=tf.uint8), tf.TensorSpec(shape=(), dtype=tf.int32))) if start is not None: ds = ds.skip(start) if end is not None: ds = ds.take(end - (start or 0)) if shuffle: ds = ds.shuffle(buffer_size=DEFAULT_SHUFFLE_BUFFER_SIZE) ds = ds.map(functools.partial(_to_minibatch, task_kind=task_kind)) return ds return builder_fn def _generate_data(seed: int, num_examples: int, image_size: int, noise_level: int) -> Iterator[Tuple[tf.Tensor, tf.Tensor]]: """Generates data for the dataset. Args: seed: A seed ensures that each run produces deterministic output. num_examples: The number of examples that the generator should produce. image_size: The image size of the resulting data. noise_level: Noise added to the images, to make the task a little more challenging. Yields: A generator over (image, label) tuples. The image is of shape (image_size, image_size, 3) and in the range [0, 255]. Each image is generated by flood filling a single channel (R, G, or B) and the associated label is the channel that was flood filled. Noise in the range (-noise_level, noise_level) is added to the image, to make the classification task a little more challenging. The label is a value from {0, 1, 2} representing the dominant color of the returned image. """ gen = np.random.default_rng(seed=seed) for _ in range(num_examples): color = gen.integers(0, 3) img = np.zeros((image_size, image_size, 3)) img[:, :, color] = 255 if noise_level > 0: img += gen.integers( -noise_level, noise_level, size=(image_size, image_size, 3)) img = img.clip(0, 255) yield tf.constant(img, dtype=tf.uint8), color def _to_minibatch( image: tf.Tensor, label: tf.Tensor, task_kind: tasks.TaskKind, ) -> datasets.MiniBatch: """Create a minibatch from the generated example.""" if task_kind is tasks.TaskKind.CLASSIFICATION: return datasets.MiniBatch( image=image, label=label, multi_label_one_hot=None, ) elif task_kind is tasks.TaskKind.MULTI_LABEL_CLASSIFICATION: label_one_hot = tf.one_hot([label], depth=3)[0] return datasets.MiniBatch( image=image, label=None, multi_label_one_hot=label_one_hot, ) else: raise ValueError(f'Unsupported task kind: {task_kind}') def _compute_num_examples(n: int, start: Optional[int], end: Optional[int]) -> int: """Computes number of examples from known length and optional offsets.""" start = start or 0 end = end or n return min(n, end - start) def _task_key(task_kind: tasks.TaskKind) -> tasks.TaskKey: """Creates a task key given the task kind.""" if task_kind is tasks.TaskKind.MULTI_LABEL_CLASSIFICATION: return tasks.TaskKey( DATASET_NAME, tasks.TaskKind.MULTI_LABEL_CLASSIFICATION, tasks.MultiLabelClassificationMetadata(num_classes=3), ) elif task_kind is tasks.TaskKind.CLASSIFICATION: return tasks.TaskKey( DATASET_NAME, tasks.TaskKind.CLASSIFICATION, tasks.ClassificationMetadata(num_classes=3), ) else: raise ValueError(f'Unsupported task kind: {task_kind}')
dm_nevis-master
dm_nevis/benchmarker/datasets/builders/test_dataset.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataset builders for Small Norb.""" from typing import Optional from dm_nevis.benchmarker.datasets import dataset_builders from dm_nevis.benchmarker.datasets import datasets from dm_nevis.benchmarker.datasets import tasks import numpy as np import tensorflow as tf import tensorflow_datasets as tfds DATASET_NAME = 'smallnorb' SHUFFLE_BUFFER_SIZE = 10_000 TASK_METADATA = tasks.ClassificationMetadata(num_classes=5) TASK_KEY = tasks.TaskKey(DATASET_NAME, tasks.TaskKind.CLASSIFICATION, TASK_METADATA) # pylint:disable=missing-function-docstring def get_dataset(split: str, *, outer_start: Optional[int] = None, outer_end: Optional[int] = None) -> datasets.Dataset: """Small Norb dataset.""" # There are 5 object categories, and each category has 10 object instances. # 5 instances are used for testing, and 5 for training in the original # dataset. We are going to split the original training set into: train, dev # and dev-test. We are going to use images from a particular instance for dev, # and images from another particular instance for dev-test. Images from the # remaining 3 instances are used for the train split. This way we guarantee # that we test for actual generalization. def _to_minibatch_fn(data) -> datasets.MiniBatch: return datasets.MiniBatch( image=data['image'], label=data['label_category'], multi_label_one_hot=None, ) if split == 'test': # We can use original test split. builder_fn, metadata = dataset_builders.tfds_dataset_builder_fn( tfds_name='smallnorb', shuffle_buffer_size=SHUFFLE_BUFFER_SIZE, split=split, start=None, end=None, to_minibatch_fn=_to_minibatch_fn) return datasets.Dataset( builder_fn=builder_fn, task_key=TASK_KEY, num_examples=metadata.num_examples) builder = tfds.builder(DATASET_NAME) builder.download_and_prepare() ds = builder.as_dataset(split='train') instance_ids = [4, 6, 7, 8, 9] # Instances present in original train split ids = dict() ids['dev'] = [instance_ids[0]] ids['dev_test'] = [instance_ids[1]] ids['train'] = instance_ids[2:] ids['train_and_dev'] = ids['train'] + ids['dev'] num_samples = {'dev': 0, 'dev_test': 0, 'train': 0} for el in ds.as_numpy_iterator(): el_id = el['instance'] if el_id in ids['dev']: num_samples['dev'] += 1 elif el_id in ids['dev_test']: num_samples['dev_test'] += 1 elif el_id in ids['train']: num_samples['train'] += 1 else: raise ValueError(f'Unknown instance id {el_id}') num_samples['train_and_dev'] = num_samples['train'] + num_samples['dev'] metadata = dataset_builders.TFDSMetadata(num_samples[split]) def builder_fn_train(shuffle: bool, start: Optional[int] = None, end: Optional[int] = None) -> tf.data.Dataset: # start/end are used to slice a dataset in the stream (done by # the learner), while outer_start/outer_end are used to slice a dataset # while constructing a stream (done by the designer of the stream). builder.download_and_prepare() ds = builder.as_dataset(split='train', shuffle_files=False) split_array = np.zeros((10,)) # (0, …,0) np.put(split_array, ids[split], 1) # (0,0, 1, 0, 0, 0, 1..) def _filter_fn(example): instance_id = example['instance'] result = tf.gather(tf.convert_to_tensor(split_array), instance_id) return tf.cast(result, tf.bool) ds = ds.filter(_filter_fn) # leave the elements with desired instance id # Slice if needed. indices = dataset_builders.combine_indices(outer_start, start, outer_end, end) if indices[0] is not None: ds = ds.skip(indices[0]) if indices[1] is not None: ds = ds.take(indices[1] - (indices[0] or 0)) if shuffle: ds = ds.shuffle(SHUFFLE_BUFFER_SIZE) return ds.map(_to_minibatch_fn) return datasets.Dataset( builder_fn=builder_fn_train, task_key=TASK_KEY, num_examples=metadata.num_examples)
dm_nevis-master
dm_nevis/benchmarker/datasets/builders/smallnorb.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dm_nevis.benchmarker.datasets.builders.tfds_builder.""" from absl.testing import absltest from absl.testing import parameterized from dm_nevis.benchmarker.datasets.builders import tfds_builder import tensorflow_datasets as tfds class TFDSBuilderTest(parameterized.TestCase): # We can include any dataset that has a fixture writer. @parameterized.parameters(tfds_builder.SUPPORTED_DATASETS) def test_build_dataset(self, dataset_name): with tfds.testing.mock_data(num_examples=10): dataset = tfds_builder.get_dataset(dataset_name, split="train") ds = dataset.builder_fn(shuffle=False, end=10) self.assertLen(list(ds), 10) if __name__ == "__main__": absltest.main()
dm_nevis-master
dm_nevis/benchmarker/datasets/builders/tfds_builder_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataset builders for TFDS.""" from typing import Optional from dm_nevis.benchmarker.datasets import dataset_builders from dm_nevis.benchmarker.datasets import datasets from dm_nevis.benchmarker.datasets import tasks import tensorflow as tf import tensorflow_datasets as tfds DEFAULT_SHUFFLE_BUFFER_SIZE = 5_000 SINGLE_LABEL_DATASETS = [ "caltech101", "cifar10", "cifar100", "caltech_birds2011", "dtd", "emnist/balanced", "fashion_mnist", "food101", "imagenet2012", "mnist", "oxford_flowers102", "oxford_iiit_pet", "patch_camelyon", "stanford_dogs", "stl10", "sun397", "svhn_cropped", "smallnorb", "domainnet/sketch", ] MULTI_LABEL_DATASETS = [ "voc/2012", "voc/2007", "celeb_a", # "lfw", # "coco", # Add support for this multi-label dataset. ] SUPPORTED_DATASETS = SINGLE_LABEL_DATASETS + MULTI_LABEL_DATASETS _CELEB_A_ATTRIBUTES = [ "5_o_Clock_Shadow", "Arched_Eyebrows", "Attractive", "Bags_Under_Eyes", "Bald", "Bangs", "Big_Lips", "Big_Nose", "Black_Hair", "Blond_Hair", "Blurry", "Brown_Hair", "Bushy_Eyebrows", "Chubby", "Double_Chin", "Eyeglasses", "Goatee", "Gray_Hair", "Heavy_Makeup", "High_Cheekbones", "Male", "Mouth_Slightly_Open", "Mustache", "Narrow_Eyes", "No_Beard", "Oval_Face", "Pale_Skin", "Pointy_Nose", "Receding_Hairline", "Rosy_Cheeks", "Sideburns", "Smiling", "Straight_Hair", "Wavy_Hair", "Wearing_Earrings", "Wearing_Hat", "Wearing_Lipstick", "Wearing_Necklace", "Wearing_Necktie", "Young", ] def get_single_label_dataset(dataset_name: str, split: str, start: int, end: int) -> datasets.Dataset: """Gets single class tfds dataset.""" dataset_info = tfds.builder(dataset_name).info label_key = "label" if dataset_name == "smallnorb": label_key = "label_category" num_classes = dataset_info.features[label_key].num_classes task_name = dataset_name.translate(str.maketrans(" -/", "___")) task_key = tasks.TaskKey( task_name, tasks.TaskKind.CLASSIFICATION, tasks.ClassificationMetadata(num_classes=num_classes)) builder_fn, metadata = dataset_builders.tfds_dataset_builder_fn( tfds_name=dataset_name, shuffle_buffer_size=DEFAULT_SHUFFLE_BUFFER_SIZE, split=split, start=start, end=end, to_minibatch_fn=lambda x: _to_minibatch_single_label(x, label_key)) return datasets.Dataset( builder_fn=builder_fn, task_key=task_key, num_examples=metadata.num_examples) def _to_minibatch_single_label(data, label_key) -> datasets.MiniBatch: return datasets.MiniBatch( image=data["image"], label=data[label_key], multi_label_one_hot=None, ) def _to_minibatch_multi_label(data, multi_label_key, num_classes) -> datasets.MiniBatch: image = data["image"] multi_label = data[multi_label_key] multi_label_one_hot = tf.reduce_sum( tf.one_hot(multi_label, num_classes), axis=0) return datasets.MiniBatch( image=image, label=None, multi_label_one_hot=multi_label_one_hot, ) def _to_minibatch_celeb_a(data) -> datasets.MiniBatch: image = data["image"] attributes = [] for attr in _CELEB_A_ATTRIBUTES: attributes.append(tf.cast(data["attributes"][attr], tf.float32)) attributes = tf.stack(attributes, axis=0) return datasets.MiniBatch( image=image, label=None, multi_label_one_hot=attributes, ) def get_multi_label_dataset(dataset_name: str, split: str, start: int, end: int) -> datasets.Dataset: """Gets multi label tfds dataset.""" dataset_info = tfds.builder(dataset_name).info task_name = dataset_name.translate(str.maketrans(" -/", "___")) if dataset_name == "celeb_a": num_classes = len(dataset_info.features["attributes"]) to_minibatch_fn = _to_minibatch_celeb_a elif dataset_name == "voc/2012" or dataset_name == "voc/2007": multi_labels_key = "labels" # pylint: disable=g-long-lambda num_classes = dataset_info.features[multi_labels_key].num_classes to_minibatch_fn = lambda x: _to_minibatch_multi_label( x, multi_labels_key, num_classes) else: raise ValueError(f"Unsupported dataset: {dataset_name}") task_key = tasks.TaskKey( task_name, tasks.TaskKind.MULTI_LABEL_CLASSIFICATION, tasks.MultiLabelClassificationMetadata(num_classes=num_classes)) builder_fn, metadata = dataset_builders.tfds_dataset_builder_fn( tfds_name=dataset_name, shuffle_buffer_size=DEFAULT_SHUFFLE_BUFFER_SIZE, split=split, start=start, end=end, to_minibatch_fn=to_minibatch_fn) return datasets.Dataset( builder_fn=builder_fn, task_key=task_key, num_examples=metadata.num_examples) def get_dataset(dataset_name: str, split: str, *, start: Optional[int] = None, end: Optional[int] = None) -> datasets.Dataset: """Gets tensorflow dataset.""" if dataset_name not in SUPPORTED_DATASETS: raise ValueError(f"Unsupported dataset: {dataset_name}") if dataset_name in SINGLE_LABEL_DATASETS: return get_single_label_dataset(dataset_name, split, start, end) elif dataset_name in MULTI_LABEL_DATASETS: return get_multi_label_dataset(dataset_name, split, start, end) else: raise ValueError(f"Unsupported dataset: {dataset_name}")
dm_nevis-master
dm_nevis/benchmarker/datasets/builders/tfds_builder.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
dm_nevis-master
dm_nevis/benchmarker/learners/__init__.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Interface for learners.""" import dataclasses from typing import Any, Callable, Iterator, NamedTuple, Optional, Tuple, Protocol from dm_nevis.benchmarker.datasets import datasets from dm_nevis.benchmarker.datasets import streams LearnerState = Any Checkpoint = Any CheckpointFn = Callable[[Checkpoint], None] @dataclasses.dataclass class ResourceUsage: """Estimated resources used by a learner. All attributes are optional and default to None, since they may be either inappropriate or unavailable depending on the specific implementation details of the learner. Floating point values are used to measure flops since these may overflow integers. Since these are typically estimates, the inherent inprecision may be ignored. Attributes: floating_point_operations: An estimate of the number of floating point operations used, of any precision. Sometimes referred to as FLOPs. We avoid this acronym due to the ambiguity with FLOPS (floating point operations per second). peak_parameter_count: The peak number of parameters used by the learner. peak_parameter_size_bytes: The peak number of bytes used to store the learner's parameters. """ floating_point_operations: Optional[float] = None peak_parameter_count: Optional[int] = None peak_parameter_size_bytes: Optional[int] = None def combine(self, other: 'ResourceUsage') -> 'ResourceUsage': """Combines with other resource usage dataclasses and return a new one.. Args: other: Resources to be combined with `self`. Returns: Accumulated resource usage. If any values are None in the inputs, then the return values will be set to None. """ def add_or_none(x, y): if x is None or y is None: return None return x + y def max_or_none(x, y): if x is None or y is None: return None return max(x, y) return ResourceUsage( floating_point_operations=add_or_none(self.floating_point_operations, other.floating_point_operations), peak_parameter_count=max_or_none(self.peak_parameter_count, other.peak_parameter_count), peak_parameter_size_bytes=max_or_none(self.peak_parameter_size_bytes, other.peak_parameter_size_bytes), ) class Predictions(NamedTuple): """Input batch and resulting learner predictions. TODO: Implement a specific type for the returned output. In all cases, the batch and output are assumed to have a single batch dimension that is identical between the abtch and output attributes. Attributes: batch: The verbatim input batch used to compute the predictions. output: The outputs resulting from running prediction on the batch. """ batch: datasets.MiniBatch output: Any class InitFn(Protocol): def __call__(self) -> LearnerState: """Initializes a learner's state.""" class TrainFn(Protocol): def __call__( self, event: streams.TrainingEvent, state: LearnerState, write_checkpoint: CheckpointFn, *, checkpoint_to_resume: Optional[Checkpoint] = None, ) -> Tuple[LearnerState, ResourceUsage]: """Trains a learner with the given state, and returns updated state.""" class PredictFn(Protocol): def __call__( self, event: streams.PredictionEvent, state: LearnerState, ) -> Iterator[Predictions]: """Computes predictions.""" class Learner(NamedTuple): init: InitFn train: TrainFn predict: PredictFn
dm_nevis-master
dm_nevis/benchmarker/learners/learner_interface.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
dm_nevis-master
dm_nevis/benchmarker/environment/__init__.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines the interface for a checkpointer.""" from typing import Optional, TypeVar, Protocol CheckpointableState = TypeVar("CheckpointableState") class Checkpointer(Protocol[CheckpointableState]): """The interface that checkpoints must satisfy to work with the benchmarker. The checkpointer must support reading and writing checkpointable state. """ def write(self, state: CheckpointableState) -> None: """Writes a checkpoint. Args: state: Arbitrary checkpointable state """ def restore(self) -> Optional[CheckpointableState]: """Restores the most recent checkpointed state. Returns: The most recent checkpoint that was successfully written using write, or None if no checkpoint state is available. """
dm_nevis-master
dm_nevis/benchmarker/environment/checkpointer_interface.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines the interface for a data writer.""" from typing import TypeVar, Protocol MetricsData = TypeVar("MetricsData") class DataWriter(Protocol[MetricsData]): """The interface that checkpoints must satisfy to work with the benchmarker. The checkpointer must support reading and writing checkpointable state. """ def write(self, metrics_data: MetricsData) -> None: """Writes metrics to persistent state.""" def flush(self) -> None: """Flushes the buffer and ensure data is actually written.""" def close(self) -> None: """Closes metrics writer and free whatever was allocated."""
