python_code
stringlengths
0
780k
repo_name
stringlengths
7
38
file_path
stringlengths
5
103
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Sweeps for MC Dropout agent.""" import dataclasses from typing import Sequence from enn import losses from enn import networks from neural_testbed import agents from neural_testbed import base as testbed_base from neural_testbed.agents.factories import base as factories_base import numpy as np import optax @dataclasses.dataclass class McDropoutConfig: """Configuration for mc dropout agent.""" dropout_rate: float = 0.1 # Drop probability for each hidden unit length_scale: float = 1. # Length scale used for weight regularization regularization_tau: float = 1. # tau for scaling the weight regularizer dropout_input: bool = False # Whether to have dropout for the input layer exclude_bias_l2: bool = False # Whether to exclude bias from regularization adaptive_weight_scale: bool = True # Whether to scale with prior hidden_sizes: Sequence[int] = (100, 100) # Hidden sizes for neural network num_batches: int = 1000 # Number of SGD steps learning_rate: float = 1e-3 # Learning rate for adam optimizer seed: int = 0 # Initialization seed def make_mc_dropout_agent( config: McDropoutConfig) -> agents.VanillaEnnAgent: """Factory method to create MC dropout agent.""" def make_enn(prior: testbed_base.PriorKnowledge) -> networks.EnnArray: enn = networks.MLPDropoutENN( output_sizes=list(config.hidden_sizes) + [prior.num_classes], dropout_rate=config.dropout_rate, dropout_input=config.dropout_input, seed=config.seed, ) return enn def make_loss(prior: testbed_base.PriorKnowledge, enn: networks.EnnArray) -> losses.LossFnArray: del enn single_loss = losses.combine_single_index_losses_as_metric( train_loss=losses.XentLoss(prior.num_classes), extra_losses={ 'acc': losses.AccuracyErrorLoss(prior.num_classes) }, ) # Averaging over index loss_fn = losses.average_single_index_loss(single_loss, num_index_samples=1) # Adding a special weight regularization based on paper "Dropout as a # Bayesian Approximation: Representing Model Uncertainty in Deep Learning", # https://github.com/yaringal/DropoutUncertaintyExps/blob/master/net/net.py#L72 scale = (config.length_scale**2) * (1 - config.dropout_rate) / ( 2. * prior.num_train * config.regularization_tau) if config.adaptive_weight_scale: scale = config.length_scale * np.sqrt( prior.temperature) * prior.input_dim / prior.num_train if config.exclude_bias_l2: predicate = lambda module, name, value: name != 'b' else: predicate = lambda module, name, value: True loss_fn = losses.add_l2_weight_decay(loss_fn, scale, predicate) return loss_fn agent_config = agents.VanillaEnnConfig( enn_ctor=make_enn, loss_ctor=make_loss, optimizer=optax.adam(config.learning_rate), num_batches=config.num_batches, seed=config.seed,) return agents.VanillaEnnAgent(agent_config) def droprate_sweep() -> Sequence[McDropoutConfig]: """Generates the dropout sweep over dropping parameters for paper.""" sweep = [] for dropout_rate in [0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]: for dropout_input in [True, False]: sweep.append( McDropoutConfig( dropout_rate=dropout_rate, dropout_input=dropout_input)) return tuple(sweep) def l2reg_sweep() -> Sequence[McDropoutConfig]: """Generates the dropout sweep over l2 regularization parameters for paper.""" sweep = [] for adaptive_weight_scale in [True, False]: for length_scale in [1, 3, 10]: sweep.append( McDropoutConfig( adaptive_weight_scale=adaptive_weight_scale, length_scale=length_scale)) return tuple(sweep) def network_sweep() -> Sequence[McDropoutConfig]: """Generates the dropout sweep over dropping parameters for paper.""" sweep = [] for hidden_sizes in [(50, 50), (100, 100), (50, 50, 50)]: sweep.append(McDropoutConfig(hidden_sizes=hidden_sizes)) return tuple(sweep) def combined_sweep() -> Sequence[McDropoutConfig]: return tuple(droprate_sweep()) + tuple(l2reg_sweep()) + tuple(network_sweep()) def paper_agent() -> factories_base.PaperAgent: return factories_base.PaperAgent( default=McDropoutConfig(), ctor=make_mc_dropout_agent, sweep=combined_sweep, )
neural_testbed-master
neural_testbed/agents/factories/sweeps/testbed_2d/dropout.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Sweep for Random Forest agent.""" from typing import Sequence from neural_testbed.agents.factories import base as factories_base from neural_testbed.agents.factories import random_forest def rf_sweep() -> Sequence[random_forest.RandomForestConfig]: sweep = [] for n_estimators in [10, 100, 1000]: for criterion in ['gini', 'entropy']: sweep.append(random_forest.RandomForestConfig(n_estimators, criterion)) return tuple(sweep) def paper_agent() -> factories_base.PaperAgent: return factories_base.PaperAgent( default=random_forest.RandomForestConfig(), ctor=random_forest.make_agent, sweep=rf_sweep, )
neural_testbed-master
neural_testbed/agents/factories/sweeps/testbed_2d/random_forest.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Sweeps for K-nearest neighbors agent.""" from typing import Sequence from neural_testbed.agents.factories import base as factories_base from neural_testbed.agents.factories import knn def knn_sweep() -> Sequence[knn.KnnConfig]: sweep = [] for num_neighbors in [1, 5, 10, 30, 50, 100]: for weighting in ['uniform', 'distance']: sweep.append(knn.KnnConfig(num_neighbors, weighting)) return tuple(sweep) def paper_agent() -> factories_base.PaperAgent: return factories_base.PaperAgent( default=knn.KnnConfig(), ctor=knn.make_agent, sweep=knn_sweep, )
neural_testbed-master
neural_testbed/agents/factories/sweeps/testbed_2d/knn.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Load a problem_id from sweep with CSV logging.""" from neural_testbed import base as testbed_base from neural_testbed import logging from neural_testbed.leaderboard import load def problem_from_id(problem_id: str, results_dir: str = '/tmp/neural_testbed', overwrite: bool = False) -> testbed_base.TestbedProblem: """Factory method to load problem from problem_id and wrap it with a csv logger.""" problem = load.problem_from_id(problem_id) return logging.wrap_problem_csv(problem, problem_id, results_dir, overwrite)
neural_testbed-master
neural_testbed/leaderboard/load_csv.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Display functions for leaderboard entries.""" from typing import Sequence from neural_testbed.leaderboard import score import numpy as np import pandas as pd SCORE_COL = 'kl_estimate' DISPLAY_COLS = ( 'agent_name', 'normalized_kl', 'normalized_stderr', 'mean_test_acc', 'mean_train_seconds', 'mean_evaluation_seconds' ) def _stderr(x): return np.std(x) / np.sqrt(len(x)) def _extract_tau_data(data: score.LeaderboardData, tau: int) -> pd.DataFrame: assert tau in data.df.tau.unique() return data.df[data.df.tau == tau].copy() def _compute_mean(df: pd.DataFrame, column_name: str): """Computes mean running time based on column column_name.""" if column_name not in df.columns: df[column_name] = 0 mean_df = (df.groupby('agent_name')[column_name] .agg([np.mean]) .rename({'mean': 'mean_' + column_name}, axis=1) .reset_index()) return mean_df def _compute_stderr(df: pd.DataFrame, num_seed_per_class: int = 10): """Computes stderr by grouping the problems based on their seeds.""" assert 'seed' in df.columns df['seed_class'] = df['seed'].apply(lambda x: x % num_seed_per_class) kl_seed_df = df.groupby(['agent_name', 'seed_class'])['kl_estimate'].mean().reset_index() stderr_df = kl_seed_df.groupby(['agent_name' ])['kl_estimate'].agg([_stderr]).reset_index() stderr_df = stderr_df.rename({'_stderr': 'stderr_kl'}, axis=1) return stderr_df def compute_normalization(data: score.LeaderboardData, agent_name: str = 'baseline', tau: int = 1) -> float: df = _extract_tau_data(data, tau) return df[df.agent_name == agent_name]['kl_estimate'].mean() def compute_ranking(data: score.LeaderboardData, num_seed_per_class: int = 10, tau: int = 1, kl_limit: float = 1e6) -> pd.DataFrame: """Compute the ranking based on the average KL divergence.""" # Subsample data to a specific tau df = _extract_tau_data(data, tau) if 'baseline:uniform_class_probs' in data.df.agent_name.unique(): normalizing_score = compute_normalization( data, 'baseline:uniform_class_probs', tau) else: print('WARNING: uniform_class_probs agent not included in data, ' 'no normalization is applied.') normalizing_score = 1 # Calculate the mean KL rank_df = _compute_mean(df, column_name=SCORE_COL) # Calculate the std error stderr_df = _compute_stderr(df, num_seed_per_class=num_seed_per_class) rank_df = pd.merge(rank_df, stderr_df, on='agent_name', how='left') # Calculate the mean test acc testacc_df = _compute_mean(df, column_name='test_acc') rank_df = pd.merge(rank_df, testacc_df, on='agent_name', how='left') # Calculate the mean training time traintime_df = _compute_mean(df, column_name='train_seconds') rank_df = pd.merge(rank_df, traintime_df, on='agent_name', how='left') # Calculate the mean evaluation time evaltime_df = _compute_mean(df, column_name='evaluation_seconds') rank_df = pd.merge(rank_df, evaltime_df, on='agent_name', how='left') # TODO(author2): Work out what's going wrong with unhashable hypers e.g. list. for var in data.sweep_vars: try: df[var].unique() except TypeError: df[var] = df[var].astype(str) hyper_df = df[data.sweep_vars].drop_duplicates() df = pd.merge(rank_df, hyper_df, on='agent_name', how='left') # Adding in the normalized values df['normalized_kl'] = df['mean_kl_estimate'] / normalizing_score df['normalized_stderr'] = df['stderr_kl'] / normalizing_score out_df = df.sort_values('normalized_kl').reset_index().drop({'index'}, axis=1) # TODO(author2): Find a better way to limit KL in output plots. return out_df[out_df.normalized_kl < kl_limit] def display_ranking_df( data: score.LeaderboardData, display_cols: Sequence[str] = DISPLAY_COLS, num_seed_per_class: int = 10, tau: int = 1) -> pd.DataFrame: """Display the ranking based on the average KL divergence.""" display_cols = list(display_cols) score_df = compute_ranking(data, num_seed_per_class, tau) return score_df[display_cols]
neural_testbed-master
neural_testbed/leaderboard/plotting.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for neural_testbed.leaderboard.load.""" from absl.testing import absltest from absl.testing import parameterized from neural_testbed.leaderboard import load import numpy as np class LoadTest(parameterized.TestCase): @parameterized.parameters([ ['classification_2d/0'], ['classification_2d/10'], ['classification_2d/100'], ]) def test_gp_loading(self, problem_id: str): """Tests you can load from problem_id and data format matches prior.""" testbed_problem = load.problem_from_id(problem_id) data = testbed_problem.train_data prior = testbed_problem.prior_knowledge assert data.x.shape == (prior.num_train, prior.input_dim) assert data.y.shape == (prior.num_train, 1) assert np.all(~np.isnan(data.x)) assert np.all(~np.isnan(data.y)) if __name__ == '__main__': absltest.main()
neural_testbed-master
neural_testbed/leaderboard/load_test.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Load testbed entries from csv file.""" import glob import os from typing import Any, Sequence, Tuple from neural_testbed.leaderboard import entries_csv from neural_testbed.leaderboard import score from neural_testbed.leaderboard import sweep from neural_testbed.logging import csv_logger import pandas as pd def _load_entry(entry: entries_csv.Entry) -> Tuple[pd.DataFrame, Sequence[str]]: """Loads a single entry from csv logs.""" data = [] results_dir = entry.results_dir for file_path in glob.glob(os.path.join(results_dir, '*.csv')): _, name = os.path.split(file_path) # Rough and ready error-checking for only neural testbed csv files. if not name.startswith(csv_logger.GP_PREFIX): print('Warning - we recommend you use a fresh folder for the results.') continue # Then we will assume that the file is actually a neural testbed result df = pd.read_csv(file_path) file_id = name.strip('.csv').split(csv_logger.INITIAL_SEPARATOR)[1] problem_id = file_id.replace(csv_logger.SAFE_SEPARATOR, sweep.SEPARATOR) df['problem_id'] = problem_id df['results_dir'] = results_dir data.append(df) df = pd.concat(data, sort=False) return df, [] def load_entries( leaderboard_entries: Any, leaderboard_sweep: Sequence[str] = sweep.CLASSIFICATION_2D, verbose: bool = True, ) -> score.LeaderboardData: """Loads leaderboard entries and outputs a list of cleaned AgentData.""" return score.LeaderboardData(*score.load_entries( leaderboard_entries, _load_entry, leaderboard_sweep, verbose))
neural_testbed-master
neural_testbed/leaderboard/score_csv.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Exposing the public methods of leaderboard.""" from neural_testbed.leaderboard.entries_csv import Entry # Leaderboard loading of testbed problem from neural_testbed.leaderboard.load import gaussian_data from neural_testbed.leaderboard.load import make_categorical_kl_estimator from neural_testbed.leaderboard.load import problem_from_config from neural_testbed.leaderboard.load import problem_from_id from neural_testbed.leaderboard.load import problem_with_distribution_shift from neural_testbed.leaderboard.load_csv import problem_from_id as problem_from_id_csv # Leaderboard table from neural_testbed.leaderboard.plotting import display_ranking_df # Leaderboard scoring of experiments from neural_testbed.leaderboard.score import AgentData from neural_testbed.leaderboard.score import combine_leaderboards from neural_testbed.leaderboard.score import join_metadata from neural_testbed.leaderboard.score import LeaderboardData from neural_testbed.leaderboard.score_csv import load_entries as load_entries_csv # Leaderboard sweep of testbed problems from neural_testbed.leaderboard.sweep import CLASSIFICATION from neural_testbed.leaderboard.sweep import CLASSIFICATION_2D from neural_testbed.leaderboard.sweep import CLASSIFICATION_2D_TEST from neural_testbed.leaderboard.sweep import CLASSIFICATION_TEST from neural_testbed.leaderboard.sweep import ENN_PAPER from neural_testbed.leaderboard.sweep import ENN_PAPER_TEST from neural_testbed.leaderboard.sweep import ProblemConfig from neural_testbed.leaderboard.sweep import REGRESSION from neural_testbed.leaderboard.sweep import REGRESSION_TEST from neural_testbed.leaderboard.sweep import SETTINGS from neural_testbed.leaderboard.sweep import ShiftConfig
neural_testbed-master
neural_testbed/leaderboard/__init__.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Leaderboard entries are stored here.""" from typing import Sequence import dataclasses @dataclasses.dataclass class Entry: name: str # A string to describe this leaderboard entry. results_dir: str # A directory to store the output csv. # pylint:disable=line-too-long def get_baselines() -> Sequence[Entry]: """Default baselines for the testbed leaderboard.""" return [ Entry('uniform', '/tmp/neural_testbed'), # Uniform baseline ]
neural_testbed-master
neural_testbed/leaderboard/entries_csv.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Defines the leaderboard sweep for GP testbed.""" import dataclasses from typing import Callable, Dict, List, Optional, Sequence import chex from neural_testbed import base from neural_testbed import generative # problem_ids are strings of the form {sweep_name}{SEPARATOR}{index}. SEPARATOR = '/' # DataFrame results are saved to this name in the log. DATAFRAME = 'neural_testbed_5' # TODO(author3): Define a better type for test_distribution # Maps input dimension to XGenerator for testing data (WIP). _TestDistCtor = Callable[[int], generative.XGenerator] # Logit constructor maps key to logit_fn LogitCtor = Callable[[chex.PRNGKey], generative.LogitFn] @dataclasses.dataclass(frozen=True) class ProblemConfig: """Problem configuration including prior knowledge and some hyperparams.""" # Agent's a priori knowledge about the problem. prior_knowledge: base.PriorKnowledge # Random seed controlling all the randomness in the problem. seed: int # Test sampling distribution and logit_ctor, used only for classification logit_ctor: Optional[LogitCtor] = None # If None --> 2 layer MLP test_distribution: _TestDistCtor = generative.make_gaussian_sampler # Number of inputs (X's) used for evaluation. num_test_seeds: int = 1000 # Number of samples generated from ENN during evaluation. num_enn_samples: int = 1000 # Number of inputs (X's) cached for evaluation. num_test_cache: int = 1000 # Used only by GPRegression data_sampler. epistemic_only: bool = False # Used only by GPRegression. @property def meta_data(self): meta = dataclasses.asdict(self) meta.pop('prior_knowledge') meta.update(dataclasses.asdict(self.prior_knowledge)) return meta @dataclasses.dataclass(frozen=True) class ShiftConfig: """Configuration for distributional shift of input data.""" reject_prob: float fraction_rejected_classes: float def regression_sweep(num_seed: int = 10, initial_seed: int = 0) -> Dict[str, ProblemConfig]: """Generate hyperparameter sweep for regression. Args: num_seed: number of seeds per configuratioon of other hyperparameters. initial_seed: initial value of the seed. Returns: Mapping problem_id: gp_settings (for use in gp_load). """ configs = [] # TODO(author2): convert to itertools seed = initial_seed for input_dim in [1, 10, 100]: for data_ratio in [1, 10, 100]: for noise_std in [0.01, 0.1, 1]: for unused_seed_inc in range(num_seed): seed += 1 num_train = int(data_ratio * input_dim) prior_knowledge = base.PriorKnowledge( input_dim=input_dim, num_train=num_train, noise_std=noise_std, num_classes=1, # Currently fixed and not part of the configs. tau=1, # Currently regression only supports tau=1 layers=1, ) configs.append( ProblemConfig(prior_knowledge, seed, num_enn_samples=100)) return {f'regression{SEPARATOR}{i}': v for i, v in enumerate(configs)} def regression_test_sweep() -> Dict[str, ProblemConfig]: """Reduced sweep for testing regression.""" full_configs = list(regression_sweep(num_seed=1).values()) configs = _filter_unique_configs( full_configs, lambda x: ((x.prior_knowledge.noise_std == 0.1) # pylint: disable=g-long-lambda and (x.prior_knowledge.input_dim == 10) and (x.prior_knowledge.num_train == 10) and (x.prior_knowledge.tau == 1))) return {f'regression_test{SEPARATOR}{i}': v for i, v in enumerate(configs)} def classification_sweep(num_seed: int = 5, initial_seed: int = 0) -> Dict[str, ProblemConfig]: """Generate hyperparameter sweep for classification problems. Args: num_seed: number of seeds per configuration of other hyperparameters. initial_seed: initial value of the seed. Returns: Mapping problem_id: gp_settings (for use in gp_load). """ configs = [] # TODO(author2): convert to itertools for tau in [1, 10]: seed = initial_seed for input_dim in [2, 10, 100]: for data_ratio in [1, 10, 100, 1000]: for temperature in [0.01, 0.1, 0.5]: for unused_seed_inc