dm_nevis-master
dm_nevis/benchmarker/environment/datawriter_interface.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines the environment which is used to run a benchmark.""" import dataclasses import datetime import time from typing import Callable, NamedTuple, Optional, Tuple from absl import logging import chex from dm_nevis.benchmarker.datasets import streams from dm_nevis.benchmarker.learners import learner_interface from dm_nevis.benchmarker.metrics import metrics_aggregators @chex.dataclass(frozen=True) class EnvironmentState: """Represents the state of the environment. The environment state stores the synchronized model checkpoint and current position in the stream. Attributes: number_of_completed_events: The number of events completed when this state was written. within_training_event_checkpoint: If the learner writes a checkpoint during a train event, then we write an environment checkpoint with this field set to that checkpoint. learner_state: The state of the learner. metrics_state: The accumulated metrics computed by the environment. train_resources_used: The accumulated resource usage during training. """ number_of_completed_events: int within_training_event_checkpoint: Optional[learner_interface.Checkpoint] learner_state: learner_interface.LearnerState metrics_state: metrics_aggregators.State train_resources_used: learner_interface.ResourceUsage CheckpointWriterFn = Callable[[EnvironmentState], None] class RunResult(NamedTuple): results: metrics_aggregators.Results train_resources_used: learner_interface.ResourceUsage final_learner_state: learner_interface.LearnerState def no_op_checkpointer(state: EnvironmentState) -> None: """A checkpointer function that ignores the state.""" del state def run( learner: learner_interface.Learner, stream: streams.Stream, metrics: metrics_aggregators.MetricsAggregator, *, write_checkpoint: CheckpointWriterFn = no_op_checkpointer, checkpoint_to_resume: Optional[EnvironmentState] = None, ) -> RunResult: """Runs the interaction of a learner with a stream and computes metrics. Args: learner: The learner that will be exposed to the datasets in the stream. stream: A stream containing an iterable sequence of events to feed to the learner. To support resuming an environment from a checkpoint, the event sequence returned by the stream, up to the resumed point must be determnistic and identical for future runs. metrics: Defines the metrics aggregator that will be used to compute and publish the metrics resuting from this benchmarker run. write_checkpoint: A callable that stores intermediate environment state to a checkpoint. checkpoint_to_resume: If provided, the environment run is resumed from the given checkpointed state. Returns: The result of the metrics aggregator applied to the accumulated state computed across all prediction tasks, along with the resource usage during the run. """ if not checkpoint_to_resume: state = EnvironmentState( number_of_completed_events=0, within_training_event_checkpoint=None, learner_state=learner.init(), metrics_state=metrics.init(), train_resources_used=learner_interface.ResourceUsage( floating_point_operations=0.0, peak_parameter_count=0, peak_parameter_size_bytes=0)) else: logging.info("Restoring run from checkpoint...") state = checkpoint_to_resume for index_in_stream, event in enumerate(stream.events()): if index_in_stream < state.number_of_completed_events: logging.info("Skipping step %d: %s", index_in_stream, event) continue step_start_time = time.monotonic() logging.info("Step %d: %s", index_in_stream, event) if isinstance(event, streams.TrainingEvent): learner_state, resources = _train(state, event, learner, write_checkpoint) metrics_state = metrics.aggregate_train_event(state.metrics_state, event, resources) state = dataclasses.replace( state, metrics_state=metrics_state, learner_state=learner_state, train_resources_used=state.train_resources_used.combine(resources), ) elif isinstance(event, streams.PredictionEvent): predictions = learner.predict(event, state.learner_state) metrics_state = metrics.aggregate_predict_event(state.metrics_state, event, predictions) state = dataclasses.replace(state, metrics_state=metrics_state) else: raise ValueError(f"Unknown stream task type {type(event)}") state = dataclasses.replace( state, within_training_event_checkpoint=None, number_of_completed_events=index_in_stream + 1, ) write_checkpoint(state) logging.info( "Completed step %d: %s in %s", index_in_stream, event, datetime.timedelta(seconds=time.monotonic() - step_start_time), ) return RunResult( results=metrics.compute_results(state.metrics_state), train_resources_used=state.train_resources_used, final_learner_state=state.learner_state, ) def _train( state: EnvironmentState, event: streams.TrainingEvent, learner: learner_interface.Learner, write_checkpoint: CheckpointWriterFn, ) -> Tuple[learner_interface.LearnerState, learner_interface.ResourceUsage]: """Runs a train dataset.""" def write_train_event_checkpoint(learner_train_checkpoint): write_checkpoint( dataclasses.replace( state, within_training_event_checkpoint=learner_train_checkpoint)) learner_state, resources_used = learner.train( event, state.learner_state, write_checkpoint=write_train_event_checkpoint, checkpoint_to_resume=state.within_training_event_checkpoint) logging.info("Resources used during train event: %s", resources_used) return learner_state, resources_used
dm_nevis-master
dm_nevis/benchmarker/environment/environment.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dm_nevis.benchmarker.environment.environment.""" import copy from typing import Optional from absl.testing import absltest from absl.testing import parameterized from dm_nevis.benchmarker.datasets import streams from dm_nevis.benchmarker.datasets import test_stream from dm_nevis.benchmarker.environment import environment from dm_nevis.benchmarker.learners import learner_interface from dm_nevis.benchmarker.metrics import metrics_aggregators class EnvironmentTest(parameterized.TestCase): def test_run(self): checkpointer = _InMemoryCheckpointer() stream = test_stream.TestStream() metrics = metrics_aggregators.noop_metrics_aggregator() learner = _build_test_learner() environment.run( learner, stream, metrics, write_checkpoint=checkpointer.write) self.assertNotEmpty(checkpointer.checkpoints) train_events = [ event for event in stream.events() if isinstance(event, streams.TrainingEvent) ] for checkpoint in checkpointer.checkpoints: result = environment.run( learner, stream, metrics, checkpoint_to_resume=checkpoint) expected = { 'seen_train_events': train_events, 'values_of_x': [sum(range(20)), sum(range(20))], } self.assertEqual(expected, result.final_learner_state) def _build_test_learner() -> learner_interface.Learner: def init(): return { 'seen_train_events': [], 'values_of_x': [], } def train(event, state, write_checkpoint, *, checkpoint_to_resume=None): if checkpoint_to_resume: step, x, checkpoint_event = checkpoint_to_resume assert checkpoint_event == event else: x = step = 0 for i in range(step, 20): if i % 3 == 0: write_checkpoint((i, x, event)) x += i # Add to the learner state the value of x we computed, along with the # tain event that we used to compute it. In all cases, the value of x # will be the sum from 0 to 20, if checkpointing is working correctly! state = { 'seen_train_events': [*state['seen_train_events'], event], 'values_of_x': [*state['values_of_x'], x], } return state, learner_interface.ResourceUsage() def predict(event, state): del event, state return [] return learner_interface.Learner(init, train, predict) class _InMemoryCheckpointer: """A checkpointer that stores every checkpoint written in a list.""" def __init__(self): self.checkpoints = [] def write(self, ckpt: environment.EnvironmentState) -> None: self.checkpoints.append(copy.deepcopy(ckpt)) def restore(self) -> Optional[environment.EnvironmentState]: if not self.checkpoints: return None return self.checkpoints[-1] def learner_checkpoints(self): return [ckpt.learner_state for ckpt in self.checkpoints] if __name__ == '__main__': absltest.main()
dm_nevis-master
dm_nevis/benchmarker/environment/environment_test.py
"""Utils for creating logger.""" import datetime import os from typing import Optional, Mapping, Any from dm_nevis.benchmarker.environment import tensorboard_writer def generate_tensorboard_log_root() -> str: """Generates log root for tensorboard.""" log_dir = os.environ.get('TENSORBOARD_LOG_DIR', '/tmp/tensorboard') folder_name = datetime.datetime.now().strftime('%Y%m%d-%H%M%S') return os.path.join(log_dir, folder_name) def get_metrics_writer( tensorboard_log_root: str, logger_name: str, index_of_training_event: Optional[int] = None, overrides: Optional[Mapping[str, Any]] = None, ) -> tensorboard_writer.TensorBoardWriter: """Gets metrics writer by name.""" if logger_name == 'benchmarker': return tensorboard_writer.TensorBoardWriter( logdir=os.path.join(tensorboard_log_root, 'benchmark_metrics'), prefix='benchmark_metrics', prefix_fields=['data_split'], step_field='index_of_most_recent_train_event', ) elif logger_name in ['learner_train', 'learner_eval']: metric_prefix = f'train_event_{index_of_training_event}' logdir = os.path.join(tensorboard_log_root, metric_prefix) if overrides is not None: overrides_str = ','.join([f'{k}={v}' for k, v in overrides.items()]) logdir = os.path.join(logdir, overrides_str) logdir = os.path.join(logdir, logger_name.split('_')[1]) return tensorboard_writer.TensorBoardWriter( logdir=logdir, prefix=metric_prefix, ) elif logger_name == 'finetuning': return tensorboard_writer.TensorBoardWriter( logdir=os.path.join(tensorboard_log_root, 'finetuning'), prefix='finetuning', step_field='index_of_train_event', ) else: raise NotImplementedError(f'Unknown logger_name {logger_name}.')
dm_nevis-master
dm_nevis/benchmarker/environment/logger_utils.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A datawriter logging on stdout.""" from typing import Any, Mapping from absl import logging class LoggingWriter: """A datawriter logging on stdout.""" def __init__(self, prefix: str = ""): self.prefix = f"{prefix}: " def write(self, metrics_data: Mapping[str, Any]) -> None: """Writes metrics data on stdout. Args: metrics_data: A mapping of metrics name to metrics value to log. """ message = self.prefix + "\n".join( [f"{k}: {v}" for k, v in metrics_data.items()]) logging.info(message) def flush(self) -> None: """Flushes the buffer and ensure data is actually written.""" logging.flush() def close(self) -> None: """Closes logging writer."""
dm_nevis-master
dm_nevis/benchmarker/environment/logging_writer.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A writer that logs metrics to tensorboard.""" import numbers from typing import Any, Sequence from absl import logging import jax.numpy as jnp import numpy as np import tensorflow as tf try: import torch # pylint: disable=g-import-not-at-top except ModuleNotFoundError: torch = None class TensorBoardWriter: """A writer that logs metrics to tensorboard.""" def __init__( self, logdir: str, prefix: str = "", prefix_fields: Sequence[str] = (), step_field: str = "step", ): """Constructs a writer that logs metrics to tensorboard. Args: logdir: Logging directory used to instantiate `tf.summary.SummaryWriter`. prefix: Harcoded prefix to add to each metric. prefix_fields: A sequence of metric names that will be used as prefix of metric. They appear after the hardcoded prefix. step_field: The name of the metric used as `step` argument to logging with tensorboard. It will be the x-axis on tensorboard dashboard. """ self._prefix = prefix logging.info("Created TensorBoardWriter with logdir=%s", logdir) self._file_writer = tf.summary.create_file_writer(logdir) self._prefix_fields = prefix_fields self._step_field = step_field def write(self, metrics_data: dict[str, Any]) -> None: """Write metrics data on stdout. Args: metrics_data: A mapping of metrics name to metrics value to log. """ # Extract logging step from metrics. if self._step_field not in metrics_data: raise ValueError("metrics_data doesn't contain the field that is" f" used as step, metrics_data={metrics_data}," f" step_field={self._step_field}") step = metrics_data.pop(self._step_field) # Construct prefix for metric. prefix = self._construct_prefix(metrics_data) for metric_name, value in metrics_data.items(): self._log_one_metric(prefix, metric_name, value, step) def _construct_prefix(self, metrics_data: dict[str, Any]) -> str: """Constructs prefix for each metric name.""" prefixes = [self._prefix] if self._prefix else [] for field in self._prefix_fields: val = metrics_data.pop(field, None) if val is not None: prefixes.append(val) prefix = "/".join(prefixes) return prefix def _log_one_metric( self, prefix: str, metric_name: str, value: Any, step: int, ) -> None: """Logs one metric value.""" tf_metric_name = f"{prefix}/{metric_name}" if torch is not None and isinstance(value, torch.Tensor): if torch.numel(value) == 1: value = value.item() else: logging.warning( "%sTrying to log %s with shape %s: %s," " while only scalar is supported.", "*" * 50, type(value), value.shape, value) return if isinstance(value, jnp.ndarray) or isinstance(value, np.ndarray): if value.size == 1: value = value.item() else: logging.warning( "%sTrying to log %s with shape %s: %s," " while only scalar is supported.", "*" * 50, type(value), value.shape, value) return with self._file_writer.as_default(): if isinstance(value, numbers.Number): tf.summary.scalar(tf_metric_name, value, step=step) elif isinstance(value, str): tf.summary.text(tf_metric_name, value, step=step) else: logging.warning( "%sCan't handle metric '%s' which has type %s: %s", "*" * 50 + "\n", metric_name, type(value), value, ) def flush(self) -> None: """Flushes the buffer and ensure data is actually written.""" logging.info("flush tensorboard metrics") self._file_writer.flush() logging.flush() def close(self) -> None: """Closes logging writer.""" logging.info("close tensorboard writer") self._file_writer.close()
dm_nevis-master
dm_nevis/benchmarker/environment/tensorboard_writer.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dm_nevis.streams.example_stream.""" from absl.testing import absltest from dm_nevis.benchmarker.datasets import streams from dm_nevis.streams import example_stream import tensorflow_datasets as tfds class ExampleStreamTest(absltest.TestCase): def test_get_stream(self): with tfds.testing.mock_data(num_examples=1): stream = example_stream.ExampleStream() for e in stream.events(): if isinstance(e, streams.PredictionEvent): dataset = stream.get_dataset_by_key(e.dataset_key) else: dataset = stream.get_dataset_by_key(e.train_and_dev_dataset_key) ds = dataset.builder_fn(shuffle=False) self.assertLen(ds, 1) if __name__ == '__main__': absltest.main()
dm_nevis-master
dm_nevis/streams/example_stream_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dm_nevis.streams.nevis_stream.""" from absl.testing import absltest from absl.testing import parameterized from dm_nevis.streams import nevis_stream class NevisStreamTest(parameterized.TestCase): @parameterized.named_parameters( ("spaces", "some data key", "some_data_key"), ("everything", " /-~", "____"), ) def test_canonicalize_name(self, name, expected): self.assertEqual(nevis_stream._canonicalize_name(name), expected) @parameterized.named_parameters( ("full_stream", nevis_stream.NevisStreamVariant.FULL), ("short_tream", nevis_stream.NevisStreamVariant.SHORT), ) def test_datasets_in_stream(self, stream_variant): n1 = nevis_stream.datasets_in_stream(stream_variant, remove_duplicates=True) n2 = nevis_stream.datasets_in_stream( stream_variant, remove_duplicates=False) self.assertSameElements(n1, n2) if __name__ == "__main__": absltest.main()
dm_nevis-master