in range(num_seed): seed += 1 num_train = int(data_ratio * input_dim) prior_knowledge = base.PriorKnowledge( input_dim=input_dim, num_train=num_train, num_classes=2, # Currently fixed and not part of the configs. tau=tau, layers=2, temperature=temperature, ) configs.append( ProblemConfig( prior_knowledge=prior_knowledge, seed=seed, test_distribution=generative.make_polyadic_sampler, ), ) return {f'classification{SEPARATOR}{i}': v for i, v in enumerate(configs)} def classification_test_sweep() -> Dict[str, ProblemConfig]: """Reduced sweep for testing classification problems.""" full_configs = list(classification_sweep(num_seed=1).values()) configs = _filter_unique_configs( full_configs, lambda x: ((x.prior_knowledge.temperature == 0.01) # pylint: disable=g-long-lambda and (x.prior_knowledge.tau == 1) and (x.prior_knowledge.input_dim == 2)) ) return {f'classification_test{SEPARATOR}{i}': v for i, v in enumerate(configs)} def classification_2d_sweep(num_seed: int = 10, initial_seed: int = 0) -> Dict[str, ProblemConfig]: """Generate hyperparameter sweep for 2d classification problems. Args: num_seed: number of seeds per configuratioon of other hyperparameters. initial_seed: initial value of the seed. Returns: Mapping problem_id: gp_settings (for use in gp_load). """ configs = [] # TODO(author2): convert to itertools for tau in [1, 10]: seed = initial_seed for num_train in [1, 3, 10, 30, 100, 300, 1000]: for temperature in [0.01, 0.1, 0.5]: for unused_seed_inc in range(num_seed): seed += 1 prior_knowledge = base.PriorKnowledge( input_dim=2, num_train=num_train, num_classes=2, # Currently fixed and not part of the configs. tau=tau, layers=2, temperature=temperature, ) configs.append(ProblemConfig(prior_knowledge, seed)) return {f'classification_2d{SEPARATOR}{i}': v for i, v in enumerate(configs)} def classification_2d_test_sweep() -> Dict[str, ProblemConfig]: """Reduced sweep for testing 2d classification problems.""" full_configs = list(classification_2d_sweep(num_seed=1).values()) configs = _filter_unique_configs( full_configs, lambda x: ((x.prior_knowledge.temperature == 0.01) # pylint: disable=g-long-lambda and (x.prior_knowledge.tau == 1)) ) return {f'classification_2d_test{SEPARATOR}{i}': v for i, v in enumerate(configs)} def enn_paper_sweep() -> Dict[str, ProblemConfig]: """Generates sweep for GP regression in ENN paper.""" configs = list(regression_sweep().values()) return {f'enn_paper{SEPARATOR}{i}': dataclasses.replace(problem_config, epistemic_only=True) for i, problem_config in enumerate(configs)} def enn_paper_test_sweep() -> Dict[str, ProblemConfig]: """Reduced sweep for testing ENN paper.""" full_configs = list(regression_sweep(num_seed=1).values()) configs = _filter_unique_configs(full_configs, lambda x: x.prior_knowledge.noise_std == .1) return { f'enn_paper_test{SEPARATOR}{i}': dataclasses.replace(problem_config, epistemic_only=True) for i, problem_config in enumerate(configs) } def _filter_unique_configs( configs: Sequence[ProblemConfig], filter_fn: Callable[[ProblemConfig], bool] = lambda _: True, ) -> List[ProblemConfig]: # pytype: disable=annotation-type-mismatch """Filters a list of problem_config to their unique occurrences for testing. Args: configs: list of ProblemConfig. filter_fn: optional function to apply only to subset meeting this condition. Returns: List of unique occurrences for testing. """ observed_configs = set() new_configs = [] for problem_config in configs: if filter_fn(problem_config): if problem_config not in observed_configs: new_configs.append(problem_config) observed_configs.add(problem_config) return new_configs def _merge_without_overwrite( sweeps: Sequence[Dict[str, ProblemConfig]]) -> Dict[str, ProblemConfig]: """Merges sequence of dictionaries while avoiding overwriting keys.""" settings = {} for sweep in sweeps: if set(sweep).intersection(settings): raise KeyError('Sweeps should not have the same keys!') settings.update(sweep) return settings SETTINGS = _merge_without_overwrite([ regression_sweep(), regression_test_sweep(), enn_paper_sweep(), enn_paper_test_sweep(), classification_sweep(), classification_test_sweep(), classification_2d_sweep(), classification_2d_test_sweep(), ]) REGRESSION = tuple(regression_sweep().keys()) REGRESSION_TEST = tuple(regression_test_sweep().keys()) ENN_PAPER = tuple(enn_paper_sweep().keys()) ENN_PAPER_TEST = tuple(enn_paper_test_sweep().keys()) CLASSIFICATION_2D = tuple(classification_2d_sweep().keys()) CLASSIFICATION_2D_TEST = tuple(classification_2d_test_sweep().keys()) CLASSIFICATION = tuple(classification_sweep().keys()) CLASSIFICATION_TEST = tuple(classification_test_sweep().keys())
neural_testbed-master
neural_testbed/leaderboard/sweep.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Loading a leaderboard instance for the testbed.""" from typing import Optional, Tuple from absl import logging import chex import haiku as hk import jax from neural_testbed import base as testbed_base from neural_testbed import generative from neural_testbed import likelihood from neural_testbed.leaderboard import sweep def problem_from_id(problem_id: str) -> testbed_base.TestbedProblem: """Factory method to load leaderboard problem from problem_id. This is a user facing function and its only job is to translate problem_id to prior kowledge. Args: problem_id: a string representing a standard problem in the leaderboard. Returns: A testbed problem. """ logging.info('Loading problem_id: %s', problem_id) try: problem_config = sweep.SETTINGS[problem_id] except KeyError as missing: raise ValueError(f'Unrecognised problem_id={problem_id}') from missing return problem_from_config(problem_config) def problem_from_config( problem_config: sweep.ProblemConfig) -> testbed_base.TestbedProblem: """Returns a testbed problem given a problem config.""" assert problem_config.prior_knowledge.num_classes > 0 if problem_config.prior_knowledge.num_classes > 1: return _load_classification(problem_config) else: return _load_regression(problem_config) def problem_with_distribution_shift( problem_config: sweep.ProblemConfig, shift_config: sweep.ShiftConfig) -> likelihood.SampleBasedTestbed: """Returns a classification problem with input distribution shift.""" return _load_classification(problem_config, shift_config) def _load_classification( problem_config: sweep.ProblemConfig, shift_config: Optional[sweep.ShiftConfig] = None, ) -> likelihood.SampleBasedTestbed: """Loads a classification problem from problem_config, optional shift_config.""" rng = hk.PRNGSequence(problem_config.seed) prior_knowledge = problem_config.prior_knowledge input_dim = prior_knowledge.input_dim # Parse the logit_ctor from config if problem_config.logit_ctor is None: logit_fn = generative.make_2layer_mlp_logit_fn( input_dim=input_dim, temperature=prior_knowledge.temperature, hidden=50, num_classes=prior_knowledge.num_classes, key=next(rng), ) else: logit_fn = problem_config.logit_ctor(next(rng)) # Parse the distribution shift if shift_config is None: override_train_data = None else: override_train_data = generative.make_filtered_gaussian_data( input_dim=prior_knowledge.input_dim, logit_fn=logit_fn, reject_prob=shift_config.reject_prob, fraction_rejected_classes=shift_config.fraction_rejected_classes, num_samples=prior_knowledge.num_train, key=next(rng), ) # Generate the sample based testbed data_sampler = generative.ClassificationEnvLikelihood( logit_fn=logit_fn, x_train_generator=generative.make_gaussian_sampler(input_dim), x_test_generator=problem_config.test_distribution(input_dim), num_train=prior_knowledge.num_train, key=next(rng), override_train_data=override_train_data, tau=prior_knowledge.tau, ) return likelihood.SampleBasedTestbed( data_sampler=data_sampler, sample_based_kl=make_categorical_kl_estimator(problem_config, next(rng)), prior_knowledge=prior_knowledge, ) def make_categorical_kl_estimator( problem_config: sweep.ProblemConfig, key: chex.PRNGKey) -> likelihood.SampleBasedKL: """Make sample based KL estimator for categorial models.""" prior_knowledge = problem_config.prior_knowledge if prior_knowledge.tau > 10: sample_based_kl = likelihood.CategoricalClusterKL( cluster_alg=likelihood.RandomProjection(dimension=7), num_enn_samples=problem_config.num_enn_samples, num_test_seeds=problem_config.num_test_seeds, key=key, ) else: sample_based_kl = likelihood.CategoricalKLSampledXSampledY( num_test_seeds=problem_config.num_test_seeds, num_enn_samples=problem_config.num_enn_samples, key=key, num_classes=prior_knowledge.num_classes, ) sample_based_kl = likelihood.add_classification_accuracy_ece( sample_based_kl, num_test_seeds=int(1_000 / prior_knowledge.tau) + 1, num_enn_samples=100, num_classes=prior_knowledge.num_classes, ) return sample_based_kl def gaussian_data(key: chex.PRNGKey, num_train: int, input_dim: int, num_test: int) -> Tuple[chex.Array, chex.Array]: """Generate Gaussian training and test data.""" train_key, test_key = jax.random.split(key) x_train = jax.random.normal(train_key, [num_train, input_dim]) x_test = jax.random.normal(test_key, [num_test, input_dim]) return x_train, x_test def _load_regression( problem_config: sweep.ProblemConfig) -> testbed_base.TestbedProblem: """Loads a regression problem from problem_config.""" rng = hk.PRNGSequence(problem_config.seed) prior_knowledge = problem_config.prior_knowledge x_train, x_test = gaussian_data( key=next(rng), num_train=prior_knowledge.num_train, input_dim=prior_knowledge.input_dim, num_test=problem_config.num_test_cache, ) if problem_config.epistemic_only: # Special case used only for the ENN paper. assert prior_knowledge.tau == 1, 'Only works for tau=1' data_sampler = generative.GPRegression( kernel_fn=generative.make_benchmark_kernel(prior_knowledge.input_dim), x_train=x_train, x_test=x_test, key=next(rng), tau=prior_knowledge.tau, noise_std=prior_knowledge.noise_std, ) return generative.TestbedGPRegression( data_sampler, prior_knowledge, key=next(rng), num_enn_samples=problem_config.num_enn_samples) data_sampler = generative.GPRegressionEnvLikelihood( kernel_fn=generative.make_benchmark_kernel(prior_knowledge.input_dim), x_train=x_train, x_test=x_test, key=next(rng), tau=prior_knowledge.tau, noise_std=prior_knowledge.noise_std, ) sample_based_kl = likelihood.GaussianSampleKL( # This KL estimator cannot handle very large num_test_seed * tau num_test_seeds=int(problem_config.num_test_seeds / prior_knowledge.tau) + 1, num_enn_samples=problem_config.num_enn_samples, enn_sigma=prior_knowledge.noise_std, key=next(rng), ) return likelihood.SampleBasedTestbed( data_sampler=data_sampler, sample_based_kl=sample_based_kl, prior_knowledge=prior_knowledge, )
neural_testbed-master
neural_testbed/leaderboard/load.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for neural_testbed.leaderboard.score_csv.""" import sys from absl import flags from absl.testing import absltest from absl.testing import parameterized from neural_testbed.leaderboard import entries_csv from neural_testbed.leaderboard import score from neural_testbed.leaderboard import score_csv from neural_testbed.leaderboard import sweep from neural_testbed.logging import csv_logger FLAGS = flags.FLAGS def log_fake_results(problem_id: str, results_dir: str) -> None: """Populate a fake set of results.""" logger = csv_logger.Logger(problem_id, results_dir) logger.write({ 'kl_estimate': 10., 'total_seconds': 2., 'train_seconds': 1., }) class ScoreCsvTest(parameterized.TestCase): @parameterized.parameters([['cool_agent'], ['uncool_agent']]) def test_logger(self, name: str): """Write some fake results to csv and then load them back in.""" try: flags.FLAGS.test_tmpdir except flags.UnparsedFlagAccessError: # Need to initialize flags when running `pytest`. flags.FLAGS(sys.argv) results_dir = self.create_tempdir().full_path for problem_id in sweep.CLASSIFICATION_2D[:10]: log_fake_results(problem_id=problem_id, results_dir=results_dir) # Make a fake entry with this given name, and load it back in. entry = entries_csv.Entry(name, results_dir) data = score_csv.load_entries(entry) # Check that the data is the right type self.assertIsInstance(data, score.LeaderboardData, 'Data is not the right type') # Check that the agent name has been passed through self.assertIn(name, data.names, 'the agent name has been passed through.') # Check that sweep metadata is joined correctly on problem_id self.assertIn('problem_id', data.df.columns, 'sweep metadata is not joined correctly on problem_id.') # Check that we only loaded one agent self.assertLen(data.agents, 1) agent_data = data.agents[0] self.assertIsInstance(agent_data, score.AgentData, 'Agent data is not the right type.') # Check the quality of this single agent data self.assertEqual(agent_data.name, name, 'Agent data does not have the correct name.') self.assertLess(agent_data.pct_health, 0.5, 'Health is less that 50%.') if __name__ == '__main__': absltest.main()
neural_testbed-master
neural_testbed/leaderboard/score_csv_test.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Scoring/validation capabilities for leaderboard entries.""" import copy import dataclasses from typing import Any, Optional, Sequence, Tuple from neural_testbed import logging from neural_testbed.leaderboard import sweep import numpy as np import pandas as pd # Maximum KL valu used to fill missing or non-numeric values KL_FILL = 1e6 _AGENT_SUFFIX = '_agent' @dataclasses.dataclass class AgentData: """Contains cleaned data for a single ENN agent.""" df: pd.DataFrame # Data from full evaluation run name: str = 'agent' # Name for the agent in plots etc score: float = KL_FILL # Overall score on the testbed pct_health: float = 0. # 1 for perfect data, 0 for all missing / NaN validated: bool = False # Has this been validated xm_link: Optional[str] = None # Link to experiment report_link: Optional[str] = None # Link to experiment report @dataclasses.dataclass class LeaderboardData: """Contains cleaned data for a collections of agents.""" agents: Sequence[AgentData] # All of the constituent agents. sweep_vars: Optional[Sequence[str]] = None def __post_init__(self): """Form a cleaned version of the joined data.""" self.df = _make_leaderboard_dataframe(self.agents, self.sweep_vars) self.names = [x.name for x in self.agents] def join_metadata(df: pd.DataFrame) -> pd.DataFrame: """Joins data with GP settings based on problem_id.""" assert 'problem_id' in df.columns metadata = copy.deepcopy(sweep.SETTINGS) data = [] for problem_id, problem_config in metadata.items(): gp_params = {'problem_id': problem_id} gp_params.update(problem_config.meta_data) data.append(gp_params) gp_df = pd.DataFrame(data) # TODO(author2): Work out how to handle clash between agent and problem_id # e.g. if an agent sweeps over temperature and so does the problem! return pd.merge(df, gp_df, on='problem_id', suffixes=(_AGENT_SUFFIX, '')) def _check_drop_duplicate_logs(df: pd.DataFrame, verbose: bool = True) -> pd.DataFrame: """Check for duplicate logging instances, indicating some kind of error.""" main_df = df.copy() # Count the number of replicas for each problem_id count_df = main_df.groupby(['problem_id']).apply(len) count_df = count_df.reset_index().rename({0: 'replicas'}, axis=1) count_df = count_df.drop_duplicates(subset=['problem_id']) duplicates = count_df[count_df.replicas > 1] # If some problem_id have more than one entry --> print a warning message if len(duplicates) > 0: # pylint:disable=g-explicit-length-test if verbose: print('WARNING: multiple logs per problem_id, selecting first entry.') print(duplicates.head()) # Drop duplicate problem_id in case they got logged several times. df = df.drop_duplicates('problem_id') return df def _fix_legacy_problem_id(df: pd.DataFrame) -> pd.DataFrame: # TODO(author2): remove need for this fix after renaming gp_id -> problem_id. if 'gp_id' in df.columns and 'problem_id' not in df.columns: df['problem_id'] = df['gp_id'] return df def _clean_single_agent(df_in: pd.DataFrame, leaderboard_sweep: Sequence[str], agent_name: str = 'agent', kl_fill: float = KL_FILL, negative_tolerance: float = -1e-4, verbose: bool = True) -> AgentData: """Validates and cleans the submission for a single agent.""" df = df_in.copy() df = _fix_legacy_problem_id(df) df = join_metadata(df) df['raw_kl_estimate'] = df['kl_estimate'] problem_ids = df.problem_id.unique() # Adding data_ratio as a column to df if 'data_ratio' not in df.columns: if 'num_train' in df.columns and 'input_dim' in df.columns: df['data_ratio'] = df['num_train'] / df['input_dim'] # If agent name is already in the data, rename to flag_agent_name if 'agent_name' in df.columns: assert len(df.agent_name.unique()) == 1 flag_agent_name = df['agent_name'].iloc[0] df['flag_agent_name'] = flag_agent_name # Use this as the agent name if none is passed if agent_name == 'agent': agent_name = flag_agent_name # Set up a unique name for the agent df['agent_name'] = agent_name if verbose: print('\n' + '+' * 80) print(f'Cleaning data for agent = {agent_name}') # Drop extra problem_id. extra_ids = [idx for idx in problem_ids if idx not in leaderboard_sweep] if extra_ids and verbose: print(f'WARNING: agent={agent_name} has {len(extra_ids)} extra problem_ids' f' these will be dropped:') print(extra_ids) df = df[~df.problem_id.isin(extra_ids)] # Check for duplicate logging instances # TODO(author3): Reflect duplicate entries in pct_health df = _check_drop_duplicate_logs(df, verbose) # Fill missing problem_id missing_ids = [idx for idx in leaderboard_sweep if idx not in problem_ids] if missing_ids: fill_dict = { 'agent_name': agent_name, 'problem_id': missing_ids, 'kl_estimate': kl_fill, } # Don't include the problem_id and kl_estimate columns for missing value. fill_columns = [ col for col in df.columns if col not in ['problem_id', 'kl_estimate']] for col in fill_columns: # TODO(author2): Sort out unhashable columns... try: num_unique = len(df[col].unique()) except TypeError: df[col] = df[col].astype(str) num_unique = len(df[col].unique()) if num_unique == 1: fill_dict[col] = df[col].iloc[0] # TODO(author2): Sort out the merging/filling here... not too safe df = pd.concat([df, pd.DataFrame(fill_dict)]) df = join_metadata(df) if verbose: print(f'WARNING: agent={agent_name} has {len(missing_ids)} missing ' f'problem_ids (these will be filled with {kl_fill}') print(missing_ids) # Negative KL estimates negative_kl = df[df.kl_estimate < 0] num_negative = len(negative_kl) # You're only bad negative if even lower than negative tolerance bad_negative = len(df[df.kl_estimate < negative_tolerance]) if num_negative: kl_values = negative_kl.kl_estimate df.loc[df.kl_estimate < 0, 'kl_estimate'] = 0 if verbose: print(f'WARNING: agent={agent_name} has {num_negative} negative KL, ' 'these will be clipped at zero.') print(f'mean={kl_values.mean()}, min={kl_values.min()}') # Non-numeric KL estimates bad_kl = df[~np.isfinite(df.kl_estimate)] num_bad = len(bad_kl) if num_bad: df.loc[~np.isfinite(df.kl_estimate), 'kl_estimate'] = kl_fill if verbose: print(f'WARNING: agent={agent_name} has {num_bad} non-finite KL. ' f'These values will be filled with {kl_fill}.