dm_nevis/streams/nevis_stream_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dm_nevis.streams.nevis.""" from absl.testing import absltest from absl.testing import parameterized from dm_nevis.benchmarker.datasets import datasets from dm_nevis.streams import nevis import numpy as np import tensorflow as tf class NevisTest(parameterized.TestCase): @parameterized.parameters([ { 'labels': [ [0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1.], [0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0.], [1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0.], [0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0.], [0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0.], [0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0.], [1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1.], [0., 0., 0., 0., 0., 2., 0., 0., 0., 0., 0., 0., 0., 0., 1.], [0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0.], [1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 1.], [0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0.], ], 'expected': [ [0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1.], [0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0.], [1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0.], [0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0.], [0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0.], [0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0.], [1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1.], [0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1.], [0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0.], [1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 1.], [0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 0.], ] }, { 'labels': [ [1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0.], [0., 0., 0., 0., 0., 2., 0., 0., 0., 0., 0., 0., 0., 0., 1.], [1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.], ], 'expected': [ [1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0.], [0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1.], [1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 1.], ] }, ]) def test_patch_biwi_minibatch(self, labels, expected): for label, expected in zip(labels, expected): example = datasets.MiniBatch( multi_label_one_hot=tf.constant(label), image=None, label=None) result = nevis._patch_biwi_minibatch(example) np.testing.assert_allclose(result.multi_label_one_hot.numpy(), np.array(expected)) if __name__ == '__main__': absltest.main()
dm_nevis-master
dm_nevis/streams/nevis_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
dm_nevis-master
dm_nevis/streams/__init__.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Defines the NEVIS main stream. To check that this stream is working as intended, a binary is provided at iterate_nevis_stream.py in this directory. Running this binary will iterate the stream and print the first example in every (successfully fetched) dataset. """ import collections from concurrent import futures import enum from typing import Iterator, List, Mapping, NamedTuple, Optional, Sequence, Tuple, Union from absl import logging from dm_nevis.benchmarker.datasets import datasets from dm_nevis.benchmarker.datasets import streams from dm_nevis.benchmarker.datasets.builders import coil100 from dm_nevis.benchmarker.datasets.builders import domainnet from dm_nevis.benchmarker.datasets.builders import smallnorb from dm_nevis.benchmarker.datasets.builders import tfds_builder from dm_nevis.datasets_storage import dataset_loader from dm_nevis.streams import nevis as nevis_dataset_loader import numpy as np import tensorflow_datasets as tfds from dm_nevis.datasets_storage import paths NEVIS_DATA_DIR = paths.NEVIS_DATA_DIR # Years up to (but not including) 2020 and beyond are used for development and # hyperparameter selecton. Only at the very end we run on the ramining years. DEFAULT_NEVIS_STOP_YEAR = 2020 DEFAULT_NUM_THREADPOOL_WORKERS = 10 class NevisStreamVariant(enum.Enum): """Known task streams.""" FULL = 'FULL' SHORT = 'SHORT' TINY = 'TINY' DEBUG = 'DEBUG' IMAGENET_ONLY = 'IMAGENET_ONLY' MAJOR_DOMAIN_ONLY = 'MAJOR_DOMAIN_ONLY' LARGE_DATASET_ONLY = 'LARGE_DATASET_ONLY' class AblationStreamVariant(enum.Enum): """Known cripple streams.""" REMOVE_FIRST_30_TASKS = 'REMOVE_FIRST_30_TASKS' REMOVE_LAST_30_TASKS = 'REMOVE_LAST_30_TASKS' NO_IMAGENET = 'NO_IMAGENET' RANDOM_DATASET = 'RANDOM_DATASET' class Split(enum.Enum): """Data split names.""" TRAIN = 'train' DEV = 'dev' DEV_TEST = 'dev_test' TEST = 'test' NEVIS_STREAM_PER_YEAR: Mapping[NevisStreamVariant, Mapping[int, Sequence[str]]] = { NevisStreamVariant.DEBUG: { 1999: ('Pascal 2007',), 2000: ('COIL 20',), }, NevisStreamVariant.FULL: { 1989: (), 1992: ('Magellan Venus Volcanoes', 'Aberdeen face database.'), 1998: ('LandSat UCI repo', 'Brodatz', 'Olivetti Face Dataset' ), 2000: ('COIL 20',), 2001: ('COIL 100', 'MPEG-7' ), 2002: (), 2003: (), 2004: ('Butterfly dataset', 'MNIST'), 2005: ('Caltech 101', 'UMIST', 'CMU AMP expression'), 2006: ('Pascal 2005', 'Caltech cars, motorbikes', 'UIUC cars', 'ALOI'), 2007: ('8 Scene Dataset',), 2008: ('15 Scenes',), 2009: ('Pascal 2006', 'Extended YaleB' ), 2010: ('Pascal 2007', 'Graz-02', 'Olivetti Face Dataset', 'PPMI'), 2011: ('Caltech 256', 'ImageNet', 'LFW', 'Oxford Flowers', 'Flicker Material Dataset', 'Oxford Flowers 102', 'Belgium Traffic Sign Dataset', 'German Traffic Sign Recognition Benchmark', 'Brodatz', 'VisTex'), 2012: ('UMD', 'KTH-TIPS', 'UIUC texture', 'KTH-TIPS2-b', 'CVC-MUSCIMA'), 2013: ('IAPRTC-12', 'sketch dataset', 'KTH-TIPS2-a', 'Pascal 2012', 'NORB'), 2014: ('Wikipaintings',), 2015: ('MNIST', 'MIT Scenes', 'SUN 397', 'CIFAR 10'), 2016: ('CUB 200', 'Stanford Cars', 'FGVC Aircraft', 'DTD', 'MS COCO', 'Caltech 101', 'Oxford IIIT Pets', 'Stanford Dogs', 'ANIMAL', 'Caltech 101 Silhouettes', 'Interact', 'VOC Actions', 'SVHN', 'Chars74K'), 2017: ('CelebA', 'LFWA', 'SUN Attribute', 'CIFAR 100' ), 2018: ('TID2008', 'TID2013', 'USPS', 'Semeion', 'MNIST-m', 'Office Caltech', 'PACS', 'Caltech Camera Traps', 'EMNIST Balanced', 'CASIA-HWDB1.1', 'ISBI-ISIC 2017 melanoma classification challenge'), 2019: ('Trancos', 'Mall dataset', 'Fashion MNIST', 'NotMNIST', 'Tiny Imagenet', 'STL10', 'Food 101', 'MNIST-rot', 'AWA2', '15 Scenes', 'Food 101 N', 'COIL 20', 'COIL 100'), 2020: ('ShanghaiTech', 'AnimalWeb', 'BIWI' ), 2021: ('ImageNet', 'Oxford Flowers 102', 'DomainNet-Real', 'Pneumonia Chest X-ray', 'Path MNIST', 'NIH Chest X-ray', 'Tubercolosis', 'covid-19 x-ray', 'PatchCamelyon', 'DDSM', 'Synthetic COVID-19 Chest X-ray Dataset'), }, NevisStreamVariant.SHORT: { 2004: ('COIL 100', 'MNIST' ), 2006: ('Pascal 2005', 'Caltech cars, motorbikes', 'UIUC cars'), 2009: ('Pascal 2006',), 2010: ('Caltech 101',), 2011: ( 'Graz-02', '15 Scenes', 'Pascal 2007', 'LFW', ), 2013: ('sketch dataset', 'Brodatz'), 2014: ('ImageNet', 'Pascal 2012', 'Caltech 256' ), 2018: ( 'CIFAR 100', 'CIFAR 10', 'USPS', 'MNIST', 'MNIST-m', 'Office Caltech', 'PACS', 'ISBI-ISIC 2017 melanoma classification challenge', ), 2019: ('Fashion MNIST',), 2020: ('Stanford Dogs', 'CUB 200', 'Stanford Cars', 'FGVC Aircraft'), }, NevisStreamVariant.TINY: { 2004: ('MNIST',), 2010: ('Caltech 101',), 2014: ('Pascal 2012',), 2018: ( 'CIFAR 100', 'MNIST', 'ISBI-ISIC 2017 melanoma classification challenge', ), 2020: ('CUB 200',), }, NevisStreamVariant.IMAGENET_ONLY: { 2014: ('ImageNet', ), }, NevisStreamVariant.MAJOR_DOMAIN_ONLY: { # Exclude satellite, face, texture, shape, ocr, quality, medical 1989: (), 1992: (), 1998: (), 2000: ('COIL 20',), 2001: ('COIL 100',), 2002: (), 2003: (), 2004: ('Butterfly dataset',), 2005: ('Caltech 101',), 2006: ('Pascal 2005', 'Caltech cars, motorbikes', 'UIUC cars', 'ALOI'), 2007: ('8 Scene Dataset',), 2008: ('15 Scenes',), 2009: ('Pascal 2006',), 2010: ('Pascal 2007', 'Graz-02', 'PPMI'), 2011: ('Caltech 256', 'ImageNet', 'Oxford Flowers', 'Oxford Flowers 102', 'Belgium Traffic Sign Dataset', 'German Traffic Sign Recognition Benchmark'), 2012: (), 2013: ('IAPRTC-12', 'sketch dataset', 'Pascal 2012', 'NORB'), 2014: ('Wikipaintings',), 2015: ('MIT Scenes', 'SUN 397', 'CIFAR 10'), 2016: ('CUB 200', 'Stanford Cars', 'FGVC Aircraft', 'MS COCO', 'Caltech 101', 'Oxford IIIT Pets', 'Stanford Dogs', 'Interact', 'VOC Actions', 'SVHN'), 2017: ('SUN Attribute', 'CIFAR 100'), 2018: ('Office Caltech', 'PACS', 'Caltech Camera Traps'), 2019: ('Trancos', 'Mall dataset', 'Fashion MNIST', 'NotMNIST', 'Tiny Imagenet', 'STL10', 'Food 101', 'MNIST-rot', 'AWA2', '15 Scenes', 'Food 101 N', 'COIL 20', 'COIL 100'), 2020: ('ShanghaiTech', 'AnimalWeb', 'BIWI'), 2021: ('ImageNet', 'Oxford Flowers 102', 'DomainNet-Real', 'Pneumonia Chest X-ray', 'Path MNIST', 'NIH Chest X-ray', 'Tubercolosis', 'covid-19 x-ray', 'PatchCamelyon', 'DDSM', 'Synthetic COVID-19 Chest X-ray Dataset'), }, NevisStreamVariant.LARGE_DATASET_ONLY: { # Exclude datasets with less than 10_000 samples, # all splits combined. 1989: (), 1992: (), 1998: (), 2000: (), 2001: (), 2002: (), 2003: (), 2004: ('MNIST',), 2005: ('Caltech 101',), 2006: ('ALOI',), 2007: (), 2008: (), 2009: ('Extended YaleB',), 2010: ('Pascal 2007',), 2011: ('Caltech 256', 'ImageNet', 'LFW', 'Belgium Traffic Sign Dataset', 'German Traffic Sign Recognition Benchmark'), 2012: (), 2013: ('IAPRTC-12', 'sketch dataset', 'Pascal 2012', 'NORB'), 2014: ('Wikipaintings',), 2015: ('MNIST', 'MIT Scenes', 'SUN 397', 'CIFAR 10'), 2016: ('CUB 200', 'Stanford Cars', 'FGVC Aircraft', 'MS COCO', 'Caltech 101', 'Oxford IIIT Pets', 'Stanford Dogs', 'Caltech 101 Silhouettes', 'VOC Actions', 'SVHN', 'Chars74K'), 2017: ('CelebA', 'LFWA', 'SUN Attribute', 'CIFAR 100'), 2018: ('USPS', 'MNIST-m', 'PACS', 'Caltech Camera Traps', 'EMNIST Balanced', 'CASIA-HWDB1.1'), 2019: ('Trancos', 'Mall dataset', 'Fashion MNIST', 'NotMNIST', 'Tiny Imagenet', 'STL10', 'Food 101', 'MNIST-rot', 'AWA2', '15 Scenes', 'Food 101 N', 'COIL 20', 'COIL 100'), 2020: ('ShanghaiTech', 'AnimalWeb', 'BIWI'), 2021: ('ImageNet', 'Oxford Flowers 102', 'DomainNet-Real', 'Pneumonia Chest X-ray', 'Path MNIST', 'NIH Chest X-ray', 'Tubercolosis', 'covid-19 x-ray', 'PatchCamelyon', 'DDSM', 'Synthetic COVID-19 Chest X-ray Dataset') }, } # List of datasets for parallel runs. These should be automatically derived from # the NevisStream; unfortunately this requires reverse-mapping names and opening # the stream. To keep things simple we use a static list for now; should be # changed when we refactor for the OSS release. # All datasets in the SHORT stream, including held-out years PARALLEL_DATASETS_SHORT = [ 'COIL 100', 'MNIST', 'Pascal 2005', 'Caltech cars, motorbikes', 'UIUC cars', 'Pascal 2006', 'Caltech 101', 'Graz-02', '15 Scenes', 'Pascal 2007', 'LFW', 'sketch dataset', 'Brodatz', 'ImageNet', 'Pascal 2012', 'Caltech 256', 'CIFAR 100', 'CIFAR 10', 'USPS', 'MNIST', 'MNIST-m', 'Office Caltech', 'PACS', 'ISBI-ISIC 2017 melanoma classification challenge', 'Fashion MNIST', 'Stanford Dogs', 'CUB 200', 'Stanford Cars', 'FGVC Aircraft' ] # All datasets in the FULL stream, including held-out years PARALLEL_DATASETS = [ 'Magellan Venus Volcanoes', 'Aberdeen face database.', 'LandSat UCI repo', 'Brodatz', 'Olivetti Face Dataset', 'COIL 20', 'COIL 100', 'MPEG-7', 'Butterfly dataset', 'MNIST', 'Caltech 101', 'UMIST', 'CMU AMP expression', 'Pascal 2005', 'Caltech cars, motorbikes', 'UIUC cars', 'ALOI', '8 Scene Dataset', '15 Scenes', 'Pascal 2006', 'Extended YaleB', 'Pascal 2007', 'Graz-02', 'Olivetti Face Dataset', 'PPMI', 'Caltech 256', 'ImageNet', 'LFW', 'Oxford Flowers', 'Flicker Material Dataset', 'Oxford Flowers 102', 'Belgium Traffic Sign Dataset', 'German Traffic Sign Recognition Benchmark', 'Brodatz', 'VisTex', 'UMD', 'KTH-TIPS', 'UIUC texture', 'KTH-TIPS2-b', 'CVC-MUSCIMA', 'IAPRTC-12', 'sketch dataset', 'KTH-TIPS2-a', 'Pascal 2012', 'NORB', 'Wikipaintings', 'MNIST', 'MIT Scenes', 'SUN 397', 'CIFAR 10', 'CUB 200', 'Stanford Cars', 'FGVC Aircraft', 'DTD', 'MS COCO', 'Caltech 101', 'Oxford IIIT Pets', 'Stanford Dogs', 'ANIMAL', 'Caltech 101 Silhouettes', 'Interact', 'VOC Actions', 'SVHN', 'Chars74K', 'CelebA', 'LFWA', 'SUN Attribute', 'CIFAR 100', 'TID2008', 'TID2013', 'USPS', 'Semeion', 'MNIST-m', 'Office Caltech', 'PACS', 'Caltech Camera Traps', 'EMNIST Balanced', 'CASIA-HWDB1.1', 'ISBI-ISIC 2017 melanoma classification challenge', 'Trancos', 'Mall dataset', 'Fashion MNIST', 'NotMNIST', 'Tiny Imagenet', 'STL10', 'Food 101', 'MNIST-rot', 'AWA2', '15 Scenes', 'Food 101 N', 'COIL 20', 'COIL 100', 'ShanghaiTech', 'AnimalWeb', 'BIWI', 'ImageNet', 'Oxford Flowers 102', 'DomainNet-Real', 'Pneumonia Chest X-ray', 'Path MNIST', 'NIH Chest X-ray', 'Tubercolosis', 'covid-19 x-ray', 'PatchCamelyon', 'DDSM', 'Synthetic COVID-19 Chest X-ray Dataset' ] DEFAULT_THREADPOOL_WORKERS = 30 class NevisSource(NamedTuple): """Represents a dataset implemented in nevis.""" name: str class TFDSSource(NamedTuple): """Represents a dataset implemented in tfds.""" name: str class KeyAndDataset(NamedTuple): key: streams.DatasetKey dataset: datasets.Dataset class DatasetSplits(NamedTuple): train: KeyAndDataset dev: KeyAndDataset train_and_dev: KeyAndDataset dev_test: KeyAndDataset test: KeyAndDataset # pylint: disable=line-too-long # pyformat: disable DATASET_NAME_TO_SOURCE = { '15 Scenes': NevisSource('scenes15'), '8 Scene Dataset': NevisSource('scenes8'), 'Aberdeen face database.': NevisSource('aberdeen'), 'ALOI': NevisSource('aloi'), 'ANIMAL': NevisSource('animal'), 'AnimalWeb': NevisSource('animal_web'), 'AWA2': NevisSource('awa2'), 'Belgium Traffic Sign Dataset': NevisSource('belgium_tsc'), 'BIWI': NevisSource('biwi'), 'Brodatz': NevisSource('brodatz'), 'Butterfly dataset': NevisSource('butterflies'), 'Caltech 101 Silhouettes': NevisSource('silhouettes_28'), 'Caltech 101': TFDSSource('caltech101'), 'Caltech 256': NevisSource('caltech256'), 'Caltech Camera Traps': NevisSource('caltech_camera_traps'), 'Caltech cars, motorbikes': NevisSource('caltech_categories'), 'CASIA-HWDB1.1': NevisSource('casia_hwdb'), 'CelebA': TFDSSource('celeb_a'), 'Chars74K': NevisSource('chars74k'), 'CIFAR 10': TFDSSource('cifar10'), 'CIFAR 100': TFDSSource('cifar100'), 'CMU AMP expression': NevisSource('cmu_amp_expression'), 'COIL 100': TFDSSource('coil100'), 'COIL 20': NevisSource('coil20'), 'covid-19 x-ray': NevisSource('covid_19_xray'), 'CUB 200': TFDSSource('caltech_birds2011'), 'CVC-MUSCIMA': NevisSource('cvc_muscima'), 'DDSM': NevisSource('ddsm'), 'DomainNet-Real': TFDSSource('domainnet'), 'DTD': TFDSSource('dtd'), 'EMNIST Balanced': TFDSSource('emnist/balanced'), 'Extended YaleB': NevisSource('extended_yaleb'), 'Fashion MNIST': TFDSSource('fashion_mnist'), 'FGVC Aircraft': NevisSource('fgvc_aircraft_family'), 'Flicker Material Dataset': NevisSource('flickr_material_database'), 'Food 101 N': NevisSource('food101n'), 'Food 101': NevisSource('food101'), 'German Traffic Sign Recognition Benchmark': NevisSource('german_tsr'), 'Graz-02': NevisSource('ig02'), 'IAPRTC-12': NevisSource('iaprtc12'), 'ImageNet': TFDSSource('imagenet2012'), 'Interact': NevisSource('interact'), 'ISBI-ISIC 2017 melanoma classification challenge': NevisSource('melanoma'), 'KTH-TIPS': NevisSource('kth_tips'), 'KTH-TIPS2-a': NevisSource('kth_tips_2a'), 'KTH-TIPS2-b': NevisSource('kth_tips_2b'), 'LandSat UCI repo': NevisSource('landsat'), 'LFW': NevisSource('lfw'), 'LFWA': NevisSource('lfwa'), 'Magellan Venus Volcanoes': NevisSource('magellan_venus_volcanoes'), 'Mall dataset': NevisSource('mall'), 'MIT Scenes': NevisSource('mit_scenes'), 'MNIST-m': NevisSource('mnist_m'), 'MNIST-rot': NevisSource('mnist_rotation'), 'MNIST': TFDSSource('mnist'), 'MPEG-7': NevisSource('mpeg7'), 'MS COCO': NevisSource('coco_single_label'), 'NIH Chest X-ray': NevisSource('nih_chest_xray'), 'NORB': TFDSSource('smallnorb'), 'NotMNIST': NevisSource('not_mnist'), 'Office 31 amazon': NevisSource('office31_amazon'), 'Office 31 dslr': NevisSource('office31_dslr'), 'Office 31 webcam': NevisSource('office31_webcam'), 'Office Caltech': NevisSource('office_caltech_10'), 'Olivetti Face Dataset': NevisSource('olivetti_face'), 'Oxford Flowers 102': TFDSSource('oxford_flowers102'), 'Oxford Flowers': NevisSource('oxford_flowers_17'), 'Oxford IIIT Pets': TFDSSource('oxford_iiit_pet'), 'PACS': NevisSource('pacs'), 'Pascal 2005': NevisSource('pascal_voc2005'), 'Pascal 2006': NevisSource('pascal_voc2006'), 'Pascal 2007': TFDSSource('voc/2007'), 'Pascal 2012': TFDSSource('voc/2012'), 'PatchCamelyon': TFDSSource('patch_camelyon'), 'Path MNIST': NevisSource('path_mnist'), 'Pneumonia Chest X-ray': NevisSource('pneumonia_chest_xray'), 'PPMI': NevisSource('ppmi'), 'Semeion': NevisSource('semeion'), 'ShanghaiTech': NevisSource('shanghai_tech'), 'sketch dataset': NevisSource('sketch'), 'Stanford Cars': NevisSource('stanford_cars'), 'Stanford Dogs': TFDSSource('stanford_dogs'), 'STL10': TFDSSource('stl10'), 'SUN 397': TFDSSource('sun397'), 'SUN Attribute': NevisSource('sun_attributes'), 'SVHN': TFDSSource('svhn_cropped'), 'Synthetic COVID-19 Chest X-ray Dataset': NevisSource('synthetic_covid19_xray'), 'TID2008': NevisSource('tid2008'), 'TID2013': NevisSource('tid2013'), 'Tiny Imagenet': NevisSource('tiny_imagenet'), 'Trancos': NevisSource('trancos'), 'Tubercolosis': NevisSource('tubercolosis'), 'UIUC cars': NevisSource('uiuc_cars'), 'UIUC texture': NevisSource('uiuc_texture'), 'UMD': NevisSource('umd'), 'UMIST': NevisSource('umist'), 'USPS': NevisSource('usps'), 'VisTex': NevisSource('vistex'), 'VOC Actions': NevisSource('voc_actions'), 'Wikipaintings': NevisSource('wiki_paintings_style'), } # pyformat: enable # pylint: enable=line-too-long class NevisStream: """The NEVIS benchmark stream. The stream adds a train event for each instance of the train data in the stream. Additionally, a predict event is added containing the test dataset after every instance of a train dataset. Once the stream is complete, a further predict event is added for every seen train event. This makes it possible to compare the performance on tasks from train time to the end of the stream. """ def __init__( self, stream_variant: NevisStreamVariant = NevisStreamVariant.FULL, stop_year: int = DEFAULT_NEVIS_STOP_YEAR, *, predict_event_splits: Sequence[Split] = (Split.DEV_TEST,), shuffle_seed: int = 1, shuffle_within_year: bool = False, shuffle_datasets_order: bool = False, ): """Instantiates a NEVIS task stream. Args: stream_variant: Which of the streams to use (see `NevisStreamVariant`). stop_year: The stream will only include tasks before the given year. predict_event_splits: Sequence of splits to use for prediction. shuffle_seed: An integer denoting a seed for shuffling logic when `shuffle_within_year` or `shuffle_datasets_order` are ative. shuffle_within_year: Whether to shuffle the order of datasets within a year. shuffle_datasets_order: Whether to shuffle the order of datasets randomly across years. """ logging.info('Reading NEVIS stream from NEVIS_STREAM_PER_YEAR.') self._events, self._datasets_by_key = _get_events_and_lookup( NEVIS_STREAM_PER_YEAR[stream_variant], stop_year, predict_event_splits=predict_event_splits, shuffle_seed=shuffle_seed, shuffle_within_year=shuffle_within_year, shuffle_datasets_order=shuffle_datasets_order) def get_dataset_by_key(self, dataset_key: streams.DatasetKey) -> datasets.Dataset: return self._datasets_by_key[dataset_key] def events(self) -> Iterator[streams.Event]: return iter(self._events) class IndividualDatasetStream: """A train and predict event for an individual, or a pair of datasets.""" def __init__( self, dataset_name: str, second_dataset_name: Optional[str] = None, predict_event_splits: Sequence[Split] = (Split.DEV_TEST,), ): """A stream with a train and predict event for an individual dataset. Args: dataset_name: One of the dataset names from `DATASET_NAME_TO_SOURCE`. second_dataset_name: Optional second dataset in the stream. If it is either None or equal to the first dataset, it will not be added. predict_event_splits: Sequence of splits to use for prediction. """ dataset_split = _get_splits_for_dataset_name(dataset_name) if dataset_split is None: logging.warning('Skipping `%s`', dataset_name) self._events = [] self._datasets_by_key = {} else: self._events = [ streams.TrainingEvent( train_dataset_key=dataset_split.train.key, dev_dataset_key=dataset_split.dev.key, train_and_dev_dataset_key=dataset_split.train_and_dev.key), ] for split in predict_event_splits: self._events.append( streams.PredictionEvent(split_to_key(split, dataset_split))) self._datasets_by_key = { dataset_split.train.key: dataset_split.train.dataset, dataset_split.dev.key: dataset_split.dev.dataset, dataset_split.train_and_dev.key: dataset_split.train_and_dev.dataset, dataset_split.test.key: dataset_split.test.dataset, dataset_split.dev_test.key: dataset_split.dev_test.dataset, } if second_dataset_name is None: return dataset_split = _get_splits_for_dataset_name(second_dataset_name) if dataset_split is None: raise ValueError('Could not find second dataset `%s`' % second_dataset_name) else: self._events.append( streams.TrainingEvent( train_dataset_key=dataset_split.train.key, dev_dataset_key=dataset_split.dev.key, train_and_dev_dataset_key=dataset_split.train_and_dev.key)) for split in predict_event_splits: self._events.append( streams.PredictionEvent(split_to_key(split, dataset_split))) self._datasets_by_key.update({ dataset_split.train.key: dataset_split.train.dataset, dataset_split.dev.key: dataset_split.dev.dataset, dataset_split.train_and_dev.key: dataset_split.train_and_dev.dataset, dataset_split.test.key: dataset_split.test.dataset, dataset_split.dev_test.key: dataset_split.dev_test.dataset, }) def get_dataset_by_key(self, dataset_key: streams.DatasetKey) -> datasets.Dataset: return self._datasets_by_key[dataset_key] def events(self) -> Iterator[streams.Event]: return iter(self._events) class AblationStream: """The NEVIS benchmark ablation stream.""" def __init__(self, stream_variant: AblationStreamVariant, meta_train_stop_year: int = DEFAULT_NEVIS_STOP_YEAR, stop_year: int = DEFAULT_NEVIS_STOP_YEAR + 2, *, predict_event_splits: Sequence[Split] = (Split.DEV_TEST,), **kwargs): """Instantiates a NEVIS ablation stream.""" logging.info('Reading NEVIS ablation stream.') assert stop_year > meta_train_stop_year, ('Full stream stop year needs to ' 'be larger than meta_train stop ' 'year') self._meta_train_stop_year = meta_train_stop_year self._stop_year = stop_year datasets_by_year = NEVIS_STREAM_PER_YEAR[NevisStreamVariant.FULL] if stream_variant is AblationStreamVariant.REMOVE_FIRST_30_TASKS: filtered_datasets_by_year = self._remove_k_datasets_from_stream( datasets_by_year=datasets_by_year, k=30) elif stream_variant is AblationStreamVariant.REMOVE_LAST_30_TASKS: filtered_datasets_by_year = self._remove_k_datasets_from_stream( datasets_by_year=datasets_by_year, k=30, reverse=True) elif stream_variant is AblationStreamVariant.NO_IMAGENET: filtered_datasets_by_year = remove_imagenet_from_stream( datasets_by_year=datasets_by_year, stop_year=self._meta_train_stop_year) elif stream_variant is AblationStreamVariant.RANDOM_DATASET: assert 'num_random_datasets' in kwargs, ('num_random_dataset needed for ' 'defining random dataset stream') num_random_datasets = kwargs['num_random_datasets'] random_seed = kwargs.get('random_seed', 0) filtered_datasets_by_year = self._get_random_dataset_from_stream( datasets_by_year=datasets_by_year, num_random_datasets=num_random_datasets, random_seed=random_seed) else: raise ValueError('Ablation stream variant not defined') self._events, self._datasets_by_key = _get_events_and_lookup( filtered_datasets_by_year, stop_year, predict_event_splits=predict_event_splits) def get_dataset_by_key(self, dataset_key: streams.DatasetKey) -> datasets.Dataset: return self._datasets_by_key[dataset_key] def events(self) -> Iterator[streams.Event]: return iter(self._events) def _get_random_dataset_from_stream( self, datasets_by_year: Mapping[int, Sequence[str]], num_random_datasets: int, random_seed: int) -> Mapping[int, Sequence[str]]: """Randomly picks datasets from a stream.""" rng = np.random.default_rng(random_seed) train_stream_tasks = [] test_stream_tasks = [] for year, dataset_names_by_year in datasets_by_year.items(): if year >= self._meta_train_stop_year: test_stream_tasks += [ (year, dataset_name) for dataset_name in dataset_names_by_year ] else: train_stream_tasks += [ (year, dataset_name) for dataset_name in dataset_names_by_year ] assert num_random_datasets > len( test_stream_tasks), 'Need at least one dataset for train stream.' # Only shuffle tasks in the traininig stream rng.shuffle(train_stream_tasks) random_stream_tasks = test_stream_tasks + train_stream_tasks random_stream_tasks = random_stream_tasks[:num_random_datasets] result_datasets_by_year = collections.defaultdict(list) for year, dataset_names_by_year in datasets_by_year.items(): # Retain datasets in the random stream and follow the within-year order. for dataset_name in dataset_names_by_year: if (year, dataset_name) in random_stream_tasks: result_datasets_by_year[year].append(dataset_name) filtered_datasets_by_year = {} for year, dataset_names_by_year in result_datasets_by_year.items(): filtered_datasets_by_year[year] = tuple( dataset for dataset in dataset_names_by_year) return filtered_datasets_by_year def _remove_k_datasets_from_stream( self, datasets_by_year: Mapping[int, Sequence[str]], k: int, reverse=False) -> Mapping[int, Sequence[str]]: """Removes k tasks from stream. Args: datasets_by_year: A stream of datasets by year. k: number of tasks to remove from the stream. reverse: If reverse=False, remove the first k datasets from stream. remove the last k datasets if reverse is set to True. Returns: A stream of datasets with k datasets removed. """ filtered_datasets_by_year = {} dataset_index = 0 for year, dataset_names_by_year in sorted( datasets_by_year.items(), reverse=reverse): if year >= self._meta_train_stop_year or dataset_index >= k: filtered_datasets_by_year[year] = dataset_names_by_year else: num_skipped_dataset = min(len(dataset_names_by_year), k - dataset_index) task_list = dataset_names_by_year[num_skipped_dataset:] dataset_index += len(dataset_names_by_year) if task_list: filtered_datasets_by_year[year] = task_list return filtered_datasets_by_year def remove_imagenet_from_stream( datasets_by_year: Mapping[int, Sequence[str]], stop_year: int = DEFAULT_NEVIS_STOP_YEAR) -> Mapping[int, Sequence[str]]: """Removes ImageNet from stream.""" filtered_datasets_by_year = {} for year, dataset_names_by_year in datasets_by_year.items(): if year >= stop_year: filtered_datasets_by_year[year] = dataset_names_by_year else: filtered_datasets_by_year[year] = tuple( dataset_name for dataset_name in dataset_names_by_year if dataset_name != 'ImageNet') return filtered_datasets_by_year def datasets_in_stream( stream_variant: NevisStreamVariant = NevisStreamVariant.FULL, stop_year: int = DEFAULT_NEVIS_STOP_YEAR, remove_duplicates: bool = True, check_availability: bool = False, ) -> Sequence[str]: """Returns the list of datasets in the stream. Args: stream_variant: Which of the streams to use (see `NevisStreamVariant`). stop_year: Only include datasets before the given year. remove_duplicates: Remove duplicate datasets or not. check_availability: Only include datasets that are available. Returns: A list or dataset names. """ dataset_names = [] for year, datasets_in_year in NEVIS_STREAM_PER_YEAR[stream_variant].items(): if year >= stop_year: break dataset_names.extend(datasets_in_year) if remove_duplicates: # Remove duplicates while preserving order dataset_names = list(dict.fromkeys(dataset_names)) if check_availability: # Filter out datasets for which we can't load split information. with futures.ThreadPoolExecutor(max_workers=10) as executor: # pylint: disable=g-long-lambda dataset_names = executor.map( lambda name: name if _get_splits_for_dataset_name(name) else None, dataset_names) dataset_names = list(filter(None, dataset_names)) return dataset_names def _filter_to_datasets_that_are_available( dataset_names: List[str]) -> List[str]: """Returns datasets with unavailable datasets filtered.""" def dataset_name_or_none(dataset_name): if _get_splits_for_dataset_name(dataset_name,) is not None: return dataset_name return None # This operation is slow, so we use a thread pool to parallelize the IO. with futures.ThreadPoolExecutor( max_workers=DEFAULT_NUM_THREADPOOL_WORKERS) as pool: dataset_names = pool.map(dataset_name_or_none, dataset_names) return [name for name in dataset_names if name is not None] def split_to_key(split: Split, dataset_split: DatasetSplits) -> streams.DatasetKey: if split is Split.DEV: return dataset_split.dev.key elif split is Split.DEV_TEST: return dataset_split.dev_test.key elif split is Split.TEST: return dataset_split.test.key else: raise ValueError(f'Unsupported split: {split}') def _get_events_and_lookup( datasets_by_year: Mapping[int, Sequence[str]], stop_year: int, *, predict_event_splits: Sequence[Split] = (Split.DEV_TEST,), shuffle_seed: int = 1, shuffle_within_year: bool = False, shuffle_datasets_order: bool = False, ) -> Tuple[Sequence[streams.Event], Mapping[streams.DatasetKey, datasets.Dataset]]: """Constructs a sequence of events and a dataset lookup.""" events = [] lookup = {} datasets_by_key = {} dataset_names = set() for dataset_names_by_year in datasets_by_year.values(): dataset_names.update(dataset_names_by_year) lookup = _build_lookup(sorted(dataset_names)) rng = np.random.default_rng(shuffle_seed) iterable_datasets_by_year = sorted(datasets_by_year.items()) if shuffle_datasets_order: rng.shuffle(iterable_datasets_by_year) for year, dataset_names in iterable_datasets_by_year: if year >= stop_year: break if shuffle_within_year: dataset_names = list(dataset_names) rng.shuffle(dataset_names) for dataset_name in dataset_names: result = lookup[dataset_name] if result is None: logging.warning('Skipping for %d: `%s`', year, dataset_name) continue train_event = streams.TrainingEvent( train_dataset_key=result.train.key, dev_dataset_key=result.dev.key, train_and_dev_dataset_key=result.train_and_dev.key) events.append(train_event) for split in predict_event_splits: events.append(streams.PredictionEvent(split_to_key(split, result))) datasets_by_key[result.train.key] = result.train.dataset datasets_by_key[result.test.key] = result.test.dataset datasets_by_key[result.dev.key] = result.dev.dataset datasets_by_key[result.dev_test.key] = result.dev_test.dataset datasets_by_key[result.train_and_dev.key] = result.train_and_dev.dataset total_available_datasets = sum(1 for x in lookup.values() if x is not None) logging.info('Total available datasets: %d/%d', total_available_datasets, len(lookup.keys())) return events, datasets_by_key def _get_splits_for_dataset_name(dataset_name: str) -> Optional[DatasetSplits]: """Gets train and test datasets for a dataset by name.""" if dataset_name not in DATASET_NAME_TO_SOURCE: raise ValueError(f'Unknown source for dataset named: `{dataset_name}`') source = DATASET_NAME_TO_SOURCE.get(dataset_name) if source is None: logging.warning('Source not yet available for `%s`', dataset_name) return None try: result = _get_splits_for_source(source) except dataset_loader.DatasetNotReadyError: logging.warning('Dataset found but not yet ready: %s', dataset_name) return None if result is None: logging.warning('Dataset found but not yet available: `%s`', dataset_name) return None return result def _get_splits_for_source( source: Union[NevisSource, TFDSSource]) -> DatasetSplits: """Constructs the keys and datasets for the given source.""" if isinstance(source, NevisSource): return _dataset_splits_for_nevis(source) elif isinstance(source, TFDSSource): return _dataset_splits_for_tfds(source) raise ValueError(f'Unknown source type: {type(source)}') _TFDS_DATASETS_TRAIN_TEST_DATASETS = [ 'mnist', 'cifar10', 'cifar100', 'caltech101', 'caltech_birds2011', 'emnist/balanced', 'fashion_mnist', 'oxford_iiit_pet', 'stanford_dogs', 'stl10', 'svhn_cropped', ] _TFDS_DATASETS_TRAIN_VALIDATION_TEST_DATASETS = [ 'dtd', 'oxford_flowers102', 'voc/2007', 'patch_camelyon', 'sun397', 'celeb_a', ] def _dataset_splits_for_tfds(source: TFDSSource) -> DatasetSplits: """Constructs key and dataset for tfds dataset.""" dataset_name = source.name dataset_key_prefix = _canonicalize_name(dataset_name) test_key = f'{dataset_key_prefix}_test' dev_test_key = f'{dataset_key_prefix}_dev_test' train_key = f'{dataset_key_prefix}_train' train_and_dev_key = f'{dataset_key_prefix}_train_and_dev' dev_key = f'{dataset_key_prefix}_dev' dataset_info = tfds.builder(dataset_name).info if dataset_name in _TFDS_DATASETS_TRAIN_TEST_DATASETS: train_fraction = 0.7 dev_fraction = 0.15 num_examples = dataset_info.splits['train'].num_examples num_train_examples = int(num_examples * train_fraction) num_dev_examples = int(num_examples * dev_fraction) train_dataset = tfds_builder.get_dataset( dataset_name, split='train', end=num_train_examples) dev_dataset = tfds_builder.get_dataset( dataset_name, split='train', start=num_train_examples, end=num_train_examples + num_dev_examples) train_and_dev_dataset = tfds_builder.get_dataset( dataset_name, split='train', end=num_train_examples + num_dev_examples) dev_test_dataset = tfds_builder.get_dataset( dataset_name, split='train', start=num_train_examples + num_dev_examples) test_dataset = tfds_builder.get_dataset(dataset_name, split='test') elif dataset_name in _TFDS_DATASETS_TRAIN_VALIDATION_TEST_DATASETS: train_fraction = 0.8 dev_fraction = 0.2 num_examples = dataset_info.splits['train'].num_examples num_train_examples = int(num_examples * train_fraction) train_dataset = tfds_builder.get_dataset( dataset_name, split='train', end=num_train_examples) dev_dataset = tfds_builder.get_dataset( dataset_name, split='train', start=num_train_examples) train_and_dev_dataset = tfds_builder.get_dataset( dataset_name, split='train') dev_test_dataset = tfds_builder.get_dataset( dataset_name, split='validation') test_dataset = tfds_builder.get_dataset(dataset_name, split='test') elif dataset_name == 