\n') # Aggregate health of the entry total_bad = num_bad + bad_negative + len(extra_ids) + len(missing_ids) total_entries = len(df) df = df.assign( pct_finite=1 - num_bad/total_entries, pct_negative=1 - num_negative/total_entries, pct_extra=len(extra_ids)/total_entries, pct_missing=len(missing_ids)/total_entries, pct_health=1 - total_bad/total_entries, ) data = AgentData( df=df, name=agent_name, score=df.kl_estimate.mean(), pct_health=1-total_bad/total_entries, validated=True, ) return data def _single_instance_or_list_to_list(var_instances: Any) -> Sequence[Any]: """Convert a potentially single-instance to a list of instance.""" try: _ = len(var_instances) if isinstance(var_instances, str): var_instances = [var_instances] except TypeError: var_instances = [var_instances] return var_instances def _make_variable_postfix(sub_vars: Any, sweep_vars: Sequence[str]) -> str: """Join hyperparameters to identify agent, e.g. num_ensemble=1_net=mlp.""" sub_vars = _single_instance_or_list_to_list(sub_vars) assert len(sub_vars) == len(sweep_vars) return ','.join([f'{a}={b}' for a, b in zip(sweep_vars, sub_vars)]) def _maybe_add_links(agent: AgentData, entry: Any) -> AgentData: # Internal use only. return agent def _load_single_entry( entry: Any, # TODO(author2) turn this into a typevar for entries entry_loader: logging.EntryLoader, leaderboard_sweep: Sequence[str], verbose: bool = True, ) -> Tuple[Sequence[AgentData], Sequence[str]]: """Loads a single leaderboard entry and outputs list of AgentData.""" df, sweep_vars = entry_loader(entry) if sweep_vars: # One entry for each of the sweep_vars data = [] for sub_vars, sub_df in df.groupby(sweep_vars): post_fix = _make_variable_postfix(sub_vars, sweep_vars) agent = _clean_single_agent( sub_df, leaderboard_sweep, agent_name=f'{entry.name}:{post_fix}', verbose=verbose) data.append(_maybe_add_links(agent, entry)) else: # The whole entry is just for one agent agent = _clean_single_agent( df, leaderboard_sweep, agent_name=entry.name, verbose=verbose) data = [_maybe_add_links(agent, entry)] return data, sweep_vars def load_entries( leaderboard_entries: Any, # TODO(author2): sort out this typing. entry_loader: logging.EntryLoader, leaderboard_sweep: Sequence[str] = sweep.CLASSIFICATION_2D, verbose: bool = True, ) -> Tuple[Sequence[AgentData], Sequence[str]]: """Loads leaderboard entries and outputs a list of cleaned AgentData.""" leaderboard_entries = _single_instance_or_list_to_list(leaderboard_entries) data = [] sweep_vars = ['agent_name', 'notes', 'pct_health', 'report_link'] for entry in leaderboard_entries: sub_data, sub_sweep = _load_single_entry( entry, entry_loader, leaderboard_sweep, verbose) data.extend(sub_data) sweep_vars.extend(sub_sweep) return data, sweep_vars def combine_leaderboards(boards: Sequence[LeaderboardData]) -> LeaderboardData: """Combine multiple leaderboards into one.""" agents = [] sweep_vars = [] names = [] for board in boards: sweep_vars.extend(board.sweep_vars) for agent in board.agents: agents.append(agent) if agent.name not in names: names.append(names) else: raise ValueError(f'Duplicate agent={agent.name} encountered.' ' You must rename agent to combine leaderboards.') return LeaderboardData(agents, list(set(sweep_vars))) # For unique columns def _make_leaderboard_dataframe( agents: Sequence[AgentData], sweep_vars: Optional[Sequence[str]] = None, ) -> pd.DataFrame: """Process leaderboard entries into a unified dataframe.""" data = [] for agent in agents: data.append(agent.df.assign(report_link=agent.report_link)) df = pd.concat(data) df['entry_name'] = df.agent_name.apply(lambda x: x.split(':')[0]) df['task'] = df.problem_id.apply(lambda x: x.split('/')[0]) if sweep_vars: for col in sweep_vars: try: df[col] = df[col].fillna('nan') # Fixes bug in pandas groupby NaN. except KeyError: df[col] = 'nan' # This column was completely missing except ValueError: pass # This column did not want to be coerced to 'nan' return df
neural_testbed-master
neural_testbed/leaderboard/score.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Example running an ENN on Thompson bandit task.""" from absl import app from absl import flags from neural_testbed.agents.factories.sweeps import testbed_2d as factories from neural_testbed.bandit import agents from neural_testbed.bandit import thompson # ENN training flags.DEFINE_string('agent_id', 'ensemble+', 'Which benchmark agent to run.') # Bandit problem flags.DEFINE_integer('input_dim', 2, 'Input dimension') flags.DEFINE_float('temperature', 0.1, 'Temperature') flags.DEFINE_integer('num_actions', 50, 'Number of actions') flags.DEFINE_integer('num_steps', 10_000, 'Number of timesteps') flags.DEFINE_integer('seed', 0, 'Bandit seed') flags.DEFINE_integer('steps_per_obs', 1, 'sgds per observation') FLAGS = flags.FLAGS def main(_): # Override this config for different ENNs... must be a VanillaEnnAgent paper_agent = factories.get_paper_agent(FLAGS.agent_id) # Convert testbed agent to sequential decision agent config, l2_weight_decay = agents.make_config_l2_for_bandit( paper_agent=paper_agent, temperature=FLAGS.temperature, seed=FLAGS.seed, ) # Run the bandit experiment with appropriate logging experiment = thompson.ThompsonEnnBandit( enn_config=config, input_dim=FLAGS.input_dim, num_actions=FLAGS.num_actions * FLAGS.input_dim, temperature=FLAGS.temperature, seed=FLAGS.seed, steps_per_obs=FLAGS.steps_per_obs, l2_weight_decay=l2_weight_decay, ) log_freq = int(FLAGS.num_steps / 100) if log_freq == 0: log_freq = 1 experiment.run(FLAGS.num_steps, log_freq) if __name__ == '__main__': app.run(main)
neural_testbed-master
neural_testbed/bandit/run.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================
neural_testbed-master
neural_testbed/bandit/__init__.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Code to adjust testbed agents for sequential decision problems. The focus of this code is to add functionality for a sensible decay of "prior effect" as the number of training points grow. """ import typing from typing import Tuple import chex from enn import base as enn_base from enn import datasets from enn import losses from enn import networks import haiku as hk import jax.numpy as jnp from neural_testbed import agents from neural_testbed import base as testbed_base from neural_testbed.agents.factories import base as factories_base from neural_testbed.agents.factories import bbb def make_config_l2_for_bandit( paper_agent: factories_base.PaperAgent, temperature: float = 1, seed: int = 0, ) -> Tuple[agents.VanillaEnnConfig, float]: """Converts agent to sequential decision form and appropriate l2 decay.""" # Extract agent config config = paper_agent.default # Extract the l2 weight decay parameter from the agent default. # Then, override that paper.default to be zero so we don't double l2 decay. if hasattr(config, 'l2_weight_decay'): l2_weight_decay = config.l2_weight_decay config.l2_weight_decay = 0 elif hasattr(config, 'dropout_rate'): l2_weight_decay = config.length_scale config.length_scale = 0 else: l2_weight_decay = 0 # Rescale l2 weight decay by temperature, and potentially by ensemble size l2_weight_decay *= 2 * temperature if hasattr(config, 'num_ensemble'): l2_weight_decay = l2_weight_decay / config.num_ensemble # Override seed and form agent config.seed = seed agent = paper_agent.ctor(config) assert isinstance(agent, agents.VanillaEnnAgent) agent = typing.cast(agents.VanillaEnnAgent, agent) # If the agent is bbb then we should override the loss_fn if isinstance(config, bbb.BBBConfig): agent.config.loss_ctor = _make_bbb_bandit_loss(config) return agent.config, l2_weight_decay def _make_bbb_bandit_loss(config: bbb.BBBConfig) -> agents.LossCtor: """BBB loss with decaying prior through time for sequential decisions.""" def loss_ctor(prior: testbed_base.PriorKnowledge, enn: networks.EnnArray) -> losses.LossFnArray: del enn log_likelihood_fn = losses.get_categorical_loglike_fn(prior.num_classes) prior_kl_fn = losses.get_analytical_diagonal_linear_model_prior_kl_fn( 1, config.sigma_1) def elbo_loss( apply: networks.ApplyArray, params: hk.Params, state: hk.State, batch: datasets.ArrayBatch, index: enn_base.Index, ) -> enn_base.LossOutput: """Elbo loss with decay per num_steps stored in the batch.""" out, state = apply(params, state, batch.x, index) log_likelihood = log_likelihood_fn(out, batch) prior_kl = prior_kl_fn(out, params, index) chex.assert_equal_shape([log_likelihood, prior_kl]) # Rescaling by num_steps and temperature prior_kl *= 2 * jnp.sqrt(prior.temperature) / batch.extra['num_steps'] return prior_kl - log_likelihood, (state, {}) return losses.average_single_index_loss(elbo_loss, config.num_index_samples) return loss_ctor
neural_testbed-master
neural_testbed/bandit/agents.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for bsuite.baselines.replay. Branched from bsuite: https://github.com/deepmind/bsuite. """ from absl.testing import absltest from neural_testbed.bandit import replay as replay_lib import numpy as np class BasicReplayTest(absltest.TestCase): def test_end_to_end(self): shapes = (10, 10, 3), () capacity = 5 def generate_sample(): return [np.random.randint(0, 256, size=(10, 10, 3), dtype=np.uint8), np.random.uniform(size=())] replay = replay_lib.Replay(capacity=capacity) # Does it crash if we sample when there's barely any data? sample = generate_sample() replay.add(sample) samples = replay.sample(size=2) for sample, shape in zip(samples, shapes): self.assertEqual(sample.shape, (2,) + shape) # Fill to capacity. for _ in range(capacity - 1): replay.add(generate_sample()) samples = replay.sample(size=3) for sample, shape in zip(samples, shapes): self.assertEqual(sample.shape, (3,) + shape) replay.add(generate_sample()) samples = replay.sample(size=capacity) for sample, shape in zip(samples, shapes): self.assertEqual(sample.shape, (capacity,) + shape) if __name__ == '__main__': absltest.main()
neural_testbed-master
neural_testbed/bandit/replay_test.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A simple, uniformly sampled replay buffer. Branched from bsuite: https://github.com/deepmind/bsuite. """ from typing import Any, Optional, Sequence import numpy as np class Replay: """Uniform replay buffer. Allocates all required memory at initialization.""" _data: Optional[Sequence[np.ndarray]] _capacity: int _num_added: int def __init__(self, capacity: int): """Initializes a new `Replay`. Args: capacity: The maximum number of items allowed in the replay. Adding items to a replay that is at maximum capacity will overwrite the oldest items. """ self._data = None self._capacity = capacity self._num_added = 0 def add(self, items: Sequence[Any]): """Adds a single sequence of items to the replay. Args: items: Sequence of items to add. Does not handle batched or nested items. """ if self._data is None: self._preallocate(items) for slot, item in zip(self._data, items): slot[self._num_added % self._capacity] = item self._num_added += 1 def sample(self, size: int) -> Sequence[np.ndarray]: """Returns a transposed/stacked minibatch. Each array has shape [B, ...].""" indices = np.random.randint(self.size, size=size) return [slot[indices] for slot in self._data] def reset(self,): """Resets the replay.""" self._data = None @property def size(self) -> int: return min(self._capacity, self._num_added) @property def fraction_filled(self) -> float: return self.size / self._capacity def _preallocate(self, items: Sequence[Any]): """Assume flat structure of items.""" as_array = [] for item in items: if item is None: raise ValueError('Cannot store `None` objects in replay.') as_array.append(np.asarray(item)) self._data = [np.zeros(dtype=x.dtype, shape=(self._capacity,) + x.shape) for x in as_array] def __repr__(self): return 'Replay: size={}, capacity={}, num_added={}'.format( self.size, self._capacity, self._num_added)
neural_testbed-master
neural_testbed/bandit/replay.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for neural_testbed.experiments.dropout.run.""" from absl import flags from absl.testing import absltest from absl.testing import parameterized from neural_testbed.bandit import run FLAGS = flags.FLAGS PAPER_AGENTS = ['mlp', 'bbb', 'dropout', 'ensemble', 'ensemble+', 'hypermodel'] class RunTest(parameterized.TestCase): @parameterized.parameters([[x] for x in PAPER_AGENTS]) def test_neural_testbed(self, agent_id: str): FLAGS.agent_id = agent_id FLAGS.input_dim = 2 FLAGS.num_steps = 2 FLAGS.num_actions = 2 run.main(None) if __name__ == '__main__': absltest.main()
neural_testbed-master
neural_testbed/bandit/run_test.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Thompson sampling evaluation of ENN agent on bandit task.""" import functools from typing import Dict, Optional, Tuple from acme.utils import loggers import chex from enn import base as enn_base from enn import datasets from enn import losses from enn import networks import haiku as hk import jax import jax.numpy as jnp from neural_testbed import agents from neural_testbed import base as testbed_base from neural_testbed import generative from neural_testbed.bandit import replay from neural_testbed.leaderboard import sweep import optax class ThompsonEnnBandit: """Experiment of Thompson sampling bandit.""" def __init__( self, enn_config: agents.VanillaEnnConfig, input_dim: int, num_actions: int, logit_ctor: Optional[sweep.LogitCtor] = None, temperature: float = 1, steps_per_obs: int = 1, logger: Optional[loggers.Logger] = None, batch_size: int = 128, l2_weight_decay: float = 1, replay_capacity: int = 10_000, learning_rate: float = 1e-3, seed: int = 0, ): """Initialize a Thompson Sampling experiment.""" # Initializing the agent internals prior = testbed_base.PriorKnowledge( input_dim=input_dim, num_train=100, num_classes=2, tau=1, layers=2, temperature=temperature, ) self.enn = enn_config.enn_ctor(prior) loss_fn = enn_config.loss_ctor(prior, self.enn) loss_fn = functools.partial(loss_fn, self.enn) def predicate(module_name: str, name: str, value) -> bool: del name, value return 'prior' not in module_name def loss_with_decay( params: hk.Params, state: hk.State, batch: datasets.ArrayBatch, key: chex.PRNGKey) -> enn_base.LossOutput: # Adding annealing l2 weight decay manually data_loss, (state, metrics) = loss_fn(params, state, batch, key) l2_weight = losses.l2_weights_with_predicate(params, predicate) metrics['l2_weight'] = l2_weight decay_loss = l2_weight_decay * l2_weight / batch.extra['num_steps'] return data_loss + decay_loss, (state, metrics) self._loss_with_decay = jax.jit(loss_with_decay) optimizer = optax.adam(learning_rate) # Forward network at random index def forward(params: hk.Params, inputs: chex.Array, key: chex.PRNGKey) -> chex.Array: index = self.enn.indexer(key) unused_state = {} out, unused_state = self.enn.apply(params, unused_state, inputs, index) return out self._forward = jax.jit(forward) # Perform an SGD step on a batch of data def sgd_step( params: hk.Params, opt_state: optax.OptState, batch: datasets.ArrayBatch, key: chex.PRNGKey, ) -> Tuple[hk.Params, optax.OptState]: unused_state = {} grads, _ = jax.grad( loss_with_decay, has_aux=True)(params, unused_state, batch, key) updates, new_opt_state = optimizer.update(grads, opt_state) new_params = optax.apply_updates(params, updates) return new_params, new_opt_state self._sgd_step = jax.jit(sgd_step) # Generating the underlying function self.rng = hk.PRNGSequence(seed) self.actions = jax.random.normal(next(self.rng), [num_actions, input_dim]) # Create the logit_fn if logit_ctor is None: logit_fn = generative.make_2layer_mlp_logit_fn( input_dim=input_dim, temperature=temperature, hidden=50, num_classes=2, key=next(self.rng), ) else: logit_fn = logit_ctor(next(self.rng)) logits = logit_fn(self.actions) # Vector of probabilities of rewards for each action self.probs = jax.nn.softmax(logits)[:, 1] chex.assert_shape(self.probs, [num_actions]) self.max_prob = jnp.max(self.probs) # Initializing the network index = self.enn.indexer(next(self.rng)) self.params, self.network_state = self.enn.init( next(self.rng), self.actions, index) self.opt_state = optimizer.init(self.params) self._steps_per_obs = steps_per_obs self._temperature = temperature self._batch_size = batch_size self.l2_weight_decay = l2_weight_decay self.replay = replay.Replay(capacity=replay_capacity) self.logger = ( logger or loggers.make_default_logger('experiment', time_delta=0)) self.num_steps = 0 self.total_regret = 0 def select_action(params: hk.Params, key: chex.PRNGKey) -> Dict[str, chex.Array]: net_key, noise_key, selection_key = jax.random.split(key, 3) net_out = forward(params, self.actions, net_key) logits = networks.parse_net_output(net_out) probs = jax.nn.softmax(logits)[:, 1] action = _random_argmax(probs, selection_key) chosen_prob = self.probs[action] reward = jax.random.bernoulli(noise_key, chosen_prob) regret = self.max_prob - chosen_prob return { # pytype: disable=bad-return-type # numpy-scalars 'action': action, 'reward': reward, 'regret': regret, 'chosen_prob': chosen_prob, # for debugging } self._select_action = jax.jit(select_action) def run(self, num_steps: int, log_freq: int = 1): """Run a TS experiment for num_steps.""" for _ in range(num_steps): self.num_steps += 1 regret = self.step() self.total_regret += regret if self.num_steps % log_freq == 0: self.logger.write({ 'total_regret': self.total_regret, 't': self.num_steps, 'ave_regret': self.total_regret / self.num_steps, 'regret': regret, }) for _ in range(self._steps_per_obs): if self.num_steps >= 1: self.params, self.opt_state = self._sgd_step( self.params, self.opt_state, self._get_batch(), next(self.rng)) def step(self) -> float: """Select action, update replay and return the regret.""" results = self._select_action(self.params, next(self.rng)) self.replay.add([ self.actions[results['action']], jnp.ones([1]) * results['reward'], jnp.ones([1], dtype=jnp.int64) * self.num_steps, ]) return float(results['regret']) def _get_batch(self) -> datasets.ArrayBatch: actions, rewards, indices = self.replay.sample(self._batch_size) return datasets.ArrayBatch( # pytype: disable=wrong-arg-types # numpy-scalars x=actions, y=rewards, data_index=indices, extra={'num_steps': self.num_steps}, ) def _random_argmax( vals: chex.Array, key: chex.PRNGKey, scale: float = 1e-7 ) -> int: """Select argmax with additional random noise.""" noise = jax.random.uniform(key, vals.shape) return jnp.argmax(vals + scale * noise, axis=0)
neural_testbed-master
neural_testbed/bandit/thompson.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Neural testbed library for uncertainty evaluation."""
neural_testbed-master
neural_testbed/opensource/__init__.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for efficient_agent.neural_testbed.generative.nt_kernels.""" import itertools from absl.testing import absltest from absl.testing import parameterized import haiku as hk import jax import jax.config import jax.numpy as jnp from neural_testbed.generative import nt_kernels # TODO(author1): move this config update to an explicit initialize function. jax.config.update('jax_enable_x64', True) class NtKernelsTest(parameterized.TestCase): @parameterized.parameters([[x] for x in range(10)]) def test_benchmark_kernel(self, seed: int): # Generate benchmark kernel kernel_fn = nt_kernels.make_benchmark_kernel() rng = hk.PRNGSequence(seed) # Evaluate at random x in 1D x = jax.random.normal(next(rng), [1000, 1]) kernel = kernel_fn(x, x, 'nngp') adjusted_kernel = kernel + 1e-6 * jnp.eye(len(kernel)) # Check that posterior sample non-nan for _ in range(10): sample = jax.random.multivariate_normal( next(rng), jnp.zeros(len(kernel)), adjusted_kernel) assert jnp.all(~jnp.isnan(sample)) @parameterized.parameters( itertools.product(range(10), [1, 10], ['nngp', 'ntk'])) def test_kernel_matrix(self, seed: int, input_dim: int, method: str): """Checks that the kernel matrix is symmetric and positive semi-definite.""" def is_symmetric(x: jnp.ndarray, rtol: float = 1e-05, atol: float = 1e-08): return jnp.allclose(x, x.T, rtol=rtol, atol=atol) def is_pos_semi_definite(x: jnp.ndarray): return jnp.all(jnp.linalg.eigvals(x) >= -1e-10) # Generate benchmark kernel kernel_fn = nt_kernels.make_benchmark_kernel() rng = hk.PRNGSequence(seed) # Evaluate at random x x = jax.random.normal(next(rng), [100, input_dim]) kernel = kernel_fn(x, x, method) # Check that the kernel is symmetric, positive semi-definite assert is_symmetric(kernel) assert is_pos_semi_definite(kernel) if __name__ == '__main__': absltest.main()
neural_testbed-master
neural_testbed/generative/nt_kernels_test.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Specific neural tangent kernels.""" import dataclasses from typing import Any, List, Optional, Tuple, TypeVar, Union from jax import random import jax.numpy as np import neural_tangents as nt from neural_tangents import stax import numpy as np from typing_extensions import Protocol T = TypeVar('T') PyTree = Any NTTree = Union[List[T], Tuple[T, ...], T] Shapes = NTTree[Tuple[int, ...]] """A shape - a tuple of integers, or an :class:`NTTree` of such tuples. """ # Layer Definition. class InitFn(Protocol): """A type alias for initialization functions. Initialization functions construct parameters for neural networks given a random key and an input shape. Specifically, they produce a tuple giving the output shape and a PyTree of parameters. """ def __call__( self, rng: random.KeyArray, input_shape: Shapes, **kwargs ) -> Tuple[Shapes, PyTree]: ... class ApplyFn(Protocol): """A type alias for apply functions. Apply functions do computations with finite-width neural networks. They are functions that take a PyTree of parameters and an array of inputs and produce an array of outputs. """ def __call__( self, params: PyTree, inputs: NTTree[np.ndarray], *args, **kwargs ) -> NTTree[np.ndarray]: ... KernelOrInput = Union[NTTree[nt.Kernel], NTTree[np.ndarray]] Get = Union[Tuple[str, ...], str, None] class LayerKernelFn(Protocol): """A type alias for pure kernel functions. A pure kernel function takes a PyTree of Kernel object(s) and produces a PyTree of Kernel object(s). These functions are used to define new layer types. """ def __call__( self, k: NTTree[nt.Kernel] ) -> NTTree[nt.Kernel]: ... class AnalyticKernelFn(Protocol): """A type alias for analytic kernel functions. A kernel function that computes an analytic kernel. Takes either a :class:`~neural_tangents.Kernel` or :class:`jax.numpy.ndarray` inputs and a `get` argument that specifies what quantities should be computed by the kernel. Returns either a :class:`~neural_tangents.Kernel` object or :class:`jax.numpy.ndarray`-s for kernels specified by `get`. """ def __call__( self, x1: KernelOrInput, x2: Optional[NTTree[np.ndarray]] = None, get: Get = None, **kwargs ) -> Union[NTTree[nt.Kernel], NTTree[np.ndarray]]: ... InternalLayer = Tuple[InitFn, ApplyFn, LayerKernelFn] class KernelCtor(Protocol): """Interface for generating a kernel for a given input dimension.""" def __call__(self, input_dim: int) -> AnalyticKernelFn: """Generates a kernel for a given input dimension.""" @dataclasses.dataclass class MLPKernelCtor(KernelCtor): """Generates a GP kernel corresponding to an infinitely-wide MLP.""" num_hidden_layers: int activation: InternalLayer def __post_init__(self): assert self.num_hidden_layers >= 1, 'Must have at least one hidden layer.' def __call__(self, input_dim: int = 1) -> AnalyticKernelFn: """Generates a kernel for a given input dimension.""" limit_width = 50 # Implementation detail of neural_testbed, unused. layers = [ stax.Dense(limit_width, W_std=1, b_std=1 / np.sqrt(input_dim)) ] for _ in range(self.num_hidden_layers - 1): layers.append(self.activation) layers.append(stax.Dense(limit_width, W_std=1, b_std=0)) layers.append(self.activation) layers.append(stax.Dense(1, W_std=1, b_std=0)) _, _, kernel = stax.serial(*layers) return kernel def make_benchmark_kernel(input_dim: int = 1) -> AnalyticKernelFn: """Creates the benchmark kernel used in leaderboard = 2-layer ReLU.""" kernel_ctor = MLPKernelCtor(num_hidden_layers=2, activation=stax.Relu()) return kernel_ctor(input_dim) def make_linear_kernel(input_dim: int = 1) -> AnalyticKernelFn: """Generate a linear GP kernel for testing putposes.""" layers = [ stax.Dense(1, W_std=1, b_std=1 / np.sqrt(input_dim)), ] _, _, kernel = stax.serial(*layers) return kernel
neural_testbed-master
neural_testbed/generative/nt_kernels.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """GP inference in a classification setting with respect to the environment likelihood.""" from typing import Tuple import chex from enn import metrics import haiku as hk import jax import jax.numpy as jnp from neural_testbed import base as testbed_base from neural_testbed import likelihood from neural_testbed.generative import nt_kernels class GPClassificationEnvLikelihood(likelihood.GenerativeDataSampler): """GP with softmax output, neural_tangent kernel, environment-based inference.""" def __init__(self, kernel_fn: nt_kernels.AnalyticKernelFn, x_train: chex.Array, x_test: chex.Array, key: chex.PRNGKey, tau: int = 1, num_classes: int = 2, temperature: float = 1, kernel_ridge: float = 1e-6, ntk: bool = False): # Checking the dimensionality of our data coming in. num_train, input_dim = x_train.shape num_test_x_cache, input_dim_test = x_test.shape assert input_dim == input_dim_test rng = hk.PRNGSequence(key) self._tau = tau self._input_dim = input_dim self._x_train = jnp.array(x_train) self._x_test = jnp.array(x_test) self._num_train = num_train self._num_test_x_cache = num_test_x_cache self._num_classes = num_classes # Generate environment function across combined_x = [x_train, x_test] mean = jnp.zeros(num_train + num_test_x_cache) get_kernel = 'ntk' if ntk else 'nngp' combined_x = jnp.vstack([self._x_train, self._x_test]) kernel = kernel_fn(combined_x, x2=None, get=get_kernel) kernel += kernel_ridge * jnp.eye(len(kernel)) def sample_environment_probs(key: chex.PRNGKey) -> chex.Array: """Samples environment class probabilities for the data.""" sample_logit = lambda x: jax.random.multivariate_normal(x, mean, kernel) sample_all_class_logits = jax.vmap(sample_logit, out_axes=1) logits = sample_all_class_logits(jax.random.split(key, num_classes)) return jax.nn.softmax(logits / temperature) # [data, classes] # Class probabilities for each data point. self._probabilities = sample_environment_probs(next(rng)) # [data, classes] chex.assert_shape(self._probabilities, [ self._num_train + self._num_test_x_cache, self._num_classes, ]) # Generate training data. def sample_output(probs: chex.Array, key: chex.PRNGKey) -> chex.Array: return jax.random.choice(key, num_classes, p=probs) train_probs = self._probabilities[:num_train] train_keys = jax.random.split(next(rng), num_train) batched_sample = jax.jit(jax.vmap(sample_output)) y_train = batched_sample(train_probs, train_keys)[:, None] self._train_data = testbed_base.Data(x=self._x_train, y=y_train) self._test_probs = self._probabilities[num_train:] @property def train_data(self) -> testbed_base.Data: return self._train_data @property def test_x(self) -> chex.Array: return self._x_test @property def probabilities(self) -> chex.Array: return self._probabilities def test_data(self, key: chex.PRNGKey) -> Tuple[testbed_base.Data, float]: """Generates test data and evaluates log likelihood w.r.t. environment. The test data that is output will be of length tau examples. We wanted to "pass" tau here... but ran into jax.jit issues. Args: key: Random number generator key. Returns: Tuple of data (with tau examples) and log-likelihood under posterior. """ def sample_test_data(key: chex.PRNGKey) -> Tuple[testbed_base.Data, float]: x_key, y_key = jax.random.split(key, 2) # Be careful about the shapes of these arrays: chex.assert_shape( self._test_probs, [self._num_test_x_cache, self._num_classes]) chex.assert_shape( self._x_test, [self._num_test_x_cache, self._input_dim]) # Sample tau x's from the testing cache for evaluation. test_x_indices = jax.random.randint( x_key, [self._tau], 0, self._num_test_x_cache) # For these x indices, find class probabilities. probs = self._test_probs[test_x_indices, :] chex.assert_shape(probs, [self._tau, self._num_classes]) # For these x indices, find the corresponding x test. x_test = self._x_test[test_x_indices, :] chex.assert_shape(x_test, [self._tau, self._input_dim]) def sample_output(key: chex.PRNGKey, p: chex.Array) -> chex.Array: """Samples a single output for a single key, for single class probs.""" return jax.random.choice(key, self._num_classes, shape=(1,), p=p) y_keys = jax.random.split(y_key, self._tau) y_test = jax.vmap(sample_output)(y_keys, probs) data = testbed_base.Data(x=x_test, y=y_test) chex.assert_shape(data.x, [self._tau, self._input_dim]) chex.assert_shape(data.y, [self._tau, 1]) # Compute the log likelihood with respect to the environment log_likelihood = metrics.categorical_log_likelihood(probs, y_test) return data, log_likelihood return jax.jit(sample_test_data)(key)
neural_testbed-master
neural_testbed/generative/gp_classification_envlikelihood.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Functions to sanity-check output in 1D plots.""" from typing import Dict import chex import haiku as hk import jax from neural_testbed import base as testbed_base from neural_testbed import likelihood from neural_testbed.generative import classification_envlikelihood from neural_testbed.generative import gp_regression from neural_testbed.generative import nt_kernels import numpy as np import pandas as pd import plotnine as gg def set_gg_theme(): """Sets the global ggplot theme.""" try: # TODO(author2): Understand why this is causing errors in testing. gg.theme_set(gg.theme_bw(base_size=16, base_family='serif')) gg.theme_update(figure_size=(12, 8), panel_spacing=0.5) except RuntimeError: pass def sanity_plots( true_model: testbed_base.TestbedProblem, enn_sampler: testbed_base.EpistemicSampler, ) -> Dict[str, gg.ggplot]: """Sanity check plots for output of GP testbed output.""" set_gg_theme() if hasattr(true_model, 'problem'): true_model = true_model.problem # Removing logging wrappers prior = true_model.prior_knowledge # Specialized plotting for the 2D classification infra. if prior.num_classes == 2 and prior.input_dim == 2: # TODO(author2): annotate true_model as classification. if not hasattr(true_model, 'data_sampler'): raise ValueError('Error in plotting infrastructure.') problem = true_model.data_sampler return generate_2d_plots(problem, enn_sampler) # pytype:disable=wrong-arg-types else: return {'enn': sanity_1d(true_model, enn_sampler)} def sanity_1d(true_model: testbed_base.TestbedProblem, enn_sampler: testbed_base.EpistemicSampler) -> gg.ggplot: """Sanity check to plot 1D representation of the GP testbed output.""" set_gg_theme() if hasattr(true_model, 'problem'): true_model = true_model.problem # Removing logging wrappers if not hasattr(true_model, 'data_sampler'): return gg.ggplot() if true_model.prior_knowledge.num_classes == 1: gp_model = true_model.data_sampler if not isinstance(gp_model, gp_regression.GPRegression): print('WARNING: no plot implemented') return gg.ggplot() return plot_1d_regression(gp_model, enn_sampler) else: if not isinstance(true_model, likelihood.SampleBasedTestbed): raise ValueError('Unrecognised testbed for classification plot.') return plot_1d_classification(true_model, enn_sampler) def _gen_samples(enn_sampler: testbed_base.EpistemicSampler, x: chex.Array, num_samples: int, categorical: bool = False) -> pd.DataFrame: """Generate posterior samples at x (not implemented for all posterior).""" # Generate the samples data = [] rng = hk.PRNGSequence(jax.random.PRNGKey(seed=0)) for seed in range(num_samples): net_out = enn_sampler(x, next(rng)) y = jax.nn.softmax(net_out)[:, 1] if categorical else net_out[:, 0] data.append(pd.DataFrame({'x': x[:, 0], 'y': y, 'seed': seed})) sample_df = pd.concat(data) # Aggregate the samples for plotting def pct_95(x): return np.percentile(x, 95) def pct_5(x): return np.percentile(x, 5) enn_df = (sample_df.groupby('x')['y'] .agg([np.mean, np.std, pct_5, pct_95]).reset_index()) enn_df = enn_df.rename({'mean': 'y'}, axis=1) enn_df['method'] = 'enn' return enn_df def plot_1d_regression(gp_model: gp_regression.GPRegression, enn_sampler: testbed_base.EpistemicSampler, num_samples: int = 100) -> gg.ggplot: """Plots 1D regression with confidence intervals.""" # Training data train_data = gp_model.train_data df = pd.DataFrame({'x': train_data.x[:, 0], 'y': train_data.y[:, 0]}) # Posterior data posterior_df = pd.DataFrame({ 'x': gp_model.x_test[:, 0], 'y': gp_model.test_mean[:, 0], 'std': np.sqrt(np.diag(gp_model.test_cov)), }) posterior_df['method'] = 'gp' # ENN data enn_df = _gen_samples(enn_sampler, gp_model.x_test, num_samples) p = (gg.ggplot(pd.concat([posterior_df, enn_df])) + gg.aes(x='x', y='y', ymin='y-std', ymax='y+std', group='method') + gg.geom_ribbon(gg.aes(fill='method'), alpha=0.25) + gg.geom_line(gg.aes(colour='method'), size=2) + gg.geom_point(gg.aes(x='x', y='y'), data=df, size=4, inherit_aes=False) + gg.scale_colour_manual(['#e41a1c', '#377eb8']) + gg.scale_fill_manual(['#e41a1c', '#377eb8']) ) return p def plot_1d_classification(true_model, # TODO(author2): add typing enn_sampler: testbed_base.EpistemicSampler, num_samples: int = 100) -> gg.ggplot: """Plots 1D classification with ENN samples.""" x, y = true_model.train_data # Pulling out the training data df = pd.DataFrame({'x': x[:, 0], 'y': y[:, 0]}) # Generate samples from the ENN at 1000 randomly generated test datapoints. def gen_test(key: chex.PRNGKey) -> testbed_base.Data: data, _ = true_model.data_sampler.test_data(key) return testbed_base.Data(x=data.x[0, :], y=data.y[0, :]) data_keys = jax.random.split(jax.random.PRNGKey(seed=0), 1000) data = jax.jit(jax.vmap(gen_test))(data_keys) enn_df = _gen_samples(enn_sampler, data.x, num_samples, categorical=True) # Calculate the true function distribution x = true_model.data_sampler.test_x _, input_dim = x.shape prob_df = pd.DataFrame({ 'x': x[:, 0], 'y': true_model.data_sampler.probabilities[:, 1], }) prob_df['std'] = 0 prob_df['method'] = 'true_function' p = (gg.ggplot(pd.concat([prob_df, enn_df])) + gg.aes(x='x', y='y', ymin='pct_5', ymax='pct_95', group='method') + gg.geom_hline(yintercept=0, alpha=0.2, linetype='dashed') + gg.geom_hline(yintercept=1, alpha=0.2, linetype='dashed') + gg.geom_ribbon(gg.aes(fill='method'), alpha=0.25) + gg.geom_line(gg.aes(colour='method'), size=2) + gg.geom_point(gg.aes(x='x', y='y'), data=df[df.y == 1], size=5, colour='#377eb8', inherit_aes=False) + gg.geom_point(gg.aes(x='x', y='y'), data=df[df.y == 0], size=5, colour='#e41a1c', inherit_aes=False) + gg.scale_colour_manual(['green', 'black']) + gg.scale_fill_manual(['green', 'black']) + gg.ylab('probability of class 1') + gg.xlab(f'x[0] of {input_dim}-dimensional input.') ) return p def investigate_1d_regression_model( kernel_fn: nt_kernels.AnalyticKernelFn = nt_kernels.make_benchmark_kernel(), num_train: int = 5) -> gg.ggplot: """Plots the 1D posterior for random training data in regression model. This plot is effectively a poor-man's test... just to be able to visually inspect the qualitative behaviour of the 1D regression posterior. Args: kernel_fn: kernel function defining the GP. num_train: number of training points. Returns: gg.ggplot investigation of 1D posterior. """ x_test = np.random.randn(1000, 1) data_sampler = gp_regression.GPRegression( kernel_fn, x_train=np.random.randn(num_train, 1), x_test=x_test, key=jax.random.PRNGKey(13), noise_std=0.3, tau=100, ) train_data = data_sampler.train_data df = pd.DataFrame({'x': train_data.x[:, 0], 'y': train_data.y[:, 0]}) plt_df = pd.DataFrame({ 'x': x_test[:, 0], 'mean': data_sampler._test_mean[:, 0], # pylint:disable=protected-access 'std': np.sqrt(np.diag(data_sampler._test_cov)), # pylint:disable=protected-access }) p = (gg.ggplot(plt_df) + gg.aes(x='x') + gg.geom_line(gg.aes(y='mean', ymin='mean-std', ymax='mean+std'), colour='red', size=2) + gg.geom_ribbon(gg.aes(y='mean', ymin='mean-std', ymax='mean+std'), alpha=0.25, fill='red') + gg.geom_point(gg.aes(y='y'), data=df, size=3)) return p ############################################################ # Specialized plots for 2D problems BLUE = '#084594' RED = '#e41a1c' def gen_2d_grid(plot_range: float) -> np.ndarray: """Generates a 2D grid for data in a certain_range.""" data = [] x_range = np.linspace(-plot_range, plot_range) for x1 in x_range: for x2 in x_range: data.append((x1, x2)) return np.vstack(data) def _gen_samples_2d(enn_sampler: testbed_base.EpistemicSampler, x: chex.Array, num_samples: int, categorical: bool = False) -> pd.DataFrame: """Generate posterior samples at x (not implemented for all posterior).""" # Generate the samples data = [] rng = hk.PRNGSequence(jax.random.PRNGKey(seed=0)) for seed in range(num_samples): net_out = enn_sampler(x, next(rng)) y = jax.nn.softmax(net_out)[:, 1] if categorical else net_out[:, 0] df = pd.DataFrame({'x0': x[:, 0], 'x1': x[:, 1], 'y': y, 'seed': seed}) data.append(df) return pd.concat(data) def _agg_samples_2d(sample_df: pd.DataFrame) -> pd.DataFrame: """Aggregate ENN samples for plotting.""" def pct_95(x): return np.percentile(x, 95) def pct_5(x): return np.percentile(x, 5) enn_df = (sample_df.groupby(['x0', 'x1'])['y'] .agg([np.mean, np.std, pct_5, pct_95]).reset_index()) enn_df = enn_df.rename({'mean': 'y'}, axis=1) enn_df['method'] = 'enn' return enn_df def _gen_problem_2d( problem: classification_envlikelihood.ClassificationEnvLikelihood, x: chex.Array, ) -> pd.DataFrame: """Generate underlying problem dataset.""" assert x.shape[1] == 2 logits = problem._logit_fn(x) # pylint:disable=protected-access test_probs = jax.nn.softmax(logits)[:, 1] np_data = np.hstack([x, test_probs[:, None]]) problem_df = pd.DataFrame(np_data, columns=['x0', 'x1', 'y']) problem_df['method'] = 'true_function' return problem_df def _make_train_2d( problem: classification_envlikelihood.ClassificationEnvLikelihood): data = problem.train_data return pd.DataFrame(np.hstack([data.x, data.y]), columns=['x0', 'x1', 'y']) def _plot_default_2d(problem_df: pd.DataFrame, enn_df: pd.DataFrame, train_df: pd.DataFrame) -> gg.ggplot: """Side-by-side plot comparing ENN and true function.""" p = (gg.ggplot(pd.concat([problem_df, enn_df])) + gg.aes(x='x0', y='x1', fill='y') + gg.geom_tile() + gg.geom_point(data=train_df, size=3, stroke=1.5, alpha=0.7) + gg.scale_fill_gradient2(BLUE, 'white', RED, midpoint=0.5) + gg.facet_wrap('method') + gg.theme(figure_size=(12, 5)) + gg.ggtitle('Comparing ENN and true probabilities') ) return p def _plot_expanded_2d(problem_df: pd.DataFrame, enn_df: pd.DataFrame, train_df: pd.DataFrame) -> gg.ggplot: """Side-by-side plot comparing ENN and true function with pct_5, pct_95.""" plt_df = pd.melt(enn_df, id_vars=['x0', 'x1'], value_vars=['y', 'pct_5', 'pct_95']) plt_df['variable'] = plt_df.variable.apply(lambda x: 'enn:' + x) problem_df['value'] = problem_df['y'] problem_df['variable'] = 'true_function' p = (gg.ggplot(pd.concat([problem_df, plt_df])) + gg.aes(x='x0', y='x1', fill='value') + gg.geom_tile() + gg.geom_point(gg.aes(fill='y'), data=train_df, size=3, stroke=1.5, alpha=0.7) + gg.scale_fill_gradient2(BLUE, 'white', RED, midpoint=0.5) + gg.facet_wrap('variable') + gg.theme(figure_size=(12, 10)) + gg.ggtitle('Comparing ENN and true probabilities')) return p def _plot_error_2d(problem_df: pd.DataFrame, enn_df: pd.DataFrame, train_df: pd.DataFrame) -> gg.ggplot: """Single plot of error in ENN.""" plt_df = pd.merge( enn_df, problem_df, on=['x0', 'x1'], suffixes=('_enn', '_problem')) p = (gg.ggplot(plt_df) + gg.aes(x='x0', y='x1', fill='y_problem - y_enn') + gg.scale_fill_gradient2(BLUE, 'white', RED, midpoint=0) + gg.geom_tile() + gg.geom_point(gg.aes(x='x0', y='x1', fill='y'), data=train_df, size=3, stroke=1.5, inherit_aes=False, show_legend=False) + gg.theme(figure_size=(7, 5)) + gg.ggtitle('Error in ENN mean estimation') ) return p def _plot_std_2d(enn_df: pd.DataFrame, train_df: pd.DataFrame) -> gg.ggplot: """Single plot of standard deviation in ENN predications.""" p = (gg.ggplot(enn_df) + gg.aes(x='x0', y='x1', fill='std') + gg.scale_fill_gradient2('white', '#005a32', '#ffff33', midpoint=0.1) + gg.geom_tile() + gg.geom_point(gg.aes(x='x0', y='x1', colour='y'), data=train_df, size=3, inherit_aes=False, show_legend=False, alpha=0.7) + gg.scale_colour_gradient(BLUE, RED, limits=[0, 1]) + gg.theme(figure_size=(7, 5)) + gg.ggtitle('Standard deviation in ENN predications') ) return p def _plot_enn_samples_2d(sample_df: pd.DataFrame, train_df: pd.DataFrame) -> gg.ggplot: """Plot realizations of enn samples.""" p = (gg.ggplot(sample_df) + gg.aes(x='x0', y='x1', fill='y') + gg.geom_tile() + gg.geom_point(data=train_df, size=3, stroke=1.5) + gg.scale_fill_gradient2(BLUE, 'white', RED, midpoint=0.5) + gg.facet_wrap('seed', labeller='label_both') + gg.theme(figure_size=(18, 12), panel_spacing=0.1) + gg.ggtitle('ENN sample realizations') ) return p def generate_2d_plots( true_model: classification_envlikelihood.ClassificationEnvLikelihood, enn_sampler: testbed_base.EpistemicSampler, num_samples: int = 20) -> Dict[str, gg.ggplot]: """Generates a sequence of plots for debugging.""" x = gen_2d_grid(3) sample_df = _gen_samples_2d(enn_sampler, x, num_samples, categorical=True) enn_df = _agg_samples_2d(sample_df) problem_df = _gen_problem_2d(true_model, x) train_df = _make_train_2d(true_model) return { 'enn': _plot_default_2d(problem_df, enn_df, train_df), 'more_enn': _plot_expanded_2d(problem_df, enn_df, train_df), 'err_enn': _plot_error_2d(problem_df, enn_df, train_df), 'std_enn': _plot_std_2d(enn_df, train_df), 'sample_enn': _plot_enn_samples_2d(sample_df, train_df), }