'coil100': train_dataset = coil100.get_dataset(split='train') dev_dataset = coil100.get_dataset(split='dev') dev_test_dataset = coil100.get_dataset(split='dev_test') test_dataset = coil100.get_dataset(split='test') train_and_dev_dataset = coil100.get_dataset(split='train_and_dev') elif dataset_name == 'domainnet': train_dataset = domainnet.get_dataset(split='train') dev_dataset = domainnet.get_dataset(split='dev') dev_test_dataset = domainnet.get_dataset(split='dev_test') test_dataset = domainnet.get_dataset(split='test') train_and_dev_dataset = domainnet.get_dataset(split='train_and_dev') elif dataset_name == 'smallnorb': train_dataset = smallnorb.get_dataset(split='train') dev_dataset = smallnorb.get_dataset(split='dev') dev_test_dataset = smallnorb.get_dataset(split='dev_test') test_dataset = smallnorb.get_dataset(split='test') train_and_dev_dataset = smallnorb.get_dataset(split='train_and_dev') elif dataset_name == 'imagenet2012': train_fraction = 0.9 dev_fraction = 0.05 num_examples = dataset_info.splits['train'].num_examples num_train_examples = int(num_examples * train_fraction) num_dev_examples = int(num_examples * dev_fraction) # 64_058 images train_dataset = tfds_builder.get_dataset( dataset_name, split='train', end=num_train_examples) dev_dataset = tfds_builder.get_dataset( dataset_name, split='train', start=num_train_examples, end=num_train_examples + num_dev_examples) train_and_dev_dataset = tfds_builder.get_dataset( dataset_name, split='train', end=num_train_examples + num_dev_examples) dev_test_dataset = tfds_builder.get_dataset( dataset_name, split='train', start=num_train_examples + num_dev_examples) # Use provided validation split for actual testing. test_dataset = tfds_builder.get_dataset(dataset_name, split='validation') elif dataset_name == 'voc/2012': train_fraction = 0.8 dev_test_fraction = 0.5 num_examples = dataset_info.splits['train'].num_examples num_train_examples = int(num_examples * train_fraction) # 4_574 images num_val_examples = dataset_info.splits['validation'].num_examples num_dev_test_examples = int(num_val_examples * dev_test_fraction) # 2_911 images train_dataset = tfds_builder.get_dataset( dataset_name, split='train', end=num_train_examples) dev_dataset = tfds_builder.get_dataset( dataset_name, split='train', start=num_train_examples) train_and_dev_dataset = tfds_builder.get_dataset( dataset_name, split='train') dev_test_dataset = tfds_builder.get_dataset( dataset_name, split='validation', end=num_dev_test_examples) # Use provided validation split for actual testing. test_dataset = tfds_builder.get_dataset( dataset_name, split='validation', start=num_dev_test_examples) else: raise NotImplementedError(f'TFDS dataset {dataset_name} not available') return DatasetSplits( train=KeyAndDataset(train_key, train_dataset), dev=KeyAndDataset(dev_key, dev_dataset), train_and_dev=KeyAndDataset(train_and_dev_key, train_and_dev_dataset), dev_test=KeyAndDataset(dev_test_key, dev_test_dataset), test=KeyAndDataset(test_key, test_dataset), ) def _dataset_splits_for_nevis(source: NevisSource) -> DatasetSplits: """Constructs key and dataset for nevis dataset.""" dataset_key_prefix = _canonicalize_name(source.name) train_key = f'{dataset_key_prefix}_train' test_key = f'{dataset_key_prefix}_test' dev_test_key = f'{dataset_key_prefix}_dev_test' train_and_dev_key = f'{dataset_key_prefix}_train_and_dev' dev_key = f'{dataset_key_prefix}_dev' train_dataset = nevis_dataset_loader.get_dataset( source.name, 'train', root_dir=NEVIS_DATA_DIR) dev_test_dataset = nevis_dataset_loader.get_dataset( source.name, 'dev-test', root_dir=NEVIS_DATA_DIR) test_dataset = nevis_dataset_loader.get_dataset( source.name, 'test', root_dir=NEVIS_DATA_DIR) dev_dataset = nevis_dataset_loader.get_dataset( source.name, 'dev', root_dir=NEVIS_DATA_DIR) train_and_dev_dataset = nevis_dataset_loader.get_dataset( source.name, 'train_and_dev', root_dir=NEVIS_DATA_DIR) return DatasetSplits( train=KeyAndDataset(train_key, train_dataset), dev=KeyAndDataset(dev_key, dev_dataset), train_and_dev=KeyAndDataset(train_and_dev_key, train_and_dev_dataset), dev_test=KeyAndDataset(dev_test_key, dev_test_dataset), test=KeyAndDataset(test_key, test_dataset), ) def _build_lookup( dataset_names: Sequence[str]) -> Mapping[str, Optional[DatasetSplits]]: """Creates a lookup for given dataset names.""" with futures.ThreadPoolExecutor( max_workers=DEFAULT_THREADPOOL_WORKERS) as executor: result = list(executor.map(_get_splits_for_dataset_name, dataset_names)) return dict(zip(dataset_names, result)) def _canonicalize_name(s: str) -> str: """Translates special characters in datasets names to underscores.""" return s.translate(str.maketrans(' -/~', '____'))
dm_nevis-master
dm_nevis/streams/nevis_stream.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Builders for Nevis datasets.""" import dataclasses import os from typing import Callable, Optional from absl import logging from dm_nevis.benchmarker.datasets import dataset_builders from dm_nevis.benchmarker.datasets import datasets from dm_nevis.benchmarker.datasets import tasks from dm_nevis.datasets_storage import dataset_loader from dm_nevis.datasets_storage import encoding import tensorflow as tf _MULTI_LABEL_DATASETS = [ "sun_attributes", "voc_actions", "pascal_voc2007", "iaprtc12", "nih_chest_xray", "awa2", "biwi", ] def _nevis_builder_fn( name: str, split: str, version: str, start: Optional[int], end: Optional[int], to_minibatch_fn: Callable[..., datasets.MiniBatch], path: Optional[str] = None, ) -> datasets.DatasetBuilderFn: """Builds a builder_fn for nevis datasets.""" outer_start, outer_end = start, end del start, end def builder_fn(shuffle: bool, start: Optional[int] = None, end: Optional[int] = None) -> tf.data.Dataset: # Combine inner and outer interval boundaries start, end = dataset_builders.combine_indices(outer_start, start, outer_end, end) if path: dataset = dataset_loader.load_dataset_from_path(path, split) else: dataset = dataset_loader.load_dataset(name, split, version) ds = dataset.builder_fn(shuffle=shuffle, start=start, end=end) return ds.map( to_minibatch_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) return builder_fn def get_dataset(dataset: str, split: str, *, root_dir: Optional[str] = None, version: str = "stable", start: Optional[int] = None, end: Optional[int] = None) -> datasets.Dataset: """Get a Nevis dataset. Args: dataset: The name of the dataset to load. split: The name of the split to load. root_dir: If provided, loads data from this root directory, instead of from the default paths. version: If no root_dir is provided, load the version specified by this name. start: Offset from the start of the dataset to load. end: Offset from the end of the dataset. Returns: A dataset in the form of a datasets.Dataset. """ # TODO: Consider only supporting loading by path. path = os.path.join(root_dir, dataset) if root_dir else None if path: metadata = dataset_loader.get_metadata_from_path(path) else: metadata = dataset_loader.get_metadata(dataset, version=version) available_splits = metadata.additional_metadata["splits"] num_classes = metadata.num_classes if split not in available_splits: raise ValueError(f"Requested nevis dataset `{dataset}`, split `{split}` " f"but available splits are {available_splits}") max_end = metadata.additional_metadata["num_data_points_per_split"][split] num_examples = (end or max_end) - (start or 0) if dataset in _MULTI_LABEL_DATASETS: task_metadata = tasks.MultiLabelClassificationMetadata( num_classes=num_classes) task_key = tasks.TaskKey(dataset, tasks.TaskKind.MULTI_LABEL_CLASSIFICATION, task_metadata) def to_minibatch(data) -> datasets.MiniBatch: multi_label_one_hot = tf.reduce_sum( tf.one_hot(data["multi_label"], num_classes), axis=0) return datasets.MiniBatch( image=data[encoding.DEFAULT_IMAGE_FEATURE_NAME], label=None, multi_label_one_hot=multi_label_one_hot, ) else: task_metadata = tasks.ClassificationMetadata(num_classes=num_classes) task_key = tasks.TaskKey(dataset, tasks.TaskKind.CLASSIFICATION, task_metadata) def to_minibatch(data) -> datasets.MiniBatch: return datasets.MiniBatch( image=data[encoding.DEFAULT_IMAGE_FEATURE_NAME], label=data[encoding.DEFAULT_LABEL_FEATURE_NAME], multi_label_one_hot=None, ) # TODO: Remove this workaround. if dataset == "biwi": logging.warning("Applying patch to BIWI labels") patched_to_minibatch = lambda x: _patch_biwi_minibatch(to_minibatch(x)) else: patched_to_minibatch = to_minibatch builder_fn = _nevis_builder_fn( name=dataset, split=split, version=version, start=start, end=end, to_minibatch_fn=patched_to_minibatch, path=path) return datasets.Dataset( builder_fn=builder_fn, task_key=task_key, num_examples=num_examples) @tf.function def _patch_biwi_minibatch(batch: datasets.MiniBatch) -> datasets.MiniBatch: """Fix an off-by-one-error in BIWI. TODO: Fix this in the underlying data. Due to a boundary error, angles that should have been [0,0,0,0,1] were assigned the value [0,0,0,0,0], and the 1 was added to the following bucket. This function fixes the bug. Args: batch: The batch to fix. Returns: A batch with the fix in place. """ def fix_angle(angle): if tf.reduce_max(angle) == 0: return tf.constant([0, 0, 0, 0, 1], dtype=angle.dtype) elif tf.reduce_sum(angle) == 2: return angle - tf.constant([1, 0, 0, 0, 0], dtype=angle.dtype) else: return angle label = batch.multi_label_one_hot a1 = fix_angle(label[0:5]) a2 = fix_angle(label[5:10]) a3 = fix_angle(label[10:15]) fixed_label = tf.concat([a1, a2, a3], axis=0) return dataclasses.replace(batch, multi_label_one_hot=fixed_label)
dm_nevis-master
dm_nevis/streams/nevis.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines a stream where all data is available in tfds.""" from typing import Iterator from dm_nevis.benchmarker.datasets import datasets from dm_nevis.benchmarker.datasets import streams from dm_nevis.benchmarker.datasets.builders import tfds_builder DEV_SIZE = 1_000 class ExampleStream: """An example stream over tfds datasets.""" def __init__(self): # These datasets do not have predefined dev splits, so we create # our own splits, where the dev set is assigned `DEV_SIZE` examples. self._datasets_by_key = { # MNIST 'mnist_train_and_dev': tfds_builder.get_dataset(dataset_name='mnist', split='train'), 'mnist_train': tfds_builder.get_dataset( dataset_name='mnist', split='train', start=DEV_SIZE), 'mnist_dev': tfds_builder.get_dataset( dataset_name='mnist', split='train', end=DEV_SIZE), 'mnist_test': tfds_builder.get_dataset(dataset_name='mnist', split='test'), # CIFAR10 'cifar10_train_and_dev': tfds_builder.get_dataset(dataset_name='cifar10', split='train'), 'cifar10_train': tfds_builder.get_dataset( dataset_name='cifar10', split='train', start=DEV_SIZE), 'cifar10_dev': tfds_builder.get_dataset( dataset_name='cifar10', split='train', end=DEV_SIZE), 'cifar10_test': tfds_builder.get_dataset(dataset_name='cifar10', split='test'), # CIFAR100 'cifar100_train_and_dev': tfds_builder.get_dataset(dataset_name='cifar100', split='train'), 'cifar100_train': tfds_builder.get_dataset( dataset_name='cifar100', split='train', start=DEV_SIZE), 'cifar100_dev': tfds_builder.get_dataset( dataset_name='cifar100', split='train', end=DEV_SIZE), 'cifar100_test': tfds_builder.get_dataset(dataset_name='cifar100', split='test'), } self._events = [ # MNIST streams.TrainingEvent('mnist_train', 'mnist_train_and_dev', 'mnist_dev'), streams.PredictionEvent('mnist_test'), # CIFAR10 streams.TrainingEvent('cifar10_train', 'cifar10_train_and_dev', 'cifar10_dev'), streams.PredictionEvent('cifar10_test'), # CIFAR100 streams.TrainingEvent('cifar100_train', 'cifar100_train_and_dev', 'cifar100_dev'), streams.PredictionEvent('cifar100_test'), ] def get_dataset_by_key(self, dataset_key: streams.DatasetKey) -> datasets.Dataset: return self._datasets_by_key[dataset_key] def events(self) -> Iterator[streams.Event]: return iter(self._events)
dm_nevis-master
dm_nevis/streams/example_stream.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Split-Imagenet stream that consists of 100 ten-way classification tasks.""" from concurrent import futures from typing import Dict, Iterator, Mapping, Sequence, Tuple from dm_nevis.benchmarker.datasets import datasets from dm_nevis.benchmarker.datasets import streams from dm_nevis.benchmarker.datasets.builders import split_imagenet from dm_nevis.streams import nevis_stream import numpy as np DEFAULT_THREADPOOL_WORKERS = 30 class SplitImagenetStream: """The split ImageNet benchmark stream. The stream adds a train event for each instance of the train data in the stream. Additionally, a predict event is added containing the test dataset after every instance of a train dataset. Once the stream is complete, a further predict event is added for every seen train event. This makes it possible to compare the performance on tasks from train time to the end of the stream. """ def __init__( self, *, predict_event_splits: Sequence[nevis_stream.Split] = ( nevis_stream.Split.DEV_TEST,), shuffle_seed: int = 1, shuffle_tasks_order: bool = False, ): """Instantiate a Split-Imagenet stream. Imagenet has 1000 classes, we split them into 100 disjoint subsets with 10 classes each to create 100 ten-way classification tasks. Args: predict_event_splits: Sequence of splits to use for prediction. shuffle_seed: An integer denoting a seed for shuffling logic when `shuffle_datasets_order` are active. shuffle_tasks_order: Whether to shuffle the order of datasets. """ self._events, self._datasets_by_key = _get_events_and_lookup( predict_event_splits=predict_event_splits, shuffle_seed=shuffle_seed, shuffle_datasets_order=shuffle_tasks_order) def get_dataset_by_key(self, dataset_key: streams.DatasetKey) -> datasets.Dataset: return self._datasets_by_key[dataset_key] def events(self) -> Iterator[streams.Event]: return iter(self._events) def _get_events_and_lookup( *, predict_event_splits: Sequence[nevis_stream.Split] = ( nevis_stream.Split.DEV_TEST,), shuffle_seed: int = 1, shuffle_datasets_order: bool = False, ) -> Tuple[Sequence[streams.Event], Mapping[streams.DatasetKey, datasets.Dataset]]: """Constructs a sequence of events and a dataset lookup.""" events = [] lookup = {} datasets_by_key = {} task_indices = list(range(split_imagenet.N_TASKS)) lookup = _build_lookup(task_indices) rng = np.random.default_rng(shuffle_seed) if shuffle_datasets_order: task_indices = list(task_indices) rng.shuffle(task_indices) for task_index in task_indices: result = lookup[task_index] if result is None: raise ValueError(f'Unable to read dataset for task_index = {task_index}') train_event = streams.TrainingEvent( train_dataset_key=result.train.key, dev_dataset_key=result.dev.key, train_and_dev_dataset_key=result.train_and_dev.key) events.append(train_event) for split in predict_event_splits: events.append( streams.PredictionEvent(nevis_stream.split_to_key(split, result))) datasets_by_key[result.train.key] = result.train.dataset datasets_by_key[result.test.key] = result.test.dataset datasets_by_key[result.dev.key] = result.dev.dataset datasets_by_key[result.dev_test.key] = result.dev_test.dataset datasets_by_key[result.train_and_dev.key] = result.train_and_dev.dataset return events, datasets_by_key def _build_lookup( task_indices: Sequence[int]) -> Dict[int, nevis_stream.DatasetSplits]: """Creates a lookup for given dataset names.""" with futures.ThreadPoolExecutor( max_workers=DEFAULT_THREADPOOL_WORKERS) as executor: result = executor.map(_get_dataset_splist_by_task, task_indices) return dict(zip(task_indices, result)) def _get_dataset_splist_by_task(task_index: int) -> nevis_stream.DatasetSplits: """Construct key and dataset for tfds dataset.""" train_dataset = split_imagenet.get_dataset( task_index=task_index, split='train') dev_dataset = split_imagenet.get_dataset(task_index=task_index, split='dev') train_and_dev_dataset = split_imagenet.get_dataset( task_index=task_index, split='train_and_dev') dev_test_dataset = split_imagenet.get_dataset( task_index=task_index, split='dev_test') test_dataset = split_imagenet.get_dataset(task_index=task_index, split='test') dataset_key_prefix = train_dataset.task_key.name train_key = f'{dataset_key_prefix}_train' dev_key = f'{dataset_key_prefix}_dev' train_and_dev_key = f'{dataset_key_prefix}_train_and_dev' dev_test_key = f'{dataset_key_prefix}_dev_test' test_key = f'{dataset_key_prefix}_test' return nevis_stream.DatasetSplits( train=nevis_stream.KeyAndDataset(train_key, train_dataset), dev=nevis_stream.KeyAndDataset(dev_key, dev_dataset), train_and_dev=nevis_stream.KeyAndDataset(train_and_dev_key, train_and_dev_dataset), dev_test=nevis_stream.KeyAndDataset(dev_test_key, dev_test_dataset), test=nevis_stream.KeyAndDataset(test_key, test_dataset), )