neural_testbed-master
neural_testbed/generative/plotting.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for neural_testbed.generative.gp_regression.""" import itertools from absl.testing import absltest from absl.testing import parameterized import haiku as hk import jax.config from neural_testbed.generative import gp_regression from neural_testbed.generative import nt_kernels import numpy as np # This is necessary to prevent nans. # TODO(author6): Look into fixing the nans and removing this. jax.config.update('jax_enable_x64', True) class GPRegressionTest(parameterized.TestCase): @parameterized.parameters(itertools.product([3, 10], [1, 3], [1, 3])) def test_valid_data(self, num_train: int, input_dim: int, tau: int): np.random.seed(0) noise_std = 0.1 rng = hk.PRNGSequence(0) gp_model = gp_regression.GPRegression( kernel_fn=nt_kernels.make_benchmark_kernel(), x_train=np.random.randn(num_train, input_dim), x_test=np.random.randn(10, input_dim), key=next(rng), tau=tau, noise_std=noise_std, ) # Check that the training data is reasonable. train_data = gp_model.train_data assert train_data.x.shape == (num_train, input_dim) assert train_data.y.shape == (num_train, 1) assert np.all(~np.isnan(train_data.x)) assert np.all(~np.isnan(train_data.y)) # Check that the testing data is reasonable. for _ in range(2): test_data, log_likelihood = gp_model.test_data(next(rng)) assert np.isfinite(log_likelihood) assert test_data.x.shape == (tau, input_dim) assert test_data.y.shape == (tau, 1) assert np.all(~np.isnan(test_data.x)) assert np.all(~np.isnan(test_data.y)) @parameterized.parameters(itertools.product([1, 10, 20], [10, 20])) def test_not_all_test_data_same_x(self, num_train: int, num_test: int): """Generates testing data and checks not all the same x value.""" np.random.seed(0) num_test_seeds = 10 input_dim = 2 rng = hk.PRNGSequence(0) gp_model = gp_regression.GPRegression( kernel_fn=nt_kernels.make_benchmark_kernel(), x_train=np.random.randn(num_train, input_dim), x_test=np.random.randn(num_test, input_dim), key=next(rng), tau=1, ) num_distinct_x = 0 reference_data, _ = gp_model.test_data(key=next(rng)) for _ in range(num_test_seeds): test_data, _ = gp_model.test_data(key=next(rng)) if not np.all(np.isclose(test_data.x, reference_data.x)): num_distinct_x += 1 assert num_distinct_x > 0 if __name__ == '__main__': absltest.main()
neural_testbed-master
neural_testbed/generative/gp_regression_test.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for neural_testbed.generative.gp_regression_envlikelihood.""" import itertools from absl.testing import absltest from absl.testing import parameterized import haiku as hk from neural_testbed.generative import gp_regression_envlikelihood from neural_testbed.generative import nt_kernels import numpy as np class GPRegressionTest(parameterized.TestCase): @parameterized.parameters(itertools.product([3, 10], [1, 3], [1, 3])) def test_valid_data(self, num_train: int, input_dim: int, tau: int): np.random.seed(0) noise_std = 0.1 rng = hk.PRNGSequence(0) gp_model = gp_regression_envlikelihood.GPRegressionEnvLikelihood( kernel_fn=nt_kernels.make_benchmark_kernel(), x_train=np.random.randn(num_train, input_dim), x_test=np.random.randn(10, input_dim), key=next(rng), tau=tau, noise_std=noise_std, ) # Check that the training data is reasonable. train_data = gp_model.train_data assert train_data.x.shape == (num_train, input_dim) assert train_data.y.shape == (num_train, 1) assert np.all(~np.isnan(train_data.x)) assert np.all(~np.isnan(train_data.y)) # Check that the testing data is reasonable. for _ in range(3): test_data, log_likelihood = gp_model.test_data(next(rng)) assert np.isfinite(log_likelihood) assert test_data.x.shape == (tau, input_dim) assert test_data.y.shape == (tau, 1) assert np.all(~np.isnan(test_data.x)) assert np.all(~np.isnan(test_data.y)) @parameterized.parameters(itertools.product([1, 10, 100], [10, 20])) def test_not_all_test_data_same_x(self, num_train: int, num_test: int): """Generates testing data and checks not all the same x value.""" np.random.seed(0) num_test_seeds = 10 input_dim = 2 rng = hk.PRNGSequence(0) gp_model = gp_regression_envlikelihood.GPRegressionEnvLikelihood( kernel_fn=nt_kernels.make_benchmark_kernel(), x_train=np.random.randn(num_train, input_dim), x_test=np.random.randn(num_test, input_dim), key=next(rng), tau=1, ) num_distinct_x = 0 reference_data, _ = gp_model.test_data(key=next(rng)) for _ in range(num_test_seeds): test_data, _ = gp_model.test_data(key=next(rng)) if not np.all(np.isclose(test_data.x, reference_data.x)): num_distinct_x += 1 assert num_distinct_x > 0 if __name__ == '__main__': absltest.main()
neural_testbed-master
neural_testbed/generative/gp_regression_envlikelihood_test.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Exposing the public methods of generative data models.""" # Classification w.r.t environment likelihood from neural_testbed.generative.classification_envlikelihood import ClassificationEnvLikelihood from neural_testbed.generative.classification_envlikelihood import LogitFn from neural_testbed.generative.classification_envlikelihood import make_gaussian_sampler from neural_testbed.generative.classification_envlikelihood import make_polyadic_sampler from neural_testbed.generative.classification_envlikelihood import make_weibull_sampler from neural_testbed.generative.classification_envlikelihood import XGenerator # Factories from neural_testbed.generative.factories import make_2layer_mlp_logit_fn from neural_testbed.generative.factories import make_filtered_gaussian_data # Classification with GP likelihood from neural_testbed.generative.gp_classification_envlikelihood import GPClassificationEnvLikelihood # Regression from neural_testbed.generative.gp_regression import GPRegression from neural_testbed.generative.gp_regression import TestbedGPRegression # Regression w.r.t environment likelihood from neural_testbed.generative.gp_regression_envlikelihood import GPRegressionEnvLikelihood # Neural tangents kernels from neural_testbed.generative.nt_kernels import KernelCtor from neural_testbed.generative.nt_kernels import make_benchmark_kernel from neural_testbed.generative.nt_kernels import make_linear_kernel from neural_testbed.generative.nt_kernels import MLPKernelCtor # Plotting from neural_testbed.generative.plotting import generate_2d_plots from neural_testbed.generative.plotting import sanity_1d from neural_testbed.generative.plotting import sanity_plots
neural_testbed-master
neural_testbed/generative/__init__.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """GP inference in a regression setting with respect to the environment likelihood.""" from typing import Tuple import chex import haiku as hk import jax import jax.numpy as jnp from neural_testbed import base as testbed_base from neural_testbed import likelihood from neural_testbed.generative import nt_kernels class GPRegressionEnvLikelihood(likelihood.GenerativeDataSampler): """GP with gaussian noise output.""" def __init__(self, kernel_fn: nt_kernels.AnalyticKernelFn, x_train: chex.Array, x_test: chex.Array, key: chex.PRNGKey, tau: int = 1, noise_std: float = 1, kernel_ridge: float = 1e-6, ntk: bool = False): # Checking the dimensionality of our data coming in. num_train, input_dim = x_train.shape num_test_x_cache, input_dim_test = x_test.shape assert input_dim == input_dim_test rng = hk.PRNGSequence(key) self._tau = tau self._input_dim = input_dim self._x_train = jnp.array(x_train) self._x_test = jnp.array(x_test) self._num_train = num_train self._num_test_x_cache = num_test_x_cache self._noise_std = noise_std self._kernel_ridge = kernel_ridge # Generate environment function across combined_x = [x_train, x_test] mean = jnp.zeros(num_train + num_test_x_cache) get_kernel = 'ntk' if ntk else 'nngp' combined_x = jnp.vstack([self._x_train, self._x_test]) kernel = kernel_fn(combined_x, x2=None, get=get_kernel) kernel += kernel_ridge * jnp.eye(len(kernel)) y_function = jax.random.multivariate_normal(next(rng), mean, kernel) chex.assert_shape(y_function, [num_train + num_test_x_cache,]) # Form the training data y_noise = jax.random.normal(next(rng), [num_train, 1]) * noise_std y_train = y_function[:num_train, None] + y_noise self._train_data = testbed_base.Data(x_train, y_train) chex.assert_shape(y_train, [num_train, 1]) # Form the testing data self._y_test_function = y_function[-num_test_x_cache:] chex.assert_shape(self._y_test_function, [num_test_x_cache,]) @property def x_test(self) -> chex.Array: return self._x_test @property def train_data(self) -> testbed_base.Data: return self._train_data def test_data(self, key: chex.PRNGKey) -> Tuple[testbed_base.Data, float]: """Generates test data and evaluates log likelihood w.r.t. environment. The test data that is output will be of length tau examples. We wanted to "pass" tau here... but ran into jax.jit issues. Args: key: Random number generator key. Returns: Tuple of data (with tau examples) and log-likelihood under posterior. """ def sample_test_data(key: chex.PRNGKey) -> Tuple[testbed_base.Data, float]: x_key, y_key = jax.random.split(key, 2) # Sample tau x's from the testing cache for evaluation test_x_indices = jax.random.randint( x_key, [self._tau], 0, self._num_test_x_cache) x_test = self._x_test[test_x_indices] chex.assert_shape(x_test, [self._tau, self._input_dim]) # Sample y_function for the test data y_function = self._y_test_function[test_x_indices] y_noise = jax.random.normal(y_key, [self._tau, 1]) * self._noise_std y_test = y_function[:, None] + y_noise data = testbed_base.Data(x_test, y_test) chex.assert_shape(y_test, [self._tau, 1]) # Compute the log likelihood with respect to the environment err = y_noise chex.assert_shape(err, [self._tau, 1]) cov = self._noise_std ** 2 * jnp.eye(self._tau) chex.assert_shape(cov, [self._tau, self._tau]) log_likelihood = likelihood.gaussian_log_likelihood(err, cov) return data, log_likelihood return jax.jit(sample_test_data)(key)
neural_testbed-master
neural_testbed/generative/gp_regression_envlikelihood.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Convenient factory methods to help build generative models.""" from typing import Callable import chex import haiku as hk import jax import jax.numpy as jnp from neural_testbed import base as testbed_base from neural_testbed.generative import classification_envlikelihood as class_env def make_2layer_mlp_logit_fn( input_dim: int, temperature: float, hidden: int, num_classes: int, key: chex.PRNGKey, activation: Callable[[chex.Array], chex.Array] = jax.nn.relu, ) -> class_env.LogitFn: """Factory method to create a generative model around a 2-layer MLP.""" # Generating the logit function def net_fn(x: chex.Array) -> chex.Array: """Defining the generative model MLP.""" y = hk.Linear( output_size=hidden, b_init=hk.initializers.RandomNormal(1./jnp.sqrt(input_dim)), )(x) y = activation(y) y = hk.Linear(hidden)(y) y = activation(y) return hk.Linear(num_classes)(y) transformed = hk.without_apply_rng(hk.transform(net_fn)) dummy_input = jnp.zeros([1, input_dim]) params = transformed.init(key, dummy_input) def forward(x: chex.Array) -> chex.Array: return transformed.apply(params, x) / temperature logit_fn = jax.jit(forward) return logit_fn def make_filtered_gaussian_data( input_dim: int, logit_fn: class_env.LogitFn, reject_prob: float, fraction_rejected_classes: float, num_samples: int, key: chex.PRNGKey, max_itr: int = 30) -> testbed_base.Data: """Make a gaussian sampler that filters samples based on class labels.""" # TODO(author2): WARNING - you cannot jit this function! def sample_gaussian_data(num_samples, key): data, _ = class_env.sample_gaussian_data( logit_fn=logit_fn, x_generator=class_env.make_gaussian_sampler(input_dim), num_train=num_samples, key=key,) return data rng = hk.PRNGSequence(key) dummy_logits = logit_fn(jnp.zeros([10, input_dim])) num_classes = dummy_logits.shape[1] num_rejected_classes = int(fraction_rejected_classes * num_classes) if num_rejected_classes == 0 or reject_prob == 0: return sample_gaussian_data(num_samples, next(rng)) rejected_classes = jax.random.randint( next(rng), shape=(num_rejected_classes,), minval=0, maxval=num_classes) x_all = [] y_all = [] itr = 0 total_samples = 0 samples_per_itr = num_samples * 2 while (total_samples < num_samples) and (itr < max_itr): data = sample_gaussian_data(samples_per_itr, next(rng)) x, y = data.x, data.y mask_reject = jnp.isin(y.squeeze(), rejected_classes) uniform_probs = jax.random.uniform(next(rng), shape=(samples_per_itr,)) mask_reject = mask_reject & (uniform_probs < reject_prob) x = x[~mask_reject] y = y[~mask_reject] x_all.append(x) y_all.append(y) itr += 1 total_samples += jnp.sum(~mask_reject) if total_samples < num_samples: raise ValueError('Failed to sample required number of input data.') x_samples = jnp.concatenate(x_all) y_samples = jnp.concatenate(y_all) return testbed_base.Data(x_samples[:num_samples], y_samples[:num_samples])
neural_testbed-master
neural_testbed/generative/factories.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """GP regression testbed problem. Uses the neural_tangent library to compute the posterior mean and covariance for regression problem in closed form. """ import dataclasses from typing import Tuple import chex import haiku as hk import jax import jax.numpy as jnp import neural_tangents as nt from neural_testbed import base as testbed_base from neural_testbed import likelihood from neural_testbed.generative import nt_kernels class GPRegression(likelihood.GenerativeDataSampler): """GP with gaussian noise output.""" def __init__(self, kernel_fn: nt_kernels.AnalyticKernelFn, x_train: chex.Array, x_test: chex.Array, key: chex.PRNGKey, tau: int = 1, noise_std: float = 1, kernel_ridge: float = 1e-6, ntk: bool = False): # Checking the dimensionality of our data coming in. num_train, input_dim = x_train.shape num_test_x_cache, input_dim_test = x_test.shape assert input_dim == input_dim_test rng = hk.PRNGSequence(key) self._tau = tau self._input_dim = input_dim self._x_train = jnp.array(x_train) self._x_test = jnp.array(x_test) self._num_train = num_train self._num_test_x_cache = num_test_x_cache self._noise_std = noise_std self._kernel_ridge = kernel_ridge # Form the training data mean = jnp.zeros(num_train) k_train_train = kernel_fn(self._x_train, x2=None, get='nngp') k_train_train += kernel_ridge * jnp.eye(num_train) y_function = jax.random.multivariate_normal(next(rng), mean, k_train_train) y_noise = jax.random.normal(next(rng), [num_train, 1]) * noise_std y_train = y_function[:, None] + y_noise self._train_data = testbed_base.Data(x_train, y_train) chex.assert_shape(y_train, [num_train, 1]) # Form the posterior prediction at cached test data predict_fn = nt.predict.gradient_descent_mse_ensemble( kernel_fn, x_train, y_train, diag_reg=(noise_std**2)) self._test_mean, self._test_cov = predict_fn( t=None, x_test=self._x_test, get='nngp', compute_cov=True) self._test_cov += kernel_ridge * jnp.eye(num_test_x_cache) chex.assert_shape(self._test_mean, [num_test_x_cache, 1]) chex.assert_shape(self._test_cov, [num_test_x_cache, num_test_x_cache]) @property def x_test(self) -> chex.Array: return self._x_test @property def test_mean(self) -> chex.Array: return self._test_mean @property def test_cov(self) -> chex.Array: return self._test_cov @property def train_data(self) -> testbed_base.Data: return self._train_data def test_data(self, key: chex.PRNGKey) -> Tuple[testbed_base.Data, float]: """Generates test data and evaluates log likelihood under posterior. The test data that is output will be of length tau examples. We wanted to "pass" tau here but ran into jax.jit issues. Args: key: Random number generator key. Returns: Tuple of data (with tau examples) and log-likelihood under posterior. """ def sample_test_data(key: chex.PRNGKey) -> Tuple[testbed_base.Data, float]: x_key, fn_key, y_key = jax.random.split(key, 3) # Sample tau x's from the testing cache for evaluation test_x_indices = jax.random.randint( x_key, [self._tau], 0, self._num_test_x_cache) x_test = self._x_test[test_x_indices] chex.assert_shape(x_test, [self._tau, self._input_dim]) # Sample the true function from the posterior mean nngp_mean = self._test_mean[test_x_indices, 0] chex.assert_shape(nngp_mean, [self._tau]) nngp_cov = self._test_cov[jnp.ix_(test_x_indices, test_x_indices)] chex.assert_shape(nngp_cov, [self._tau, self._tau]) sampled_fn = jax.random.multivariate_normal(fn_key, nngp_mean, nngp_cov) y_noise = jax.random.normal(y_key, [self._tau, 1]) * self._noise_std y_test = sampled_fn[:, None] + y_noise data = testbed_base.Data(x_test, y_test) chex.assert_shape(y_test, [self._tau, 1]) # Compute the log likelihood (under both posterior and noise) err = y_test - nngp_mean[:, None] chex.assert_shape(err, [self._tau, 1]) cov = nngp_cov + self._noise_std ** 2 * jnp.eye(self._tau) chex.assert_shape(cov, [self._tau, self._tau]) log_likelihood = likelihood.gaussian_log_likelihood(err, cov) return data, log_likelihood return jax.jit(sample_test_data)(key) @dataclasses.dataclass class TestbedGPRegression(testbed_base.TestbedProblem): """Wraps GPRegression sampler for testbed with exact posterior inference.""" data_sampler: GPRegression prior: testbed_base.PriorKnowledge key: chex.PRNGKey num_enn_samples: int = 100 std_ridge: float = 1e-3 @property def train_data(self) -> testbed_base.Data: return self.data_sampler.train_data @property def prior_knowledge(self) -> testbed_base.PriorKnowledge: return self.prior def evaluate_quality( self, enn_sampler: testbed_base.EpistemicSampler) -> testbed_base.ENNQuality: """Computes KL estimate on mean functions for tau=1 only.""" # Extract useful quantities from the gp sampler. x_test = self.data_sampler.x_test num_test = x_test.shape[0] posterior_mean = self.data_sampler.test_mean[:, 0] posterior_std = jnp.sqrt(jnp.diag(self.data_sampler.test_cov)) posterior_std += self.std_ridge # Compute the mean and std of ENN posterior batched_sampler = jax.jit(jax.vmap(enn_sampler, in_axes=[None, 0])) enn_keys = jax.random.split(self.key, self.num_enn_samples) enn_samples = batched_sampler(x_test, enn_keys) enn_samples = enn_samples[:, :, 0] chex.assert_shape(enn_samples, [self.num_enn_samples, num_test]) enn_mean = jnp.mean(enn_samples, axis=0) enn_std = jnp.std(enn_samples, axis=0) + self.std_ridge # Compute the KL divergence between this and reference posterior batched_kl = jax.jit(jax.vmap(_kl_gaussian)) kl_estimates = batched_kl(posterior_mean, posterior_std, enn_mean, enn_std) chex.assert_shape(kl_estimates, [num_test]) kl_estimate = jnp.mean(kl_estimates) return testbed_base.ENNQuality(kl_estimate) def _kl_gaussian( mean_1: float, std_1: float, mean_2: float, std_2: float) -> float: """Computes the KL(P_1 || P_2) for P_1,P_2 univariate Gaussian.""" log_term = jnp.log(std_2 / std_1) frac_term = (std_1 ** 2 + (mean_1 - mean_2) ** 2) / (2 * std_2 ** 2) return log_term + frac_term - 0.5 # pytype: disable=bad-return-type # jax-types