dm_nevis-master
dm_nevis/streams/split_imagenet_stream.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A binary to iterate through the nevis stream and verify that all data can be read. This binary is for testing that all of the datasets can successfully be located and accessed. """ from typing import Sequence from absl import app from absl import flags from absl import logging from dm_nevis.benchmarker.datasets import streams from dm_nevis.streams import nevis_stream from tensorflow.io import gfile import tensorflow_datasets as tfds _OUTPATH = flags.DEFINE_string('outpath', '/tmp/output.txt', 'Destination to write to.') _STREAM_VARIANT = flags.DEFINE_enum_class('stream_variant', nevis_stream.NevisStreamVariant.FULL, nevis_stream.NevisStreamVariant, 'Stream to iterate') _STREAM_STOP_YEAR = flags.DEFINE_integer( 'stream_stop_year', 2022, 'The year when to stop the stream (exclusive)') def main(argv: Sequence[str]) -> None: if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') logging.info('General statistics about datasets for streams:') datasets = nevis_stream.DATASET_NAME_TO_SOURCE num_available_datasets = len( [k for k, v in datasets.items() if v is not None]) num_tfds_datasets = len([ k for k, v in datasets.items() if isinstance(v, nevis_stream.TFDSSource) ]) num_nevis_datasets = len([ k for k, v in datasets.items() if isinstance(v, nevis_stream.NevisSource) ]) logging.info('Num known datasets %d', len(datasets)) logging.info('Num available datasets %d', num_available_datasets) logging.info('Num tfds datasets %d', num_tfds_datasets) logging.info('Num nevis datasets %d', num_nevis_datasets) logging.info('Iterating Nevis %s stream up to year %d', _STREAM_VARIANT.value, _STREAM_STOP_YEAR.value) logging.info('Writing output to %s', _OUTPATH.value) total_test_images = 0 total_train_images = 0 total_dev_images = 0 stream = nevis_stream.NevisStream( stream_variant=_STREAM_VARIANT.value, stop_year=_STREAM_STOP_YEAR.value) with gfile.GFile(_OUTPATH.value, 'wt') as f: f.write('=== Nevis stream ===\n') num_train_datasets = 0 for event in stream.events(): logging.info('Reading datasets for %s', event) if isinstance(event, streams.PredictionEvent): test_dataset = stream.get_dataset_by_key(event.dataset_key) total_test_images += test_dataset.num_examples elif isinstance(event, streams.TrainingEvent): train_dataset = stream.get_dataset_by_key(event.train_dataset_key) dev_dataset = stream.get_dataset_by_key(event.dev_dataset_key) total_dev_images += dev_dataset.num_examples total_train_images += train_dataset.num_examples num_train_datasets += 1 for key in streams.all_dataset_keys(event): dataset = stream.get_dataset_by_key(key) assert dataset.num_examples is not None f.write('---\n') f.write(f' Key: {key}, num examples: {dataset.num_examples}\n') ds = dataset.builder_fn(shuffle=False).batch(1) for _ in range(10): batch = next(iter(tfds.as_numpy(ds))) f.write(f' Example: {batch}\n') f.write('\n===\n') f.write(f'Num train images: {total_train_images}\n') f.write(f'Num test images: {total_test_images}\n') f.write(f'Total training datasets in stream: {num_train_datasets}\n') if __name__ == '__main__': app.run(main)
dm_nevis-master
dm_nevis/streams/iterate_nevis_stream.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Script to download all the Nevis datasets. """ import os import shutil from typing import Sequence from absl import app from absl import flags from absl import logging from dm_nevis.datasets_storage import download_util as du from dm_nevis.datasets_storage import handlers from dm_nevis.datasets_storage import preprocessing from dm_nevis.datasets_storage import version_control as vc from dm_nevis.streams import nevis_stream from tensorflow.io import gfile # pylint:disable=line-too-long _NUM_SHARDS = flags.DEFINE_integer( 'num_shards', default=10, help='Number of shards to write.') _SHUFFLE_BUFFER_SIZE = flags.DEFINE_integer( 'shuffle_buffer_size', default=10_000, help='Shuffle buffer size.') _DATASET = flags.DEFINE_string( 'dataset', default=None, help='Dataset name. MANDATORY or provide stream name.') _STREAM = flags.DEFINE_string( 'stream', default=None, help='Stream name. MANDATORY or provide dataset name.') _LOCAL_DOWNLOAD_DIR = flags.DEFINE_string( 'local_download_dir', default='/tmp/datasets', help='Local directory used for downloading.') _FORCE_DOWNLOADING = flags.DEFINE_boolean( 'force_downloading', default=False, help='Whether to download dataset regardless if it is available.') _FORCE_EXTRACTION = flags.DEFINE_boolean( 'force_extraction', default=False, help='Whether to extract dataset regardless if it is already extracted.') _WRITE_STABLE_VERSION = flags.DEFINE_boolean( 'write_stable_version', default=False, help='Whether to write a stable version of the dataset or `tmp_version`.') _TRY_DOWNLOAD_ARTIFACTS_FROM_URLS = flags.DEFINE_boolean( 'try_download_artifacts_from_urls', default=True, help='Whether to try to download artifacts from URLs.') _TMP_VERSION = flags.DEFINE_string( 'tmp_version', default='temp', help='Name of temporary version of the dataset.') _CLEAN_ARTIFACTS_ON_COMPLETION = flags.DEFINE_boolean( 'clean_artifacts_on_completion', default=False, help='Whether to clean up downloaded artifacts on completion.') _COMPUTE_STATISTICS = flags.DEFINE_boolean( 'compute_statistics', default=False, help='Whether or not to compute statistics and add to metadata. ' 'This is not supported for multilabels datasets.') def _gather_dataset_names(dataset_name: str, stream_name: str) -> list[str]: """Returns a list of dataset names for a given dataset or stream.""" if dataset_name: return [dataset_name.lower()] stream = nevis_stream.NevisStreamVariant[stream_name.upper()] dataset_names = [] for pretty_names in nevis_stream.NEVIS_STREAM_PER_YEAR[stream].values(): for dataset_pretty_name in pretty_names: source = nevis_stream.DATASET_NAME_TO_SOURCE[dataset_pretty_name] if isinstance(source, nevis_stream.NevisSource): dataset_names.append(source.name) return dataset_names def _download_and_prepare_dataset( dataset_name: str, artifacts_path: str, version: str, try_download_artifacts_from_urls: bool, force_extraction: bool, compute_statistics: bool, num_shards: int, shuffle_buffer_size: int) -> None: """Downloads dataset, extracts it, and creates shards.""" if try_download_artifacts_from_urls: du.lazily_download_artifacts(dataset_name, artifacts_path) # Extracting part. output_path = vc.get_dataset_path(dataset_name, version) gfile.makedirs(output_path) logging.info('Extracting dataset %s from dataset artifacts to %s.', dataset_name, output_path) if du.try_read_status( output_path) == du.DatasetDownloadStatus.READY and not force_extraction: logging.info('Dataset `%s` already extracted (skipping).', dataset_name) return downloadable_dataset = handlers.get_dataset(dataset_name) du.extract_dataset_and_update_status( downloadable_dataset, artifacts_path, output_path, num_shards, shuffle_buffer_size, compute_statistics=compute_statistics, preprocess_image_fn=preprocessing.preprocess_image_fn, preprocess_metadata_fn=preprocessing.preprocess_metadata_fn) def main(argv: Sequence[str]) -> None: del argv if not gfile.exists(vc.get_nevis_data_dir()): gfile.makedirs(vc.get_nevis_data_dir()) num_shards = _NUM_SHARDS.value shuffle_buffer_size = _SHUFFLE_BUFFER_SIZE.value compute_statistics = _COMPUTE_STATISTICS.value force_downloading = _FORCE_DOWNLOADING.value force_extraction = _FORCE_EXTRACTION.value try_download_artifacts_from_urls = _TRY_DOWNLOAD_ARTIFACTS_FROM_URLS.value version = version = 'stable' if _WRITE_STABLE_VERSION.value else _TMP_VERSION.value dataset_name = _DATASET.value stream_name = _STREAM.value if dataset_name and stream_name: raise ValueError('Exactly one of --dataset or --stream should be set.') if not dataset_name and not stream_name: raise ValueError('Provide dataset name or stream name to download.') dataset_names = _gather_dataset_names(dataset_name, stream_name) logging.info('Datasets: %s', dataset_names) logging.info('%d datasets will be downloaded and prepared.', len(dataset_names)) # Downloading part. for i, dataset_name in enumerate(dataset_names, start=1): logging.info('%d/%d: downloading dataset `%s`', i, len(dataset_names), dataset_name) du.check_dataset_supported_or_exit(dataset_name) artifacts_path = os.path.join(_LOCAL_DOWNLOAD_DIR.value, dataset_name) if force_downloading: du.clean_artifacts_path(artifacts_path) _download_and_prepare_dataset( dataset_name=dataset_name, artifacts_path=artifacts_path, version=version, try_download_artifacts_from_urls=try_download_artifacts_from_urls, compute_statistics=compute_statistics, force_extraction=force_extraction, num_shards=num_shards, shuffle_buffer_size=shuffle_buffer_size) if _CLEAN_ARTIFACTS_ON_COMPLETION.value: logging.info('Cleaning up artifacts directory at `%s`', artifacts_path) shutil.rmtree(artifacts_path) if __name__ == '__main__': app.run(main)
dm_nevis-master
dm_nevis/datasets_storage/download_dataset.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Encoding and decoding of dataset examples. Examples are represented as instaces of the `Example` dataclass. These dataclasses are serialized to tf.train.Example protobuf containers, which can be serialized to the wire. When loading datasets, the dataset_loader deserializes data into tf.train.Example protobuff and parses it given the features description provided by the dataset metadata. """ import io import os import queue import threading import types from typing import Any, Callable, Optional, Type from dm_nevis.datasets_storage.handlers import types as handlers_types import PIL.Image as pil_image import tensorflow as tf import tensorflow_datasets as tfds DEFAULT_IMAGE_FEATURE_NAME = 'png_encoded_image' DEFAULT_LABEL_FEATURE_NAME = 'label' DEFAULT_MULTI_LABEL_FEATURE_NAME = 'multi_label' SUPPORTED_FEATURES = frozenset([ DEFAULT_IMAGE_FEATURE_NAME, DEFAULT_LABEL_FEATURE_NAME, DEFAULT_MULTI_LABEL_FEATURE_NAME ]) RecordWriter = Callable[[str], Any] _DEFAULT_MAX_WRITER_QUEUE_SIZE = 100 def get_default_features(num_channels: int, num_classes: int) -> tfds.features.FeaturesDict: """Creates a default single class features specification.""" return tfds.features.FeaturesDict({ DEFAULT_IMAGE_FEATURE_NAME: tfds.features.Image(shape=(None, None, num_channels)), DEFAULT_LABEL_FEATURE_NAME: tfds.features.ClassLabel(num_classes=num_classes) }) def build_example_encoder( features: tfds.features.FeaturesDict ) -> Callable[[handlers_types.Example], tf.train.Example]: """Returns a function to create tf.train.Example.""" if set(features.keys()) - SUPPORTED_FEATURES: raise ValueError('features contains features which are not supported.') example_serializer = tfds.core.example_serializer.ExampleSerializer( features.get_serialized_info()) def encode(example: handlers_types.Example) -> tf.train.Example: """Creates a tf.train.Example. Ignored fields not in `features`.""" example_to_serialize = {} for key, value in example._asdict().items(): if key == 'image': example_to_serialize[DEFAULT_IMAGE_FEATURE_NAME] = _encoded_png_feature( value) elif key in features: example_to_serialize[key] = value return example_serializer.get_tf_example(example_to_serialize) return encode def build_example_decoder( features: tfds.features.FeaturesDict ) -> Callable[[tf.Tensor], tf.train.Example]: """Returns feature decoder.""" example_parser = tfds.core.example_parser.ExampleParser( features.get_serialized_info()) def decoder(encoded_tf_example: tf.Tensor) -> tf.train.Example: """Decodes the example into tf.train.Example proto.""" return features.decode_example( example_parser.parse_example(encoded_tf_example)) return decoder class ThreadpoolExampleWriter: """A class for encoding and writing examples to shards.""" _STOP_QUEUE = object() def __init__(self, num_shards: int, example_encoder: Callable[[handlers_types.Example], tf.train.Example], *, output_dir: str = '', record_writer: RecordWriter = tf.io.TFRecordWriter) -> None: """Creates the writer class, with the given number of write shards. Each shard is assigned a worker thread, which handles encoding and protobuf serializing. This class is designed to be used as a context manager. Writing happens asynchronously and is only completed once the context manager exits successfully. Args: num_shards: The number of shards to write. example_encoder: Function which encodes examples into tf.train.Example protobuf. output_dir: The directory name to join to the shard path. record_writer: The class used to write records. """ self._example_encoder = example_encoder self._queues = [] self._threads = [] def worker(q, path): writer = record_writer(path) while True: example = q.get() if example is self._STOP_QUEUE: break writer.write(self._example_encoder(example).SerializeToString()) for i in range(num_shards): q = queue.Queue(maxsize=_DEFAULT_MAX_WRITER_QUEUE_SIZE) path = os.path.join(output_dir, f'data-{i:05d}-of-{num_shards:05d}') thread = threading.Thread(target=worker, args=(q, path), daemon=True) thread.start() self._queues.append(q) self._threads.append(thread) def __enter__(self): return self def __exit__(self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[types.TracebackType]) -> None: """Blocks until writing the shards is complete.""" del exc_type, exc_val, exc_tb for q in self._queues: q.put(self._STOP_QUEUE) for thread in self._threads: thread.join() def write(self, shard: int, example: handlers_types.Example) -> None: """Asynchronously writes the given example to the given shard index.""" self._queues[shard].put(example) def _encoded_png_feature(image: handlers_types.ImageLike) -> bytes: """Encodes an image to bytes.""" if not isinstance(image, pil_image.Image): raise ValueError('Encoder only works with PIL images.') buffer = io.BytesIO() # We strip any ICC profile to avoid decoding warnings caused by invalid ICC # profiles in some datasets. image.save(buffer, format='PNG', icc_profile=b'') buffer = buffer.getvalue() return buffer
dm_nevis-master
dm_nevis/datasets_storage/encoding.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """File containing all the paths.""" # pylint: disable=line-too-long import os NEVIS_DATA_DIR = os.environ.get('NEVIS_DATA_DIR', '/tmp/nevis_data_dir') NEVIS_RAW_DATA_DIR = os.environ.get('NEVIS_RAW_DATA_DIR', '/tmp/nevis_raw_data_dir') METADATA_FNAME = 'metadata' STATUS_FNAME = 'status' STABLE_DIR_NAME = 'stable'
dm_nevis-master
dm_nevis/datasets_storage/paths.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Download utils.""" import codecs import collections import enum import hashlib import os import re import shutil from typing import Any, Callable, Dict, Iterable, Iterator, Optional, TypeVar import urllib from absl import logging import dill from dm_nevis.datasets_storage import encoding from dm_nevis.datasets_storage import handlers from dm_nevis.datasets_storage import paths from dm_nevis.datasets_storage import statistics from dm_nevis.datasets_storage.handlers import kaggle_utils from dm_nevis.datasets_storage.handlers import types import numpy as np from PIL import Image as pil_image import requests from tensorflow.io import gfile import tqdm DEFAULT_CHUNK_SIZE = 1024 DEFAULT_MAX_QUEUE_SIZE = 100 DEFAULT_SHUFFLE_BUFFER_LOG_SECONDS = 10 PreprocessImageFn = Callable[[pil_image.Image, str, Optional[Any], int], pil_image.Image] PreprocessMetadataFn = Callable[[types.DatasetMetaData], types.DatasetMetaData] class DatasetDownloadStatus(enum.Enum): NOT_READY = 'not_ready' READY = 'ready' def maybe_unpack_archive(link, cur_link_file, ds_path): if link.endswith('.zip') or link.endswith('.tar'): shutil.unpack_archive(cur_link_file, extract_dir=ds_path) os.remove(cur_link_file) def write_status(dataset_path, status): status_file_path = os.path.join(dataset_path, paths.STATUS_FNAME) with gfile.GFile(status_file_path, 'w') as f: f.write(status.value) def try_read_status(dataset_path): status_file_path = os.path.join(dataset_path, paths.STATUS_FNAME) if not gfile.exists(status_file_path): return None with gfile.GFile(status_file_path, 'r') as f: status = DatasetDownloadStatus(f.readline()) return status def download_data_from_links(links, local_ds_path): """Donwload data artefacts from a list of urls or kaggle dataset/competition). """ for link in links: if isinstance(link, types.DownloadableArtefact): artefact_path = lazily_download_file(link.url, local_ds_path) elif isinstance(link, types.KaggleDataset): artefact_path = download_data_from_kaggle( link.dataset_name, local_ds_path, kaggle_origin=kaggle_utils.KaggleOrigin.DATASETS) elif isinstance(link, types.KaggleCompetition): artefact_path = download_data_from_kaggle( link.competition_name, local_ds_path, kaggle_origin=kaggle_utils.KaggleOrigin.COMPETITIONS) else: raise TypeError(f'Unknown type link: {type(link)}') if link.checksum is not None: validate_artefact_checksum(artefact_path, link.checksum) def download_data_from_kaggle(data_name, local_ds_path, kaggle_origin): """Downloads dataset from kaggle website.""" artefact_path = os.path.join(local_ds_path, f'{data_name.split("/")[-1]}.zip') if gfile.exists(artefact_path): logging.info('Found existing file at `%s` (skipping download)', artefact_path) else: kaggle_utils.download_kaggle_data( data_name, local_ds_path, kaggle_origin=kaggle_origin) return artefact_path def validate_artefact_checksum(artefact_path: str, checksum: str) -> None: """Compares read checksum to expected checksum.""" hash_fn = hashlib.md5() buffer_size = 128 * hash_fn.block_size logging.info('Validating checksum of artefact `%s`', artefact_path) with gfile.GFile(artefact_path, 'rb') as f: while True: data = f.read(buffer_size) if not data: break hash_fn.update(data) read_checksum = hash_fn.hexdigest() if read_checksum != checksum: raise ValueError( f'{artefact_path} checksum ({read_checksum}) != to expected checksum {checksum}). ' 'This error can be silenced by removing the MD5 hash in the download ' 'URL of the failing dataset.') def lazily_download_file(url: str, output_dir: str) -> str: """Lazily fetch a file and write it into the output dir.""" # try to infer filename from url, cannot work on google drive tentative_filename = _get_filename_from_url(url) if _is_among_allowed_extentions(tentative_filename): path = os.path.join(output_dir, tentative_filename) if gfile.exists(path): logging.info('Found existing file at `%s` (skipping download)', path) return path with requests.get(url, stream=True, allow_redirects=True) as r: # If an HTTP error occurred, it will be raised as an exception here. r.raise_for_status() filename = _get_filename_from_headers(r.headers) or _get_filename_from_url( r.url) path = os.path.join(output_dir, filename) if gfile.exists(path): logging.info('Found existing file at `%s` (skipping download)', path) return path partial_path = f'{path}.part' with gfile.GFile(partial_path, 'wb') as w: filesize = _content_length_from_headers(r.headers) logging.info('Downloading `%s` to `%s`', url, path) with tqdm.tqdm( unit='B', unit_scale=True, unit_divisor=1024, total=filesize, desc=filename) as progress: for chunk in r.iter_content(chunk_size=DEFAULT_CHUNK_SIZE): w.write(chunk) progress.update(n=len(chunk)) # Atomically move to destination, to avoid caching a partial file on failure. os.rename(partial_path, path) return path def _get_filename_from_url(url: str) -> str: o = urllib.parse.urlparse(url) return o.path.split('/')[-1] def _is_among_allowed_extentions(filename: str) -> bool: ext = filename.split('.')[-1] return ext in ('png', 'jpg', 'jpeg', 'gif', 'zip', 'tar', 'gz', 'rar') def _get_filename_from_headers(headers: Dict[str, Any]) -> Optional[str]: """Extracts the filename from HTTP headers, if present.""" # TODO: This can be vastly more complicated, but this logic should # work for most cases we will encounter. content = headers.get('Content-Disposition') if not content: return None match = re.findall('filename="(.+)"', content) if match: return match[0] match = re.findall('filename=(.+)', content) if match: return match[0] return None def _content_length_from_headers(headers: Dict[str, Any]) -> Optional[int]: if 'Content-Length' not in headers: return None return int(headers['Content-Length']) T = TypeVar('T') def shuffle_generator_with_buffer(gen: Iterable[T], buffer_size: int, seed: int = 0) -> Iterator[T]: """Shuffles `gen` using a shuffle buffer.""" rng = np.random.default_rng(seed) buffer = [] for example in gen: if len(buffer) < buffer_size: buffer.append(example) logging.log_every_n_seconds(logging.INFO, 'Filling shuffle buffer: %d/%d...', DEFAULT_SHUFFLE_BUFFER_LOG_SECONDS, len(buffer), buffer_size) continue idx = rng.integers(0, buffer_size) result, buffer[idx] = buffer[idx], example yield result rng.shuffle(buffer) yield from buffer def _optionally_convert_to_example(example): """Converts example tuple into types.Example.""" if isinstance(example, types.Example): return example assert len(example) == 2 image, label = example[:2] return types.Example(image=image, label=label, multi_label=None) def _extract_dataset( downloable_dataset: handlers.types.DownloadableDataset, artifacts_path: str, output_path: str, num_shards: int, shuffle_buffer_size: int, compute_statistics: bool, preprocess_image_fn: PreprocessImageFn, preprocess_metadata_fn: PreprocessMetadataFn, seed: int = 0, ) -> None: """Converts dataset to tfrecord examples.""" logging.info('Extracting dataset %s from dataset artifacts.', downloable_dataset.name) metadata, splits_generators = downloable_dataset.handler(artifacts_path) metadata = preprocess_metadata_fn(metadata) num_channels = metadata.num_channels num_classes = metadata.num_classes # This is required for backwards compatibility. Later on, we will remove need # for default features. features = metadata.features or encoding.get_default_features( num_channels, num_classes) if compute_statistics: statistics_calculator = statistics.StatisticsCalculator( list(splits_generators.keys()), metadata) num_data_points_per_split = collections.defaultdict(int) for split, split_gen in splits_generators.items(): logging.info('Writing split: `%s`', split) description = f'Writing examples for `{split}`' gen = shuffle_generator_with_buffer(split_gen, shuffle_buffer_size) rng = np.random.default_rng(seed=seed) split_dir = os.path.join(output_path, split) if not gfile.exists(split_dir): gfile.makedirs(split_dir) with encoding.ThreadpoolExampleWriter( num_shards, output_dir=split_dir, example_encoder=encoding.build_example_encoder(features)) as writer: with tqdm.tqdm(total=None, desc=description, unit=' examples') as pbar: for i, example in enumerate(gen): converted_example = _optionally_convert_to_example(example) converted_example._replace( image=preprocess_image_fn(converted_example.image, metadata.preprocessing, rng, 0)) if compute_statistics: statistics_calculator.accumulate(converted_example.image, converted_example.label, split) shard_index = i % num_shards writer.write(shard_index, converted_example) num_data_points_per_split[split] += 1 pbar.update(1) additional_metadata = metadata.additional_metadata additional_metadata['num_data_points_per_split'] = num_data_points_per_split additional_metadata['splits'] = sorted(splits_generators.keys()) if compute_statistics: additional_metadata['statistics'] = statistics_calculator.merge_statistics() with gfile.GFile(os.path.join(output_path, paths.METADATA_FNAME), 'wb') as f: # See https://stackoverflow.com/a/67171328 pickled_object = codecs.encode( dill.dumps(metadata, protocol=dill.HIGHEST_PROTOCOL), 'base64').decode() f.write(pickled_object) def extract_dataset_and_update_status( downloadable_dataset: handlers.types.DownloadableDataset, artifacts_path: str, output_path: str, num_shards: int, shuffle_buffer_size: int, compute_statistics: bool, preprocess_image_fn: PreprocessImageFn, preprocess_metadata_fn: PreprocessMetadataFn) -> None: """Extracts dataset from artifacts_path and updates its status. Args: downloadable_dataset: The instance of `types.DownloadableDataset` describing the dataset together with all the meta information. artifacts_path: The directory where fetched artifacts are stored for this dataset. These contain e.g. raw zip files and data downloaded from the internet. If artifacts are found here matching the paths, they will not be re-downloaded. output_path: The destination where the final dataset will be written. num_shards: The number of shards to write the dataset into. shuffle_buffer_size: The size of the shuffle buffer. compute_statistics: True if statistics should be computed. preprocess_image_fn: Preprocessing function converting PIL.Image into numpy array with consistent format. preprocess_metadata_fn: Preprocessing function responsible for applying consistent transformations to metadata. """ logging.info('Marking dataset `%s` as NOT_READY', downloadable_dataset.name) write_status(output_path, DatasetDownloadStatus.NOT_READY) _extract_dataset( downloadable_dataset, artifacts_path, output_path, num_shards, shuffle_buffer_size, compute_statistics=compute_statistics, preprocess_image_fn=preprocess_image_fn, preprocess_metadata_fn=preprocess_metadata_fn) logging.info('Marking dataset `%s` as READY', downloadable_dataset.name) write_status(output_path, DatasetDownloadStatus.READY) def lazily_download_artifacts(dataset_name: str, artifacts_path: str) -> None: """Downloads artifacts (lazily) to the given path. Args: dataset_name: The name of the dataset to fetch the artifacts for. artifacts_path: The destintion to write the fetched artifacts to. """ if not gfile.exists(artifacts_path): gfile.makedirs(artifacts_path) downloadable_dataset = handlers.get_dataset(dataset_name) if downloadable_dataset.manual_download: logging.info('Dataset `%s` has to be manually downloaded (skipping).', dataset_name) return uris = downloadable_dataset.download_urls logging.info('Fetching %d artifact(s) for %s to `%s`', len(uris), dataset_name, artifacts_path) download_data_from_links(uris, artifacts_path) def check_dataset_supported_or_exit(dataset_name: str) -> None: """Checks whether given dataset has corresponding handler.""" if not handlers.is_dataset_available(dataset_name): logging.error( 'The dataset `%s` is not recognized. The available datasets are %s', dataset_name, ', '.join(handlers.dataset_names())) exit(1) def clean_artifacts_path(artifacts_path: str) -> None: """Cleans up `artifacts_path` directory.""" logging.info('Ensuring artifacts directory is empty at `%s`', artifacts_path) if gfile.exists(artifacts_path): shutil.rmtree(artifacts_path)
dm_nevis-master
dm_nevis/datasets_storage/download_util.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dm_nevis.datasets_storage.dataset_loader.""" from absl.testing import absltest from absl.testing import parameterized from dm_nevis.datasets_storage import dataset_loader from dm_nevis.datasets_storage import download_util from dm_nevis.datasets_storage import handlers from dm_nevis.datasets_storage import preprocessing from dm_nevis.datasets_storage.handlers import types DEFAULT_NUM_SHARDS = 5 DEFAULT_BUFFER_SIZE = 100 class DatasetLoaderTest(parameterized.TestCase): # We can include any dataset that has a fixture writer. @parameterized.parameters([ # dict(dataset_name='belgium_tsc'), # dict(dataset_name='pacs'), dict(dataset_name='caltech_categories'), # dict(dataset_name='flickr_material_database'), ]) def test_load_dataset_from_path(self, dataset_name: str): artifacts_path = self.create_tempdir().full_path dataset_path = self.create_tempdir().full_path downloadable_dataset = handlers.get_dataset(dataset_name) self.assertIsNotNone(downloadable_dataset.fixture_writer) _extract_dataset(downloadable_dataset, artifacts_path, dataset_path) metadata = dataset_loader.get_metadata_from_path(dataset_path) self.assertNotEmpty(metadata.additional_metadata['splits']) for split in metadata.additional_metadata['splits']: with self.subTest(split): dataset = dataset_loader.load_dataset_from_path(dataset_path, split) examples = list(dataset.builder_fn(shuffle=False)) self.assertNotEmpty(examples) self.assertLen(examples, dataset.num_examples) examples = list(dataset.builder_fn(shuffle=True)) self.assertNotEmpty(examples) self.assertLen(examples, dataset.num_examples) examples = list(dataset.builder_fn(shuffle=False, start=2)) self.assertLen(examples, dataset.num_examples - 2) def _extract_dataset(downloadable_dataset: types.DownloadableDataset, artifacts_path: str, output_path: str) -> None: """Writes a fixture and then extracts a dataset from the fixture.""" downloadable_dataset.fixture_writer(artifacts_path) download_util.extract_dataset_and_update_status( downloadable_dataset, artifacts_path, output_path, DEFAULT_NUM_SHARDS, DEFAULT_BUFFER_SIZE, compute_statistics=True, preprocess_image_fn=preprocessing.preprocess_image_fn, preprocess_metadata_fn=preprocessing.preprocess_metadata_fn) if __name__ == '__main__': absltest.main()
dm_nevis-master
dm_nevis/datasets_storage/dataset_loader_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Information about Nevis datasets for the benchmark.""" # Datasets mapping from canonical name to tfds_name, available in tfds. TFDS_DATASETS_MAPPING = { "Caltech 101": "caltech101", "CUB 200": "caltech_birds2011", "CIFAR 10": "cifar10", "CIFAR 100": "cifar100", "COIL 100": "coil100", "CUB 200 2011": "caltech_birds2011", "DomainNet-Real": "domainnet", "EMNIST Balanced": "emnist/balanced", "FashionMNIST": "fashion_mnist", "Food 101 N": "food101", "ImageNet": "imagenet2012", "iNaturalist": "i_naturalist2017", "Oxford Flowers": "oxford_flowers102", "Oxford Pets": "oxford_iiit_pet", "Stanford Dogs": "stanford_dogs", "SUN": "sun397", }
dm_nevis-master
dm_nevis/datasets_storage/datasets.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
dm_nevis-master
dm_nevis/datasets_storage/__init__.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Script to download all the Nevis datasets. """ import os from typing import Sequence from absl import app from absl import flags from absl import logging from dm_nevis.datasets_storage import dataset_loader import tensorflow_datasets as tfds _DATASET = flags.DEFINE_string('dataset', 'animal', 'Dataset name.') _DATASET_VERSION = flags.DEFINE_string('dataset_version', 'temp', 'Dataset version.') _DATASET_ROOT_DIR = flags.DEFINE_string('dataset_root_dir', '', 'Dataset version.') def main(argv: Sequence[str]) -> None: del argv if _DATASET_ROOT_DIR.value: path = os.path.join(_DATASET_ROOT_DIR.value, _DATASET.value) logging.info('Reading dataset from %s', path) else: path = None if path: metadata = dataset_loader.get_metadata_from_path(path) else: metadata = dataset_loader.get_metadata( _DATASET.value, version=_DATASET_VERSION.value) splits = metadata.additional_metadata['splits'] num_classes = metadata.num_classes image_shape = metadata.image_shape logging.info('metadata: %s', str(metadata)) logging.info('splits: %s', str(splits)) logging.info('num_classes: %d', num_classes) logging.info('image_shape: %s', str(image_shape)) for split in splits: logging.info('Trying split `%s`.', split) if path: dataset = dataset_loader.load_dataset_from_path(path, split) else: dataset = dataset_loader.load_dataset( _DATASET.value, split, version=_DATASET_VERSION.value) ds = iter(tfds.as_numpy(dataset.builder_fn(shuffle=True))) elem = next(ds) logging.info(elem) logging.info('Checking the integrity of `%s`.', split) for elem in ds: pass logging.info('Checks for `%s` are passed.', split) if __name__ == '__main__': app.run(main)
dm_nevis-master
dm_nevis/datasets_storage/play_with_dataset.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools to control data versionning.""" # pylint: disable=line-too-long import os from dm_nevis.datasets_storage import paths def get_nevis_data_dir() -> str: """Prefix directory where all the data lives.""" return paths.NEVIS_DATA_DIR def get_dataset_path(dataset: str, version: str = paths.STABLE_DIR_NAME) -> str: """Provides directory for the dataset and given version. Currently, we assume that data lives in `NEVIS_DATA_DIR` directory followed by the proposed version. It means that if the version is `stable`, the dataset will be living in `NEVIS_DATA_DIR/stable/dataset` directory. Args: dataset: Name of the dataset version: Name of the version of the dataset. Returns: Path to the dataset location for the given version. """ return os.path.join(get_nevis_data_dir(), version, dataset)
dm_nevis-master