neural_testbed-master
neural_testbed/generative/gp_regression.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for efficient_agent.neural_testbed.generative.plotting.""" from absl.testing import absltest from absl.testing import parameterized import chex import jax import jax.numpy as jnp from neural_testbed.generative import plotting from neural_testbed.leaderboard import load from neural_testbed.leaderboard import sweep def regression_sampler(x: chex.Array, key: chex.PRNGKey) -> chex.Array: mean = jax.random.normal(key) return jnp.ones([x.shape[0], 1]) * mean def classification_sampler(x: chex.Array, key: chex.PRNGKey) -> chex.Array: del key return jnp.zeros([x.shape[0], 2]) class PlottingTest(parameterized.TestCase): @parameterized.parameters([[x] for x in sweep.CLASSIFICATION_2D_TEST]) def test_2d_classification(self, problem_id: str): """Check that the 1d classification plot doesn't fail.""" problem = load.problem_from_id(problem_id) _ = plotting.sanity_plots(problem, classification_sampler) @parameterized.parameters([[x] for x in sweep.REGRESSION_TEST]) def test_1d_regression(self, problem_id: str): """Check that the 1d regression plot doesn't fail.""" problem = load.problem_from_id(problem_id) _ = plotting.sanity_plots(problem, regression_sampler) @parameterized.parameters([[x] for x in sweep.ENN_PAPER_TEST]) def test_1d_enn_paper(self, problem_id: str): """Check that the 1d enn_paper plot doesn't fail.""" problem = load.problem_from_id(problem_id) _ = plotting.sanity_plots(problem, regression_sampler) if __name__ == '__main__': absltest.main()
neural_testbed-master
neural_testbed/generative/plotting_test.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Classification-based testbed based around a logit_fn and x_generator.""" from typing import Callable, Optional, Tuple import chex from enn import metrics import haiku as hk import jax import jax.numpy as jnp from neural_testbed import base as testbed_base from neural_testbed import likelihood LogitFn = Callable[[chex.Array], chex.Array] # x -> logits XGenerator = Callable[[chex.PRNGKey, int], chex.Array] # key, num_samples -> x class ClassificationEnvLikelihood(likelihood.GenerativeDataSampler): """Classification-based environment-based inference.""" def __init__(self, logit_fn: LogitFn, x_train_generator: XGenerator, x_test_generator: XGenerator, num_train: int, key: chex.PRNGKey, override_train_data: Optional[testbed_base.Data] = None, tau: int = 1): rng = hk.PRNGSequence(key) self._logit_fn = logit_fn self._tau = tau self._x_test_generator = x_test_generator self._num_train = num_train # Optionally override training data where you want to allow for training # data that was *not* generated by the x_generator, logit_fn. if override_train_data is None: self._train_data, _ = sample_gaussian_data( logit_fn, x_train_generator, num_train, next(rng)) else: assert num_train == override_train_data.x.shape[0] assert num_train == override_train_data.y.shape[0] self._train_data = override_train_data # Generate canonical x_test for DEBUGGING ONLY!!! num_test = 1000 self._x_test = self._x_test_generator(next(rng), num_test) test_logits = self._logit_fn(self._x_test) # [n_train, n_class] chex.assert_shape(test_logits, [num_test, None]) self._test_probs = jax.nn.softmax(test_logits) @property def train_data(self) -> testbed_base.Data: return self._train_data @property def test_x(self) -> chex.Array: """Canonical test data for debugging only. This is not the test data x returned by the test data method. """ return self._x_test @property def probabilities(self) -> chex.Array: """Return probabilities of classes for canonical test x. Use only for debugging/plotting purposes in conjunction with the test_x method. The test_data method does not use the same test_x. """ return self._test_probs def test_data(self, key: chex.PRNGKey) -> Tuple[testbed_base.Data, float]: """Generates test data and evaluates log likelihood w.r.t. environment. The test data that is output will be of length tau examples. We wanted to "pass" tau here... but ran into jax.jit issues. Args: key: Random number generator key. Returns: Tuple of data (with tau examples) and log-likelihood under posterior. """ def sample_test(k: chex.PRNGKey) -> Tuple[testbed_base.Data, float]: return sample_gaussian_data( self._logit_fn, self._x_test_generator, self._tau, key=k) return jax.jit(sample_test)(key) def make_gaussian_sampler(input_dim: int) -> XGenerator: def gaussian_generator(key: chex.PRNGKey, num_samples: int) -> chex.Array: return jax.random.normal(key, [num_samples, input_dim]) return gaussian_generator # TODO(author2): Migrate to experimental directory. def make_weibull_sampler(input_dim: int) -> XGenerator: """Returns Weibull sampler around initial reference point.""" # TODO(author3): Expose concentration and scale as parameters concentration = jnp.log10(jnp.log2(10)) scale = 1 / (jnp.log(10)**(1 / concentration)) def weibull_generator(key: chex.PRNGKey, tau: int) -> chex.Array: key_ref, key_dist, key_perturb = jax.random.split(key, 3) x_ref = jax.random.normal(key_ref, [input_dim]) distances = jnp.concatenate([ jnp.zeros(1), jax.random.weibull_min(key_dist, scale, concentration, shape=[tau - 1]) ]) chex.assert_shape(distances, [tau]) perturbations = jax.random.normal(key_perturb, [tau, input_dim]) x_test = x_ref + jnp.einsum('ij, i -> ij', perturbations, distances) chex.assert_shape(x_test, [tau, input_dim]) return x_test return weibull_generator def make_polyadic_sampler(input_dim: int, kappa: int = 2) -> XGenerator: """Samples with local structure centered around kappa N(0, 1) anchor points. To make this work in jax we actually implement this by first sampling kappa anchor points, then randomly the tau batch points from these kappa anchors (with replacement) and then adding noise. Args: input_dim: input dimension. kappa: number of anchor reference points. If tau is less than kappa we default to sampling tau points. Returns: Polyadic sampling XGenerator. """ def polyadic_generator(key: chex.PRNGKey, tau: int) -> chex.Array: anchor_key, sample_key = jax.random.split(key) # Sample anchor points anchor_x = jax.random.normal(anchor_key, [kappa, input_dim]) # Index into these points sample_idx = jax.random.randint(sample_key, [tau], 0, kappa) repeat_x = anchor_x[sample_idx] chex.assert_shape(repeat_x, [tau, input_dim]) return repeat_x return polyadic_generator def sample_gaussian_data(logit_fn: LogitFn, x_generator: XGenerator, num_train: int, key: chex.PRNGKey) -> Tuple[testbed_base.Data, float]: """Generates training data for given problem.""" x_key, y_key = jax.random.split(key, 2) # Checking the dimensionality of our data coming in. x_train = x_generator(x_key, num_train) input_dim = x_train.shape[1] chex.assert_shape(x_train, [num_train, input_dim]) # Generate environment function across x_train train_logits = logit_fn(x_train) # [n_train, n_class] num_classes = train_logits.shape[-1] # Obtain from logit_fn. chex.assert_shape(train_logits, [num_train, num_classes]) train_probs = jax.nn.softmax(train_logits) # Generate training data. def sample_output(probs: chex.Array, key: chex.PRNGKey) -> chex.Array: return jax.random.choice(key, num_classes, shape=(1,), p=probs) y_keys = jax.random.split(y_key, num_train) y_train = jax.vmap(sample_output)(train_probs, y_keys) data = testbed_base.Data(x=x_train, y=y_train) # Compute the log likelihood with respect to the environment log_likelihood = metrics.categorical_log_likelihood(train_probs, y_train) return data, log_likelihood
neural_testbed-master
neural_testbed/generative/classification_envlikelihood.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for neural_testbed.generative.gp_classification_envlikelihood.""" import itertools from absl.testing import absltest from absl.testing import parameterized import haiku as hk from neural_testbed.generative import gp_classification_envlikelihood from neural_testbed.generative import nt_kernels import numpy as np class GPClassificationEnsembleTest(parameterized.TestCase): @parameterized.parameters(itertools.product([3, 10], [1, 3], [1, 3])) def test_valid_data(self, num_train: int, input_dim: int, tau: int): np.random.seed(0) num_classes = 2 rng = hk.PRNGSequence(0) gp_model = gp_classification_envlikelihood.GPClassificationEnvLikelihood( kernel_fn=nt_kernels.make_benchmark_kernel(), x_train=np.random.randn(num_train, input_dim), x_test=np.random.randn(10, input_dim), key=next(rng), tau=tau, num_classes=num_classes, ) # Check that the training data is reasonable. train_data = gp_model.train_data assert train_data.x.shape == (num_train, input_dim) assert train_data.y.shape == (num_train, 1) assert np.all(~np.isnan(train_data.x)) assert np.all(~np.isnan(train_data.y)) # Check that the testing data is reasonable. for _ in range(3): test_data, log_likelihood = gp_model.test_data(next(rng)) assert np.isfinite(log_likelihood) assert test_data.x.shape == (tau, input_dim) assert test_data.y.shape == (tau, 1) assert np.all(~np.isnan(test_data.x)) assert np.all(~np.isnan(test_data.y)) @parameterized.parameters(itertools.product([1, 10, 100], [10, 20])) def test_not_all_test_data_same_x(self, num_train: int, num_test: int): """Generates testing data and checks not all the same x value.""" np.random.seed(0) num_test_seeds = 10 input_dim = 2 rng = hk.PRNGSequence(0) gp_model = gp_classification_envlikelihood.GPClassificationEnvLikelihood( kernel_fn=nt_kernels.make_benchmark_kernel(), x_train=np.random.randn(num_train, input_dim), x_test=np.random.randn(num_test, input_dim), key=next(rng), tau=1, num_classes=2, ) num_distinct_x = 0 reference_data, _ = gp_model.test_data(key=next(rng)) for _ in range(num_test_seeds): test_data, _ = gp_model.test_data(key=next(rng)) if not np.all(np.isclose(test_data.x, reference_data.x)): num_distinct_x += 1 assert num_distinct_x > 0 @parameterized.parameters(itertools.product([10], [1], [10])) def test_valid_labels(self, num_train: int, input_dim: int, num_seeds: int): """Checks that for at most 20% of problems, the labels are degenerate.""" num_classes = 2 num_test = 1 rng = hk.PRNGSequence(0) labels_means = [] for i in range(num_seeds): np.random.seed(i) gp_model = gp_classification_envlikelihood.GPClassificationEnvLikelihood( kernel_fn=nt_kernels.make_benchmark_kernel(), x_train=np.random.randn(num_train, input_dim), x_test=np.random.randn(num_test, input_dim), key=next(rng), tau=1, num_classes=num_classes, ) train_data = gp_model.train_data labels_means.append(np.mean(train_data.y.copy())) degenerate_cases = labels_means.count(0.) + labels_means.count(1.) # Check that for at most 20% of problems, the labels are degenerate assert degenerate_cases / num_seeds <= 0.2 if __name__ == '__main__': absltest.main()
neural_testbed-master
neural_testbed/generative/gp_classification_envlikelihood_test.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for neural_testbed.generative.classification_envlikelihood.""" import functools import itertools from absl.testing import absltest from absl.testing import parameterized import haiku as hk import jax from neural_testbed.generative import classification_envlikelihood import numpy as np class MLPClassificationEnsembleTest(parameterized.TestCase): @parameterized.parameters(itertools.product([3, 10], [1, 3], [1, 3])) def test_valid_data(self, num_train: int, input_dim: int, tau: int): np.random.seed(0) num_class = 2 rng = hk.PRNGSequence(0) x_train_generator = lambda k, n: jax.random.normal(k, [n, input_dim]) x_test_generator = classification_envlikelihood.make_gaussian_sampler( input_dim) fn_transformed = hk.without_apply_rng(hk.transform( lambda x: hk.nets.MLP([10, 10, num_class])(x))) # pylint: disable=[unnecessary-lambda] params = fn_transformed.init(next(rng), np.zeros(shape=(input_dim,))) logit_fn = lambda x: fn_transformed.apply(params, x) mlp_model = classification_envlikelihood.ClassificationEnvLikelihood( logit_fn=logit_fn, x_train_generator=x_train_generator, x_test_generator=x_test_generator, num_train=num_train, key=next(rng), tau=tau, ) # Check that the training data is reasonable. train_data = mlp_model.train_data assert train_data.x.shape == (num_train, input_dim) assert train_data.y.shape == (num_train, 1) assert np.all(~np.isnan(train_data.x)) assert np.all(~np.isnan(train_data.y)) # Check that the testing data is reasonable. for _ in range(3): test_data, log_likelihood = mlp_model.test_data(next(rng)) assert np.isfinite(log_likelihood) assert test_data.x.shape == (tau, input_dim) assert test_data.y.shape == (tau, 1) assert np.all(~np.isnan(test_data.x)) assert np.all(~np.isnan(test_data.y)) @parameterized.parameters(itertools.product([1, 10, 100])) def test_not_all_test_data_same_x(self, num_train: int): """Generates testing data and checks not all the same x value.""" np.random.seed(0) num_test_seeds = 10 input_dim = 2 num_class = 2 tau = 1 rng = hk.PRNGSequence(0) x_train_generator = lambda k, n: jax.random.normal(k, [n, input_dim]) x_test_generator = classification_envlikelihood.make_gaussian_sampler( input_dim) fn_transformed = hk.without_apply_rng(hk.transform( lambda x: hk.nets.MLP([10, 10, num_class])(x))) # pylint: disable=[unnecessary-lambda] params = fn_transformed.init(next(rng), np.zeros(shape=(input_dim,))) logit_fn = lambda x: fn_transformed.apply(params, x) mlp_model = classification_envlikelihood.ClassificationEnvLikelihood( logit_fn=logit_fn, x_train_generator=x_train_generator, x_test_generator=x_test_generator, num_train=num_train, key=next(rng), tau=tau, ) num_distinct_x = 0 reference_data, _ = mlp_model.test_data(key=next(rng)) for _ in range(num_test_seeds): test_data, _ = mlp_model.test_data(key=next(rng)) if not np.all(np.isclose(test_data.x, reference_data.x)): num_distinct_x += 1 assert num_distinct_x > 0 @parameterized.parameters(itertools.product([10], [1], [10])) def test_valid_labels(self, num_train: int, input_dim: int, num_seeds: int): """Checks that for at most 20% of problems, the labels are degenerate.""" num_class = 2 tau = 1 rng = hk.PRNGSequence(0) x_train_generator = lambda k, n: jax.random.normal(k, [n, input_dim]) x_test_generator = classification_envlikelihood.make_gaussian_sampler( input_dim) fn_transformed = hk.without_apply_rng(hk.transform( lambda x: hk.nets.MLP([10, 10, num_class])(x))) # pylint: disable=[unnecessary-lambda] labels_means = [] for _ in range(num_seeds): params = fn_transformed.init(next(rng), np.zeros(shape=(input_dim,))) logit_fn = functools.partial(fn_transformed.apply, params) mlp_model = classification_envlikelihood.ClassificationEnvLikelihood( logit_fn=logit_fn, x_train_generator=x_train_generator, x_test_generator=x_test_generator, num_train=num_train, key=next(rng), tau=tau, ) train_data = mlp_model.train_data labels_means.append(np.mean(train_data.y.copy())) degenerate_cases = labels_means.count(0.) + labels_means.count(1.) # Check that for at most 20% of problems, the labels are degenerate assert degenerate_cases / num_seeds <= 0.2 @parameterized.parameters(itertools.product([1, 10], [1, 10], [1, 2])) def test_local_generator(self, input_dim: int, tau: int, kappa: int): """Checks that the local generator produces valid testing points.""" local_sampler = classification_envlikelihood.make_polyadic_sampler( input_dim, kappa) for seed in range(10): test_x = local_sampler(jax.random.PRNGKey(seed), tau) assert test_x.shape == (tau, input_dim) assert np.all(~np.isnan(test_x)) if __name__ == '__main__': absltest.main()
neural_testbed-master
neural_testbed/generative/classification_envlikelihood_test.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """In-memory logging system.""" from typing import Any, Mapping from neural_testbed import base as testbed_base from neural_testbed.logging import base as logging_base import pandas as pd def wrap_problem( problem: testbed_base.TestbedProblem) -> testbed_base.TestbedProblem: return logging_base.LoggingWrapper(problem, Logger()) class Logger(logging_base.Logger): """Saves data to python memory.""" def __init__(self): """Initializes a new python in-memory logger.""" self._data = [] def write(self, data: Mapping[str, Any]): """Adds a row to the internal list of data and saves to CSV.""" self._data.append(data) @property def df(self) -> pd.DataFrame: return pd.DataFrame(self._data)
neural_testbed-master
neural_testbed/logging/memory_logger.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Exposing the public methods of logging.""" # Logging from neural_testbed.logging.base import EntryLoader from neural_testbed.logging.base import Logger from neural_testbed.logging.base import LoggingWrapper # Logging csv from neural_testbed.logging.csv_logger import wrap_problem as wrap_problem_csv # Logging to python memory from neural_testbed.logging.memory_logger import wrap_problem as wrap_problem_memory
neural_testbed-master
neural_testbed/logging/__init__.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """CSV based logging system.""" import os from typing import Any, Mapping from neural_testbed import base as testbed_base from neural_testbed.leaderboard import sweep from neural_testbed.logging import base as logging_base import pandas as pd SAFE_SEPARATOR = '-' INITIAL_SEPARATOR = '_-_' GP_PREFIX = 'problem_id' + INITIAL_SEPARATOR def wrap_problem(problem: testbed_base.TestbedProblem, problem_id: str, results_dir: str, overwrite: bool = False) -> testbed_base.TestbedProblem: logger = Logger(problem_id, results_dir, overwrite) return logging_base.LoggingWrapper(problem, logger) class Logger(logging_base.Logger): """Saves data to a CSV file via Pandas. In this simplified logger, each problem_id logs to a unique CSV index by problem_id. These are saved to a single results_dir by experiment. We strongly suggest that you use a *fresh* folder for each testbed run. This logger, along with the corresponding load functionality, serves as a simple, minimal example for users who need to implement logging to a different storage system. """ def __init__(self, problem_id: str, results_dir: str = '/tmp/neural_testbed', overwrite: bool = False): """Initializes a new CSV logger.""" if not os.path.exists(results_dir): try: os.makedirs(results_dir) except OSError: # concurrent processes can makedir at same time pass # The default '/' symbol is dangerous for file systems! safe_problem_id = problem_id.replace(sweep.SEPARATOR, SAFE_SEPARATOR) filename = f'{GP_PREFIX}{safe_problem_id}.csv' save_path = os.path.join(results_dir, filename) if os.path.exists(save_path) and not overwrite: raise ValueError( f'File {save_path} already exists. Specify a different ' 'directory, or set overwrite=True to overwrite existing data.') self._data = [] self._save_path = save_path def write(self, data: Mapping[str, Any]): """Adds a row to the internal list of data and saves to CSV.""" self._data.append(data) df = pd.DataFrame(self._data) df.to_csv(self._save_path, index=False)
neural_testbed-master
neural_testbed/logging/csv_logger.py
# pylint: disable=g-bad-file-header # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """An abstract base class for loggers.""" import abc import time from typing import Any, Callable, Dict, Mapping, Sequence, Tuple from acme.utils import loggers import chex from neural_testbed import base as testbed_base import pandas as pd # TODO(author2): turn this into a typevar typed on the entry Type Entry = Any # Returns a dataframe with the results and a sequence of sweep_vars EntryLoader = Callable[[Entry], Tuple[pd.DataFrame, Sequence[str]]] class Logger(abc.ABC): """A logger has a `write` method.""" @abc.abstractmethod def write(self, data: Mapping[str, Any]): """Writes `data` to destination (file, terminal, database, etc).""" class LoggingWrapper(testbed_base.TestbedProblem): """Wraps a testbed problem with a logger.""" def __init__(self, problem: testbed_base.TestbedProblem, logger: Logger): self._problem = problem self._logger = logger self._start = time.time() self._train_start = self._start @property def train_data(self) -> testbed_base.Data: self._train_start = time.time() return self._problem.train_data def evaluate_quality( self, enn_sampler: testbed_base.EpistemicSampler) -> testbed_base.ENNQuality: # Before evaluating enn, we record the time at the end of training. train_end = time.time() enn_quality = self._problem.evaluate_quality(enn_sampler) results = { 'kl_estimate': float(enn_quality.kl_estimate), 'total_seconds': time.time() - self._start, 'train_seconds': train_end - self._train_start, 'evaluation_seconds': time.time() - train_end, } if enn_quality.extra: extra_results = clean_results(enn_quality.extra) results.update({ key: value for key, value in extra_results.items() }) self._logger.write(results) return enn_quality @property def prior_knowledge(self) -> testbed_base.PriorKnowledge: return self._problem.prior_knowledge @property def problem(self) -> testbed_base.TestbedProblem: problem = self._problem if hasattr(problem, 'problem'): return problem.problem return problem def clean_results(results: Dict[str, Any]) -> Dict[str, Any]: """Cleans the results for logging (can't log jax arrays).""" def clean_result(value: Any) -> Any: value = loggers.to_numpy(value) if isinstance(value, chex.ArrayNumpy) and value.size == 1: value = float(value) return value for key, value in results.items(): results[key] = clean_result(value) return results
neural_testbed-master
neural_testbed/logging/base.py
# Copyright 2018 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Visualise bundle adjustment results. Example to run: python run_visualise.py --filename KV4jIAq3WJo_155_165.pkl """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import cPickle as pickle import errno import os import subprocess import sys from absl import flags import cv2 import matplotlib.pyplot as plt import numpy as np import plot_utils import skvideo.io from third_party.activity_net.download import download_clip import third_party.hmr.renderer as vis_util # Input flags.DEFINE_string('filename', '', 'The annoation pickle file') flags.DEFINE_string('smpl_face_path', 'smpl_faces.npy', 'Path to smpl model face file.') # Output flags.DEFINE_string( 'output_dir', 'results', 'Where to write results to.' 'Directory automatically created.') def mkdir(dirname): """Create directory if it does not exist.""" try: os.makedirs(dirname) except OSError as exc: if exc.errno != errno.EEXIST: raise def im_save_cv(image, filename): """Write image with OpenCV, converting from BGR to RGB format.""" cv2.imwrite(filename, image[:, :, (2, 1, 0)]) def visualize(img, joints, vertices, camera, image_name, output_dir, renderer=None, color_id=0): """Renders the result in original image coordinate frame. Args: img: The image joints: 2D keypoints, in the image coordinate frame. vertices: Vertices of the SMPL mesh. camera: Camera predicted. image_name: Name of image for saving. output_dir: Directory to save results to renderer: Renderer object to use. color_id: 0 is blue, and 1 is light pink. For the visualisation. The colours are defined in the renderer. """ cam_for_render = camera * img.shape[0] vert_shifted = np.copy(vertices) # Approximate an orthographic camera: # move points away and adjust the focal length to zoom in. vert_shifted[:, -1] = vert_shifted[:, -1] + 100. cam_for_render[0] *= 100. rend_img_overlay = renderer( vert_shifted, cam=cam_for_render, img=img, do_alpha=True, color_id=color_id) rend_img = renderer( vert_shifted, cam=cam_for_render, img_size=img.shape[:2], color_id=color_id) rend_img_vp1 = renderer.rotated( vert_shifted, 60, cam=cam_for_render, img_size=img.shape[:2], color_id=color_id) rend_img_vp2 = renderer.rotated( vert_shifted, -60, cam=cam_for_render, img_size=img.shape[:2], color_id=color_id) save_name = os.path.join(output_dir, image_name + '.jpg') fig = plot_utils.plot_summary_figure(img, joints, rend_img_overlay, rend_img, rend_img_vp1, rend_img_vp2, save_name) plt.close(fig) def transform_keypoints_to_image(keypoints, img): """Transform keypoints from range [0, 1] to image coordinates.""" keypoints[:, :, 0] *= img.shape[0] keypoints[:, :, 1] *= img.shape[ 0] # The saved keypoints are scaled by image height. return keypoints def parse_filename(filename): """Parse filename of the pickle file.""" name = os.path.basename(filename) name = name.replace('.pkl', '') tokens = name.split('_') end_time = int(tokens[-1]) start_time = int(tokens[-2]) video_id = '_'.join(tokens[0:-2]) return video_id, start_time, end_time def get_frame_rate(video_path): """Get frame rate of the video from its metadata.""" meta_data = skvideo.io.ffprobe(video_path) if 'video' in meta_data.keys(): meta_data = meta_data['video'] if '@avg_frame_rate' in meta_data: frame_rate = eval(meta_data['@avg_frame_rate']) else: frame_rate = None return frame_rate def video_from_images(directory, save_name): """Create video from images saved in directory using ffmpeg.""" command = [ 'ffmpeg', '-framerate', '25', '-pattern_type', 'glob -i \'{}/*.jpg\''.format(directory), '-c:v', 'libx264', '-pix_fmt', 'yuv420p', '-loglevel', 'panic', save_name ] command = ' '.join(command) try: _ = subprocess.check_output( command, shell=True, stderr=subprocess.STDOUT) except: pass def load_pickle(filename): """Read pickle file.""" with open(filename) as fp: data = pickle.load(fp) return data def main(config): data = load_pickle(config.filename) video_id, start_time, end_time = parse_filename(config.filename) video_path = '/tmp/' + video_id + '.mp4' status, message = download_clip(video_id, video_path, start_time, end_time) if not status: print('Video not downloaded') print(message) sys.exit() video = skvideo.io.vread(video_path) frame_rate = get_frame_rate(video_path) if not frame_rate: print('Error. Could not determine frame rate of video') sys.exit() output_dir = os.path.join(config.output_dir, video_id) mkdir(output_dir) keypoints = transform_keypoints_to_image(data['2d_keypoints'], video[0].squeeze()) renderer = vis_util.SMPLRenderer(face_path=config.smpl_face_path) for i in range(data['time'].size): idx = int(round(data['time'][i] * frame_rate)) if idx >= video.shape[0]: break img = video[idx].squeeze() image_name = '{:>04}'.format(i) visualize( img, joints=keypoints[i].squeeze(), vertices=data['vertices'][i].squeeze(), camera=data['camera'][i].squeeze(), image_name=image_name, output_dir=output_dir, renderer=renderer) if i % 20 == 0: print('Processed {:3d} / {:3d}'.format(i + 1, data['time'].size)) video_from_images(output_dir, os.path.join(output_dir, video_id + '.mp4')) if __name__ == '__main__': config_ = flags.FLAGS config_(sys.argv) main(config_)
Temporal-3D-Pose-Kinetics-master
run_visualise.py
# Copyright 2018 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Create plots with Matplotlib to visualise the result.""" import StringIO import matplotlib.pyplot as plt import numpy as np HMR_JOINT_NAMES = [ 'right_ankle', 'right_knee', 'right_hip', 'left_hip', 'left_knee', 'left_ankle', 'right_wrist', 'right_elbow', 'right_shoulder', 'left_shoulder', 'left_elbow', 'left_wrist', 'neck', 'head_top', 'nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', ] MSCOCO_JOINT_NAMES = [ 'nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 'right_ankle' ] coco_to_hmr = [] for name in MSCOCO_JOINT_NAMES: index = HMR_JOINT_NAMES.index(name) coco_to_hmr.append(index) PARENTS_COCO_PLUS = [ 1, 2, 8, 9, 3, 4, 7, 8, 12, 12, 9, 10, 14, -1, 13, -1, -1, 15, 16 ] COLOURS = [] for name in HMR_JOINT_NAMES: if name.startswith('left'): c = 'r' elif name.startswith('right'): c = 'g' else: c = 'm' COLOURS.append(c) def plot_keypoints_2d(image, joints_2d, ax=None, show_plot=False, title='', is_coco_format=False): """Plot 2d keypoints overlaid on image.""" if ax is None: fig = plt.figure() ax = fig.add_subplot(111) if hasattr(ax, 'set_axis_off'): ax.set_axis_off() if is_coco_format: kp = np.zeros((len(HMR_JOINT_NAMES), 2)) kp[coco_to_hmr, :] = joints_2d joints_2d = kp if image is not None: ax.imshow(image) joint_colour = 'c' if not is_coco_format else 'b' s = 30 * np.ones(joints_2d.shape[0]) for i in range(joints_2d.shape[0]): x, y = joints_2d[i, :] if x == 0 and y == 0: s[i] = 0 ax.scatter( joints_2d[:, 0].squeeze(), joints_2d[:, 1].squeeze(), s=30, c=joint_colour) for idx_i, idx_j in enumerate(PARENTS_COCO_PLUS): if idx_j >= 0: pair = [idx_i, idx_j] x, y = joints_2d[pair, 0], joints_2d[pair, 1] if x[0] > 0 and y[0] > 0 and x[1] > 0 and y[1] > 0: ax.plot(x.squeeze(), y.squeeze(), c=COLOURS[idx_i], linewidth=1.5) ax.set_xlim([0, image.shape[1]]) ax.set_ylim([image.shape[0], 0]) if title: ax.set_title(title) if show_plot: plt.show() return ax def plot_summary_figure(img, joints_2d, rend_img_overlay, rend_img, rend_img_vp1, rend_img_vp2, save_name=None): """Create plot to visulise results.""" fig = plt.figure(1, figsize=(20, 12)) plt.clf() plt.subplot(231) plt.imshow(img) plt.title('Input') plt.axis('off') ax_skel = plt.subplot(232) ax_skel = plot_keypoints_2d(img, joints_2d, ax_skel) plt.title('Joint Projection') plt.axis('off') plt.subplot(233) plt.imshow(rend_img_overlay) plt.title('3D Mesh overlay') plt.axis('off') plt.subplot(234) plt.imshow(rend_img) plt.title('3D mesh') plt.axis('off') plt.subplot(235) plt.imshow(rend_img_vp1) plt.title('Other viewpoint (+60 degrees)') plt.axis('off') plt.subplot(236) plt.imshow(rend_img_vp2) plt.title('Other viewpoint (-60 degrees)') plt.axis('off') plt.draw() if save_name is not None: buf = StringIO.StringIO() plt.savefig(buf, format='jpg') buf.seek(0) with open(save_name, 'w') as fp: fp.write(buf.read(-1)) else: plt.show() return fig
Temporal-3D-Pose-Kinetics-master
plot_utils.py
Temporal-3D-Pose-Kinetics-master
third_party/__init__.py
Temporal-3D-Pose-Kinetics-master
third_party/activity_net/__init__.py
"""Render meshes using OpenDR. Code is from: https://github.com/akanazawa/hmr/blob/master/src/util/renderer.py """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import cv2 import numpy as np from opendr.camera import ProjectPoints from opendr.renderer import ColoredRenderer from opendr.lighting import LambertianPointLight colors = { # colorbline/print/copy safe: 'light_blue': [0.65098039, 0.74117647, 0.85882353], 'light_pink': [.9, .7, .7], # This is used to do no-3d } class SMPLRenderer(object): """Utility class to render SMPL models.""" def __init__(self, img_size=224, flength=500., face_path='smpl_faces.npy'): self.faces = np.load(face_path) self.w = img_size self.h = img_size self.flength = flength def __call__(self, verts, cam=None, img=None, do_alpha=False, far=None, near=None, color_id=0, img_size=None): # cam is 3D [f, px, py] if img is not None: h, w = img.shape[:2] elif img_size is not None: h = img_size[0] w = img_size[1] else: h = self.h w = self.w if cam is None: cam = [self.flength, w / 2., h / 2.] use_cam = ProjectPoints( f=cam[0] * np.ones(2), rt=np.zeros(3), t=np.zeros(3), k=np.zeros(5), c=cam[1:3]) if near is None: near = np.maximum(np.min(verts[:, 2]) - 25, 0.1) if far is None: far = np.maximum(np.max(verts[:, 2]) + 25, 25) imtmp = render_model( verts, self.faces, w, h, use_cam, do_alpha=do_alpha, img=img, far=far, near=near, color_id=color_id) return (imtmp * 255).astype('uint8') def rotated(self, verts, deg, cam=None, axis='y', img=None, do_alpha=True, far=None, near=None, color_id=0, img_size=None): if axis == 'y': around = cv2.Rodrigues(np.array([0, math.radians(deg), 0]))[0] elif axis == 'x': around = cv2.Rodrigues(np.array([math.radians(deg), 0, 0]))[0] else: around = cv2.Rodrigues(np.array([0, 0, math.radians(deg)]))[0] center = verts.mean(axis=0) new_v = np.dot((verts - center), around) + center return self.__call__( new_v, cam, img=img, do_alpha=do_alpha, far=far, near=near, img_size=img_size, color_id=color_id) def _create_renderer(w=640, h=480, rt=np.zeros(3), t=np.zeros(3), f=None, c=None, k=None, near=.5, far=10.): f = np.array([w, w]) / 2. if f is None else f c = np.array([w, h]) / 2. if c is None else c k = np.zeros(5) if k is None else k rn = ColoredRenderer() rn.camera = ProjectPoints(rt=rt, t=t, f=f, c=c, k=k) rn.frustum = {'near': near, 'far': far, 'height': h, 'width': w} return rn def _rotateY(points, angle): """Rotate the points by a specified angle.""" ry = np.array([[np.cos(angle), 0., np.sin(angle)], [0., 1., 0.], [-np.sin(angle), 0., np.cos(angle)]]) return np.dot(points, ry) def simple_renderer(rn, verts, faces, yrot=np.radians(120), color=colors['light_pink']): # Rendered model color rn.set(v=verts, f=faces, vc=color, bgcolor=np.ones(3)) albedo = rn.vc # Construct Back Light (on back right corner) rn.vc = LambertianPointLight( f=rn.f, v=rn.v, num_verts=len(rn.v), light_pos=_rotateY(np.array([-200, -100, -100]), yrot), vc=albedo, light_color=np.array([1, 1, 1])) # Construct Left Light rn.vc += LambertianPointLight( f=rn.f, v=rn.v, num_verts=len(rn.v), light_pos=_rotateY(np.array([800, 10, 300]), yrot), vc=albedo, light_color=np.array([1, 1, 1])) # Construct Right Light rn.vc += LambertianPointLight( f=rn.f, v=rn.v, num_verts=len(rn.v), light_pos=_rotateY(np.array([-500, 500, 1000]), yrot), vc=albedo, light_color=np.array([.7, .7, .7])) return rn.r def get_alpha(imtmp, bgval=1.): h, w = imtmp.shape[:2] alpha = (~np.all(imtmp == bgval, axis=2)).astype(imtmp.dtype) b_channel, g_channel, r_channel = cv2.split(imtmp) im_RGBA = cv2.merge( (b_channel, g_channel, r_channel, alpha.astype(imtmp.dtype))) return im_RGBA def append_alpha(imtmp): alpha = np.ones_like(imtmp[:, :, 0]).astype(imtmp.dtype) if np.issubdtype(imtmp.dtype, np.uint8): alpha = alpha * 255 b_channel, g_channel, r_channel = cv2.split(imtmp) im_RGBA = cv2.merge((b_channel, g_channel, r_channel, alpha)) return im_RGBA def render_model(verts, faces, w, h, cam, near=0.5, far=25, img=None, do_alpha=False, color_id=None): rn = _create_renderer( w=w, h=h, near=near, far=far, rt=cam.rt, t=cam.t, f=cam.f, c=cam.c) # Uses img as background, otherwise white background. if img is not None: rn.background_image = img / 255. if img.max() > 1 else img if color_id is None: color = colors['light_blue'] else: color_list = colors.values() color = color_list[color_id % len(color_list)] imtmp = simple_renderer(rn, verts, faces, color=color) # If white bg, make transparent. if img is None and do_alpha: imtmp = get_alpha(imtmp) elif img is not None and do_alpha: imtmp = append_alpha(imtmp) return imtmp
Temporal-3D-Pose-Kinetics-master
third_party/hmr/renderer.py
Temporal-3D-Pose-Kinetics-master
third_party/hmr/__init__.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Start demo GUI for Spriteworld task configs. To play a task, run this on the task config: ```bash python run_demo.py --config=$path_to_task_config$ ``` Be aware that this demo overrides the action space and renderer for ease of playing, so those will be different from what are specified in the task config. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import importlib from absl import app from absl import flags from spriteworld import demo_ui FLAGS = flags.FLAGS flags.DEFINE_string('config', 'spriteworld.configs.cobra.clustering', 'Module name of task config to use.') flags.DEFINE_string('mode', 'train', 'Task mode, "train" or "test"]') flags.DEFINE_boolean('task_hsv_colors', True, 'Whether the task config uses HSV as color factors.') flags.DEFINE_integer('render_size', 256, 'Height and width of the output image.') flags.DEFINE_integer('anti_aliasing', 10, 'Renderer anti-aliasing factor.') def main(_): config = importlib.import_module(FLAGS.config) config = config.get_config(FLAGS.mode) demo_ui.setup_run_ui(config, FLAGS.render_size, FLAGS.task_hsv_colors, FLAGS.anti_aliasing) if __name__ == '__main__': app.run(main)
spriteworld-master
run_demo.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Template for running an agent on Spriteworld tasks. This script runs an agent on a Spriteworld task. The agent takes random actions and does not learn, so this serves only as an example of how to run an agent in the environment, logging task success and mean rewards. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import importlib from absl import app from absl import flags from absl import logging import numpy as np from six.moves import range from spriteworld import environment from spriteworld import renderers FLAGS = flags.FLAGS flags.DEFINE_integer('num_episodes', 100, 'Number of training episodes.') flags.DEFINE_string('config', 'spriteworld.configs.cobra.goal_finding_new_position', 'Module name of task config to use.') flags.DEFINE_string('mode', 'train', 'Task mode, "train" or "test"]') class RandomAgent(object): """Agent that takes random actions.""" def __init__(self, env): """Construct random agent.""" self._env = env def step(self, timestep): # observation is a dictionary with renderer outputs to be used for training observation = timestep.observation del observation del timestep action = self._env.action_space.sample() return action def main(argv): del argv config = importlib.import_module(FLAGS.config) config = config.get_config(FLAGS.mode) config['renderers']['success'] = renderers.Success() # Used for logging env = environment.Environment(**config) agent = RandomAgent(env) # Loop over episodes, logging success and mean reward per episode for episode in range(FLAGS.num_episodes): timestep = env.reset() rewards = [] while not timestep.last(): action = agent.step(timestep) timestep = env.step(action) rewards.append(timestep.reward) logging.info('Episode %d: Success = %r, Reward = %s.', episode, timestep.observation['success'], np.nanmean(rewards)) if __name__ == '__main__': app.run(main)
spriteworld-master
example_run_loop.py
# pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Installation script for setuptools.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from setuptools import find_packages from setuptools import setup setup( name='spriteworld', version='1.0.2', description=('Spriteworld is a python-based reinforcement learning ' 'environment consisting of a 2-dimensional arena with objects ' 'that can be freely moved.'), author='DeepMind', url='https://github.com/deepmind/spriteworld/', license='Apache License, Version 2.0', keywords=[ 'ai', 'reinforcement-learning', 'python', 'machine learning', 'objects', ], packages=find_packages( exclude=['*.tests', '*.tests.*', 'tests.*', 'tests']), install_requires=[ 'absl-py', 'dm_env', 'enum34', 'matplotlib', 'mock', 'numpy', 'pillow', 'scikit-learn', 'six', ], tests_require=[ 'nose', 'absl-py', ], extras_require={ 'gym': ['gym'], }, test_suite='nose.collector', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX :: Linux', 'Operating System :: Microsoft :: Windows', 'Operating System :: MacOS :: MacOS X', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Topic :: Scientific/Engineering :: Artificial Intelligence', ], )
spriteworld-master