dm_nevis/datasets_storage/version_control.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataset loader.""" import codecs import functools import os from typing import Callable, NamedTuple, Optional import dill from dm_nevis.datasets_storage import download_util as du from dm_nevis.datasets_storage import encoding from dm_nevis.datasets_storage import handlers from dm_nevis.datasets_storage import paths from dm_nevis.datasets_storage import version_control as vc from dm_nevis.datasets_storage.handlers import types import tensorflow as tf from tensorflow.io import gfile MAXIMUM_DATA_FETCH_CONCURRENT_REQUESTS = 16 DEFAULT_BLOCK_LENGTH = 16 DEFAULT_SHUFFLE_BUFFER_SIZE = 5_000 DEFAULT_LRU_CACHE_SIZE = 1_000 class Dataset(NamedTuple): builder_fn: Callable[..., tf.data.Dataset] num_examples: int class DatasetNotAvailableError(ValueError): """Raised when a dataset is not known or available.""" class DatasetNotReadyError(ValueError): """Raised when a dataset is known, but was not ready.""" def check_dataset_is_ready(dataset_name: str, version: str) -> None: """Raises an exception if the dataset is not found or not ready.""" if not handlers.is_dataset_available(dataset_name): raise DatasetNotAvailableError(f'Dataset `{dataset_name}` not available.') path = vc.get_dataset_path(dataset_name, version=version) status = du.try_read_status(path) if status != du.DatasetDownloadStatus.READY: raise DatasetNotReadyError( f'Dataset `{dataset_name}` not ready to be used.') @functools.lru_cache(maxsize=DEFAULT_LRU_CACHE_SIZE) def get_metadata_from_path(path: str) -> types.DatasetMetaData: with gfile.GFile(os.path.join(path, paths.METADATA_FNAME), 'rb') as f: # tf.io.gfile has a bug with pickle, thus we write it to a temporary buffer # in base64 before decoding the pickle object. # It's only metadata of limited size thus the overhead is acceptable. # See https://stackoverflow.com/a/67171328 pickled_object = f.read() return dill.loads(codecs.decode(pickled_object, 'base64')) def get_metadata(dataset_name: str, version: str = 'stable') -> types.DatasetMetaData: check_dataset_is_ready(dataset_name, version=version) path = vc.get_dataset_path(dataset_name, version=version) return get_metadata_from_path(path) def load_dataset(dataset_name: str, split: str, version: str = 'stable') -> Dataset: """Loads the dataset given a name and a split.""" check_dataset_is_ready(dataset_name, version=version) path = vc.get_dataset_path(dataset_name, version=version) return load_dataset_from_path(path, split) def load_dataset_from_path(dataset_dir: str, split: str) -> Dataset: """Loads the dataset for a given split from a path.""" metadata = get_metadata_from_path(dataset_dir) num_examples = _num_examples_from_metadata(split, metadata) num_classes = metadata.num_classes num_channels = metadata.num_channels encoding.get_default_features(num_channels, num_classes) # This is required for backwards compatibility. Later on, we will remove need # for default features. features = metadata.features or encoding.get_default_features( num_channels, num_classes) split_path = os.path.join(dataset_dir, split) shards = gfile.glob(os.path.join(split_path, 'data-*-of-*')) if not shards: raise ValueError(f'No shards found for split `{split}` at {dataset_dir}') def builder_fn(*, shuffle: bool, start: Optional[int] = None, end: Optional[int] = None) -> tf.data.Dataset: # TODO: It's possible to support this by carefully keeping track # of the offsets and mapping them to the dataloaders, as tfds does. # We opt not to do this for now, however. if shuffle and (start is not None or end is not None): raise NotImplementedError( 'Currently, offsets are not supported when shuffling') ds = tf.data.Dataset.from_tensor_slices(shards) if shuffle: # Shuffling the shards helps randomize across the full dataset. ds = ds.shuffle(buffer_size=len(shards)) ds = ds.interleave( tf.data.TFRecordDataset, cycle_length=MAXIMUM_DATA_FETCH_CONCURRENT_REQUESTS, block_length=DEFAULT_BLOCK_LENGTH, num_parallel_calls=tf.data.AUTOTUNE, deterministic=not shuffle) if start is not None: ds = ds.skip(start) if end is not None: ds = ds.take(end - start or 0) if shuffle: ds = ds.shuffle(DEFAULT_SHUFFLE_BUFFER_SIZE) example_decoder = encoding.build_example_decoder(features=features) ds = ds.map( example_decoder, num_parallel_calls=tf.data.AUTOTUNE, deterministic=not shuffle) return ds return Dataset(num_examples=num_examples, builder_fn=builder_fn) def _num_examples_from_metadata(split: str, metadata: types.DatasetMetaData) -> int: points_per_split = metadata.additional_metadata['num_data_points_per_split'] try: return points_per_split[split] except KeyError as e: raise ValueError(f'Split `{split}` not found in {points_per_split}') from e
dm_nevis-master
dm_nevis/datasets_storage/dataset_loader.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Preprocessing functions for data extraction.""" from typing import Any, Optional from dm_nevis.datasets_storage.handlers import types import numpy as np STANDARD_IMAGE_SIZE = (64, 64) def preprocess_image_fn(image: types.Image, preprocessing: str, rng: Optional[Any] = None, seed: int = 0) -> types.Image: """Image preprocessing function.""" if not preprocessing: pass elif preprocessing == 'random_crop': image = _random_crop_image(image, rng=rng, seed=seed) else: raise ValueError('Preprocessing: %s not supported' % preprocessing) return image def preprocess_metadata_fn( metadata: types.DatasetMetaData) -> types.DatasetMetaData: return metadata def _random_crop_image(image, rng=None, seed=0): """Randomly crops the image to standard size.""" # TODO: Consider cropping to a larger size to homgenize resizing step # across all datasets once we move it to the learner. width, height = image.size assert width - STANDARD_IMAGE_SIZE[0] > 0 assert height - STANDARD_IMAGE_SIZE[1] > 0 if rng is None: rng = np.random.default_rng(seed=seed) left = rng.integers(0, width - STANDARD_IMAGE_SIZE[0]) top = rng.integers(0, height - STANDARD_IMAGE_SIZE[1]) # Crops to STANDARD_IMAGE_SIZE[0]xSTANDARD_IMAGE_SIZE[1] return image.crop( (left, top, left + STANDARD_IMAGE_SIZE[0], top + STANDARD_IMAGE_SIZE[1]))
dm_nevis-master
dm_nevis/datasets_storage/preprocessing.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dm_nevis.datasets_storage.encoding.""" import collections from typing import Iterable from absl.testing import absltest from absl.testing import parameterized from dm_nevis.datasets_storage import encoding from dm_nevis.datasets_storage.handlers import types import numpy as np import PIL.Image as pil_image import tensorflow as tf class EncodingTest(parameterized.TestCase): @parameterized.parameters([ { 'num_examples': 10, 'num_shards': 2 }, { 'num_examples': 7, 'num_shards': 1 }, { 'num_examples': 7, 'num_shards': 3 }, { 'num_examples': 1, 'num_shards': 5 }, { 'num_examples': 0, 'num_shards': 5 }, ]) def test_threadpool_example_writer(self, num_examples, num_shards): examples = list(_example_fixtures(n=num_examples)) features = encoding.get_default_features(num_channels=3, num_classes=10) written_data = collections.defaultdict(list) class MemoryRecordWriter: def __init__(self, path: str) -> None: self._path = path def write(self, buffer: bytes) -> None: written_data[self._path].append(buffer) with encoding.ThreadpoolExampleWriter( num_shards=num_shards, record_writer=MemoryRecordWriter, example_encoder=encoding.build_example_encoder(features)) as writer: for i, example in enumerate(examples): writer.write(i % num_shards, example) total_written = sum(len(v) for v in written_data.values()) self.assertEqual(num_examples, total_written) def test_encode_example(self): example, *_ = _example_fixtures(n=1) features = encoding.get_default_features(num_channels=3, num_classes=10) encoder = encoding.build_example_encoder(features=features) encoded = encoder(example) decoder = encoding.build_example_decoder(features=features) result = decoder(encoded.SerializeToString()) self.assertEqual( [30, 60, 3], result[encoding.DEFAULT_IMAGE_FEATURE_NAME].shape.as_list()) self.assertIn(result[encoding.DEFAULT_LABEL_FEATURE_NAME].numpy(), set(range(10))) self.assertIsInstance(result[encoding.DEFAULT_IMAGE_FEATURE_NAME], tf.Tensor) self.assertEqual(result[encoding.DEFAULT_IMAGE_FEATURE_NAME].dtype, tf.uint8) np.testing.assert_allclose(result[encoding.DEFAULT_IMAGE_FEATURE_NAME], example.image) def _example_fixtures(*, n: int) -> Iterable[types.Example]: gen = np.random.default_rng(seed=0) for _ in range(n): img = pil_image.fromarray( gen.integers(0, 255, size=(30, 60, 3), dtype=np.uint8)) yield types.Example( image=img, label=gen.integers(0, 10), multi_label=None, ) if __name__ == '__main__': absltest.main()
dm_nevis-master
dm_nevis/datasets_storage/encoding_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Accumulates and calculates statistics.""" import dataclasses from typing import List from dm_nevis.datasets_storage.handlers import types import numpy as np _FULL_DATASET_STATS_NAME = 'full_dataset_stats' def _incremental_mean(x: np.ndarray, prev_mu: np.ndarray, n: int) -> np.ndarray: return 1. / n * ((n - 1) * prev_mu + x) def _incremental_sigma_sq_with_sq_diff(x: np.ndarray, prev_mu: np.ndarray, mu: np.ndarray, prev_sq_diff: np.ndarray, n: int): sq_diff = prev_sq_diff + (x - prev_mu) * (x - mu) sigma_sq = sq_diff / n return sq_diff, sigma_sq def _incremental_min(x: np.ndarray, prev_min: np.ndarray, n: int) -> np.ndarray: if n == 1: return x return np.minimum(x, prev_min) def _incremental_max(x: np.ndarray, prev_max: np.ndarray, n: int) -> np.ndarray: if n == 1: return x return np.maximum(x, prev_max) @dataclasses.dataclass class StatisticsAccumulator: """Data structure to accumulate all the dataset statistics.""" mean_per_channel: np.ndarray sigma_sq_per_channel: np.ndarray sq_diff_per_channel: np.ndarray max_per_channel: np.ndarray min_per_channel: np.ndarray num_examples_per_class: np.ndarray num_examples: int min_label: int max_label: int class StatisticsCalculator(object): """Aggregates statistics over the whole dataset for each split.""" def __init__(self, splits: List[str], metadata: types.DatasetMetaData): self._accumulator = dict() self._num_classes = metadata.num_classes self._num_channels = metadata.num_channels for split in tuple(splits) + (_FULL_DATASET_STATS_NAME,): self._accumulator[split] = StatisticsAccumulator( mean_per_channel=np.zeros((self._num_channels,), dtype=float), sigma_sq_per_channel=np.zeros((self._num_channels,), dtype=float), sq_diff_per_channel=np.zeros((self._num_channels,), dtype=float), max_per_channel=np.zeros((self._num_channels,), dtype=float), min_per_channel=np.zeros((self._num_channels,), dtype=float), num_examples_per_class=np.zeros((self._num_classes,), dtype=int), num_examples=0, min_label=self._num_classes + 1, max_label=-1) def _accumulate_for_split(self, image, label, split_accumulator): """Accumulates the statistics and updates `split_accumulator`.""" split_accumulator.num_examples_per_class[label] += 1 split_accumulator.num_examples += 1 split_accumulator.min_label = min(label, split_accumulator.min_label) split_accumulator.max_label = max(label, split_accumulator.max_label) prev_mu = split_accumulator.mean_per_channel flatten_image = np.copy(image).reshape((-1, self._num_channels)) x_mu = np.mean(flatten_image, axis=0) mu = _incremental_mean(x_mu, prev_mu, split_accumulator.num_examples) split_accumulator.mean_per_channel = mu prev_sq_diff = split_accumulator.sq_diff_per_channel x_sigma = np.mean(flatten_image, axis=0) sq_diff, sigma_sq = _incremental_sigma_sq_with_sq_diff( x_sigma, prev_mu, mu, prev_sq_diff, split_accumulator.num_examples) split_accumulator.sq_diff_per_channel = sq_diff split_accumulator.sigma_sq_per_channel = sigma_sq x_max = np.max(flatten_image, axis=0) split_accumulator.max_per_channel = _incremental_max( x_max, split_accumulator.max_per_channel, split_accumulator.num_examples) x_min = np.min(flatten_image, axis=0) split_accumulator.min_per_channel = _incremental_min( x_min, split_accumulator.min_per_channel, split_accumulator.num_examples) def accumulate(self, image, label, split): """Accumulates the statistics for the given split.""" self._accumulate_for_split(image, label, self._accumulator[split]) self._accumulate_for_split(image, label, self._accumulator[_FULL_DATASET_STATS_NAME]) def merge_statistics(self): """Merges all the statistics together.""" merged_statistics = dict() for split, split_accumulator in self._accumulator.items(): std_per_channel = np.sqrt(split_accumulator.sigma_sq_per_channel) label_imbalance = np.max( split_accumulator.num_examples_per_class) - np.min( split_accumulator.num_examples_per_class) dict_split_accumulator = dataclasses.asdict(split_accumulator) dict_split_accumulator['std_per_channel'] = std_per_channel dict_split_accumulator['label_imbalance'] = label_imbalance merged_statistics[split] = dict_split_accumulator return merged_statistics
dm_nevis-master
dm_nevis/datasets_storage/statistics.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for dm_nevis.datasets_storage.download_util.""" from absl.testing import absltest from absl.testing import parameterized from dm_nevis.datasets_storage import download_util as du class DownloadUtilTest(parameterized.TestCase): def test_get_filename_from_url(self): url = """http://docs.python.org:80/3/library/foo.image.jpg?highlight=params#url-parsing""" expected = 'foo.image.jpg' self.assertEqual(du._get_filename_from_url(url), expected) @parameterized.parameters([ (1000, 10), (10, 1000), (10000, 100), ]) def test_shuffle_generator_with_buffer(self, num_elements, shuffle_buffer_size): def make_gen(): for i in range(num_elements): yield i shuffled_gen = du.shuffle_generator_with_buffer(make_gen(), shuffle_buffer_size) self.assertSameElements(list(shuffled_gen), list(make_gen())) self.assertNotEqual(list(shuffled_gen), list(make_gen())) if __name__ == '__main__': absltest.main()
dm_nevis-master
dm_nevis/datasets_storage/download_util_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Integration tests for stable datasets in Nevis dataset storage. The purpose of these tests is to guarantee that a dataset specified in `DATASETS_TO_RUN_INTEGRATION_TESTS_FOR` is available in the `stable` version (see README.md) and have specified properties: * A dataset can be read as TFRecordDataset. * A dataset contains metadata. * Each image in the dataset has `image_shape` and `num_channels` as specified in metadata. * Each pixel of the image is in range [0,255]. * Labels are in [0,num_classes - 1]. * Each class has at least one data point. """ import collections import os from absl.testing import absltest from absl.testing import parameterized from dm_nevis.datasets_storage import dataset_loader from dm_nevis.datasets_storage import download_util as du from dm_nevis.datasets_storage import version_control as vc import tensorflow as tf DATASETS_TO_RUN_INTEGRATION_TESTS_FOR = [ 'animal', ] @absltest.skipThisClass('Timeout for OSS') class StableDatasetsTest(tf.test.TestCase, parameterized.TestCase): """Tests on the `stable` version of Nevis datasets. These tests go over all the specified datasets in `DATASETS_TO_RUN_INTEGRATION_TESTS_FOR` in the `stable` dataset directory and ensure that these datasets satisfy given (in the tests) constraints. That will ensure that the datasets which are actually used in the benchmark produce expected data. """ @parameterized.parameters(sorted(DATASETS_TO_RUN_INTEGRATION_TESTS_FOR)) def test_datasets_available(self, dataset_name): data_dir = vc.get_nevis_stable_data_dir() dataset_path = os.path.join(data_dir, dataset_name) status = du.try_read_status(dataset_path) self.assertEqual(status, du.DatasetDownloadStatus.READY) @parameterized.parameters(sorted(DATASETS_TO_RUN_INTEGRATION_TESTS_FOR)) def test_dataset_splits_metadata_not_empty(self, dataset_name): metadata = dataset_loader.get_metadata(dataset_name) splits = metadata.additional_metadata['splits'] self.assertNotEmpty(splits) @parameterized.parameters(sorted(DATASETS_TO_RUN_INTEGRATION_TESTS_FOR)) def test_datasets_each_class_has_at_least_one_element(self, dataset_name): metadata = dataset_loader.get_metadata(dataset_name) num_classes = metadata.num_classes splits = metadata.additional_metadata['splits'] per_class_num_points = collections.defaultdict(int) for split in splits: ds = dataset_loader.load_dataset(dataset_name, split) ds = ds.builder_fn().as_numpy_iterator() for elem in ds: label = elem.label per_class_num_points[label] += 1 self.assertLen(per_class_num_points, num_classes) @parameterized.parameters(sorted(DATASETS_TO_RUN_INTEGRATION_TESTS_FOR)) def test_datasets_elements_have_expected_shapes(self, dataset_name): metadata = dataset_loader.get_metadata(dataset_name) num_channels = metadata.num_channels num_classes = metadata.num_classes image_shape = metadata.image_shape splits = metadata.additional_metadata['splits'] for split in splits: ds = dataset_loader.load_dataset(dataset_name, split) ds = ds.builder_fn().as_numpy_iterator() for elem in ds: label = elem.label self.assertEqual(elem.image.shape, image_shape + (num_channels,)) self.assertAllInRange(label, 0, num_classes - 1) # TODO: Make sure that the test fails when image is in (0,1). self.assertAllInRange(elem.image, 0, 255) if __name__ == '__main__': tf.test.main()
dm_nevis-master
dm_nevis/datasets_storage/integration_tests/stable_datasets_test.py