setup.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Factor distribution library. This library contains classes for defining distributions of sprite factors. A number of set-theoretic operations are supported, with which it is possible to define factor distributions that are arbitrarily nested mixtures, intersections, products, and differences of single-factor continuous/discrete distributions. A factor specification is called a "spec", which is a dictionary of sprite factors, hence can have keys such as "size", "shape", "x_pos", etc. However, the classes in this file are general and make no reference to the particular factor names used by Spriteworld sprites. All distributions inherit from AbstractDistribution. They have a "sample()" method, which returns a spec. The keys of this spec can be accessed by the "keys" property. Distributions also have a "contains(spec)" method, which checks if the argument "spec" is in the support of the distribution. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import functools import numpy as np import six # Maximum number of tries used for rejection sampling from Intersection and # SetMinus distributions _MAX_TRIES = int(1e5) @six.add_metaclass(abc.ABCMeta) class AbstractDistribution(object): """Abstract class from which all distributions should inherit.""" @abc.abstractmethod def sample(self, rng=None): """Sample a spec from this distribution. Returns a dictionary. Args: rng: Random number generator. Fed into self._get_rng(), if None defaults to np.random. """ @abc.abstractmethod def contains(self, spec): """Return whether distribution contains spec dictionary.""" @abc.abstractmethod def to_str(self, indent): """Recursive string description of this distribution.""" def __str__(self): return self.to_str(indent=0) def _get_rng(self, rng=None): """Get random number generator, defaulting to np.random.""" return np.random if rng is None else rng @abc.abstractproperty def keys(self): """The set of keys in specs sampled from this distribution.""" class Continuous(AbstractDistribution): """Continuous 1-dimensional uniform distribution.""" def __init__(self, key, minval, maxval, dtype='float32'): """Construct continuous 1-dimensional uniform distribution. Args: key: String factor name. self.sample() returns {key: _}. minval: Scalar minimum value. maxval: Scalar maximum value. dtype: String numpy dtype. """ self.key = key self.minval = minval self.maxval = maxval self.dtype = dtype def sample(self, rng=None): """Sample value in [self.minval, self.maxval) and return dict.""" rng = self._get_rng(rng) out = rng.uniform(low=self.minval, high=self.maxval) out = np.cast[self.dtype](out) return {self.key: out} def contains(self, spec): """Check if spec[self.key] is in [self.minval, self.maxval).""" if self.key not in spec: raise KeyError('key {} is not in spec {}, but must be to evaluate ' 'containment.'.format(self.key, spec)) else: return spec[self.key] >= self.minval and spec[self.key] < self.maxval def to_str(self, indent): s = '<Continuous: key={}, mival={}, maxval={}, dtype={}>'.format( self.key, self.minval, self.maxval, self.dtype) return indent * ' ' + s @property def keys(self): return set([self.key]) class Discrete(AbstractDistribution): """Discrete distribution.""" def __init__(self, key, candidates, probs=None): """Construct discrete distribution. Args: key: String. Factor name. candidates: Iterable. Discrete values to sample from. probs: None or iterable of floats summing to 1. Candidate sampling probabilities. If None, candidates are sampled uniformly. """ self.candidates = candidates self.key = key self.probs = probs def sample(self, rng=None): rng = self._get_rng(rng) out = self.candidates[rng.choice(len(self.candidates), p=self.probs)] return {self.key: out} def contains(self, spec): if self.key not in spec: raise KeyError('key {} is not in spec {}, but must be to evaluate ' 'containment.'.format(self.key, spec)) else: return spec[self.key] in self.candidates def to_str(self, indent): s = '<Discrete: key={}, candidates={}, probs={}>'.format( self.key, self.candidates, self.probs) return indent * ' ' + s @property def keys(self): return set([self.key]) class Mixture(AbstractDistribution): """Mixture of distributions.""" def __init__(self, components, probs=None): """Construct mixture of distributions. This is a mixture distribution, not a union, so if the components overlap, their overlap will be sampled more than the non-overlapping regions. Args: components: Iterable of component distributions. Must all have the same key sets. probs: None or iterable of floats summing to 1. Sampling probabilities for the components. """ self.components = components if probs is None: self.probs = np.ones(len(components)) / len(components) else: self.probs = np.array(probs) self._keys = components[0].keys for c in components[1:]: if c.keys != self._keys: raise ValueError( 'All components must have the same key sets. However detected key ' 'sets {} and {}'.format(self._keys, c.keys)) def sample(self, rng=None): rng = self._get_rng(rng) sample_index = rng.choice(len(self.components), p=self.probs) sample = self.components[sample_index].sample(rng=rng) return sample def contains(self, spec): return any(c.contains(spec) for c in self.components) def to_str(self, indent): components_strings = [x.to_str(indent + 2) for x in self.components] s = (indent * ' ' + '<Mixture:\n' + (indent + 1) * ' ' + 'components=[\n{},\n' + (indent + 1) * ' ' + '],\n' + (indent + 1) * ' ' + 'probs={}>').format( ',\n'.join(components_strings), self.probs) return s @property def keys(self): return self._keys class Intersection(AbstractDistribution): """Intersection of component distributions.""" def __init__(self, components, index_for_sampling=0): """Construct intersection of component distributions. Samples are generated by sampling from one of the components and then doing rejection with the others, so if the component being sampled has some non-uniformity (e.g. a mixture with non-uniform probs), that non-uniformity will be inherited by the intersection. Args: components: Iterable of distributions. index_for_sampling: Int. Index of the component to use for sampling. All other components will be used to reject its samples. For efficiency, the user should ensure index_for_sampling corresponds to the smallest component distribution. """ self.components = components self.index_for_sampling = index_for_sampling self._keys = components[0].keys for c in components[1:]: if c.keys != self._keys: raise ValueError( 'All components must have the same key sets. However detected key ' 'sets {} and {}'.format(self._keys, c.keys)) def sample(self, rng=None): rng = self._get_rng(rng) tries = 0 while tries < _MAX_TRIES: tries += 1 sample = self.components[self.index_for_sampling].sample(rng=rng) if all(c.contains(sample) for c in self.components): return sample raise ValueError('Maximum number of tried exceeded when trying to sample ' 'from {}.'.format(str(self))) def contains(self, spec): return all(c.contains(spec) for c in self.components) def to_str(self, indent): components_strings = [x.to_str(indent + 2) for x in self.components] s = (indent * ' ' + '<Intersection:\n' + (indent + 1) * ' ' + 'components=[\n{},\n' + (indent + 1) * ' ' + '],\n' + (indent + 1) * ' ' + 'index_for_sampling={}>').format( ',\n'.join(components_strings), self.index_for_sampling) return s @property def keys(self): return self._keys class Product(AbstractDistribution): """Product distribution.""" def __init__(self, components): """Construct product distribution. This is used to create distributions over larger numbers of factors by taking the product of components. The components must have disjoint key sets. Args: components: Iterable of distributions. """ self.components = components self._keys = functools.reduce(set.union, [set(c.keys) for c in components]) num_keys = sum(len(c.keys) for c in components) if len(self._keys) < num_keys: raise ValueError( 'All components must have different keys, yet there are {} ' 'overlapping keys.'.format(num_keys - len(self._keys))) def sample(self, rng=None): rng = self._get_rng(rng) sample = {} for c in self.components: sample.update(c.sample(rng=rng)) return sample def contains(self, spec): return all(c.contains(spec) for c in self.components) def to_str(self, indent): components_strings = [x.to_str(indent + 2) for x in self.components] s = (indent * ' ' + '<Product:\n' + (indent + 1) * ' ' + 'components=[\n{},\n' + (indent + 1) * ' ' + ']>').format( ',\n'.join(components_strings)) return s @property def keys(self): return self._keys class SetMinus(AbstractDistribution): """Setminus of distributions.""" def __init__(self, base, hold_out): """Construct setminus of distributions.. This uses rejection sampling to take the difference of two distributions. Args: base: Distribution from which candidate samples are drawn. hold_out: Distribution used to reject samples from base. """ self.base = base self.hold_out = hold_out self._keys = base.keys if not hold_out.keys.issubset(self._keys): raise ValueError( 'Keys {} of hold_out is not a subset of keys {} of SetMinus base ' 'distribution.' .format(hold_out.keys, base.keys)) def sample(self, rng=None): rng = self._get_rng(rng) tries = 0 while tries < _MAX_TRIES: tries += 1 sample = self.base.sample(rng=rng) if not self.hold_out.contains(sample): return sample raise ValueError('Maximum number of tried exceeded when trying to sample ' 'from {}.'.format(str(self))) def contains(self, spec): return self.base.contains(spec) and not self.hold_out.contains(spec) def to_str(self, indent): s = (indent * ' ' + '<SetMinus:\n' + (indent + 1) * ' ' + 'base=\n{},\n' + (indent + 1) * ' ' + 'hold_out=\n{}>').format( self.base.to_str(indent + 2), self.hold_out.to_str(indent + 2)) return s @property def keys(self): return self._keys class Selection(AbstractDistribution): """Filter a source distribution.""" def __init__(self, base, filtering): """Construct selection of a base distribution given a filter. Given a base Distribution and a filter Distribution, returns samples of the base which are compatible with the filter. This is related to Intersection, but does not expect the base and filters to have the same keys. Instead, the filters should be subsets of the base. This is the same as SetMinus, except the filter accepts instead of rejects samples. Args: base: Distribution from which candidate samples are drawn. filtering: Distribution used to select samples from base. """ self.base = base self.filtering = filtering self._keys = base.keys if not filtering.keys.issubset(self._keys): raise ValueError( 'Keys {} of filtering is not a subset of keys {} of Selection base ' 'distribution.'.format(filtering.keys, base.keys)) def sample(self, rng=None): rng = self._get_rng(rng) tries = 0 while tries < _MAX_TRIES: tries += 1 sample = self.base.sample(rng=rng) if self.filtering.contains(sample): return sample raise ValueError( 'Maximum number of tried exceeded when trying to sample from {}.' .format(str(self))) def contains(self, spec): return self.base.contains(spec) and self.filtering.contains(spec) def to_str(self, indent): s = (indent * ' ' + '<Selection:\n' + (indent + 1) * ' ' + 'base=\n{},\n' + (indent + 1) * ' ' + 'filtering=\n{}>').format( self.base.to_str(indent + 2), self.filtering.to_str(indent + 2)) return s @property def keys(self): return self._keys
spriteworld-master
spriteworld/factor_distributions.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Generators for producing lists of sprites based on factor distributions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import numpy as np from spriteworld import sprite def generate_sprites(factor_dist, num_sprites=1): """Create callable that samples sprites from a factor distribution. Args: factor_dist: The factor distribution from which to sample. Should be an instance of factor_distributions.AbstractDistribution. num_sprites: Int or callable returning int. Number of sprites to generate per call. Returns: _generate: Callable that returns a list of Sprites. """ def _generate(): n = num_sprites() if callable(num_sprites) else num_sprites sprites = [sprite.Sprite(**factor_dist.sample()) for _ in range(n)] return sprites return _generate def chain_generators(*sprite_generators): """Chain generators by concatenating output sprite sequences. Essentially an 'AND' operation over sprite generators. This is useful when one wants to control the number of samples from the modes of a multimodal sprite distribution. Note that factor_distributions.Mixture provides weighted mixture distributions, so chain_generators() is typically only used when one wants to forces the different modes to each have a non-zero number of sprites. Args: *sprite_generators: Callable sprite generators. Returns: _generate: Callable returning a list of sprites. """ def _generate(): return list( itertools.chain(*[generator() for generator in sprite_generators])) return _generate def sample_generator(sprite_generators, p=None): """Sample one element from a set of sprite generators. Essential an 'OR' operation over sprite generators. This returns a callable that samples a generator from sprite_generators and calls it. Note that if sprite_generators each return 1 sprite, this functionality can be achieved with factor_distributions.Mixture, so sample_generator is typically used when sprite_generators each return multiple sprites. Effectively it allows dependant sampling from a multimodal factor distribution. Args: sprite_generators: Iterable of callable sprite generators. p: Probabilities associated with each generator. If None, assumes uniform distribution. Returns: _generate: Callable sprite generator. """ def _generate(): sample_index = np.random.choice(len(sprite_generators), p=p) sampled_generator = sprite_generators[sample_index] return sampled_generator() return _generate def shuffle(sprite_generator): """Randomize the order of sprites sample from sprite_generator. This is useful because sprites are z-layered with occlusion according to their order, so is sprite_generator is the output of chain_generators(), then sprites from some component distributions will always be behind sprites from others. An alternate design would be to let the environment handle sprite ordering, but this design is preferable because the order can be controlled more finely. For example, this allows the user to specify one sprite (e.g. the agent's body) to always be in the foreground while all the others are randomly ordered. Args: sprite_generator: Callable return a list of sprites. Returns: _generate: Callable sprite generator. """ def _generate(): sprites = sprite_generator() order = np.arange(len(sprites)) np.random.shuffle(order) return [sprites[i] for i in order] return _generate
spriteworld-master
spriteworld/sprite_generators.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Shapes for Spriteworld. Contains functions that generate np.arrays containing vertex arrays for various sprite shapes. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from six.moves import range def _polar2cartesian(r, theta): return r * np.array([np.cos(theta), np.sin(theta)]) def polygon(num_sides, theta_0=0.): """Generate the vertices of a regular polygon. Args: num_sides: Int. Number of sides of the polygon. theta_0: Float. Initial angle to start the vertices from. Returns: path: Array of vertices of the polygon, normalized so it has area 1. """ theta = 2 * np.pi / num_sides path = np.array( [_polar2cartesian(1, i * theta + theta_0) for i in range(num_sides)]) area = num_sides * np.sin(theta / 2) * np.cos(theta / 2) path = np.array(path) / np.sqrt(area) return path def star(num_sides, point_height=1, theta_0=0.): """Generate the vertices of a regular star shape. Args: num_sides: Int. Number of sides (i.e. number of points) in the star. point_height: Scalar. Height of each point of the star, relative to the radius of the star's inscribed circle. theta_0: Float. Initial angle to start the vertices from. Returns: path: Array of vertices of the star, normalized so the star has area 1. """ point_to_center = 1 + point_height theta = 2 * np.pi / num_sides path = np.empty([2 * num_sides, 2]) for i in range(num_sides): path[2 * i] = _polar2cartesian(1, i * theta + theta_0) path[2 * i + 1] = _polar2cartesian(point_to_center, (i + 0.5) * theta + theta_0) area = point_to_center * num_sides * np.sin(theta / 2) path = np.array(path) / np.sqrt(area) return path def spokes(num_sides, spoke_height=1, theta_0=0.): """Generate the vertices of a regular rectangular spoke shape. This is like a star, except the points are rectangular. For example, if num_sides = 4, it will look like this: O O O O O O O O O O O O O O O O O O O O O O O O Args: num_sides: Int. Number of sides (i.e. number of points) in the star. spoke_height: Scalar. Height of each spoke, relative to the radius of the spoke shape's inscribed circle. theta_0: Float. Initial angle to start the vertices from. Returns: path: Array of vertices of the spoke shape, normalized so the spoke shape has area 1. """ theta = 2 * np.pi / num_sides path = np.empty([3 * num_sides, 2]) spoke = _polar2cartesian(spoke_height, -0.5 * theta + theta_0) for i in range(num_sides): vertex = _polar2cartesian(1, i * theta + theta_0) path[3 * i] = spoke + vertex path[3 * i + 1] = vertex spoke = _polar2cartesian(spoke_height, (i + 0.5) * theta + theta_0) path[3 * i + 2] = spoke + vertex area = num_sides * np.sin(theta / 2) * (2 + np.cos(theta / 2)) path = np.array(path) / np.sqrt(area) return path
spriteworld-master
spriteworld/shapes.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Tasks for Spriteworld. Each class in this file defines a task. Namely, contains a reward function and a success function for Spriteworld. The reward function maps an iterable of sprites to a float. The success function maps an iterable of sprites to a bool. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import numpy as np import six from sklearn import metrics @six.add_metaclass(abc.ABCMeta) class AbstractTask(object): """Abstract class from which all tasks should inherit.""" @abc.abstractmethod def reward(self, sprites): """Compute reward for the given configuration of sprites. This reward is evaluated per-step by the Spriteworld environment. See Environment.step() in environment.py for usage. Hence if this is a smooth function the agent will have shaped reward. Sparse rewards awarded only at the end of an episode can be implemented by returning non-zero reward only for a desired goal configuration of sprites (see sub-classes below for examples). Args: sprites: Iterable of sprite instances. Returns: Float reward for the given configuration of sprites. """ @abc.abstractmethod def success(self, sprites): """Compute whether the task has been successfully solved. Args: sprites: Iterable of sprite instances. Returns: Boolean. Whether or not the given configuration of sprites successfully solves the task. """ class NoReward(AbstractTask): """Used for environments that have no task. Reward is always 0.""" def __init__(self): pass def reward(self, unused_sprites): """Calculate reward from sprites.""" return 0.0 def success(self, unused_sprites): return False class FindGoalPosition(AbstractTask): """Used for tasks that require moving some sprites to a goal position.""" def __init__(self, filter_distrib=None, goal_position=(0.5, 0.5), terminate_distance=0.05, terminate_bonus=0.0, weights_dimensions=(1, 1), sparse_reward=False, raw_reward_multiplier=50): """Construct goal-finding task. This task rewards the agent for bringing all sprites with factors contained in a filter distribution to a goal position. Rewards are offset to be negative, except for a termination bonus when the goal is reached. Args: filter_distrib: None or instance of factor_distributions.AbstractDistribution. If None, all sprites must be brought to the goal position. If not None, only sprites with factors contained in this distribution must be brought to the goal position. goal_position: Position of the goal. terminate_distance: Distance from goal position at which to clip reward. If all sprites are within this distance, terminate episode. terminate_bonus: Extra bonus for getting all sprites within terminate_distance. weights_dimensions: Weights modifying the contributions of the (x, y)-dimensions to the distance to goal computation. sparse_reward: Boolean (default False), whether to provide dense rewards or only reward at the end of an episode. raw_reward_multiplier: Multiplier for the reward to be applied before terminate_bonus. Empirically, 50 seems to be a good value. """ self._filter_distrib = filter_distrib self._goal_position = np.asarray(goal_position) self._terminate_bonus = terminate_bonus self._terminate_distance = terminate_distance self._sparse_reward = sparse_reward self._weights_dimensions = np.asarray(weights_dimensions) self._raw_reward_multiplier = raw_reward_multiplier def _single_sprite_reward(self, sprite): goal_distance = np.sum(self._weights_dimensions * (sprite.position - self._goal_position)**2.)**0.5 raw_reward = self._terminate_distance - goal_distance return self._raw_reward_multiplier * raw_reward def _filtered_sprites_rewards(self, sprites): """Returns list of rewards for the filtered sprites.""" rewards = [ self._single_sprite_reward(s) for s in sprites if self._filter_distrib is None or self._filter_distrib.contains(s.factors) ] return rewards def reward(self, sprites): """Calculate total reward summed over filtered sprites.""" reward = 0. rewards = self._filtered_sprites_rewards(sprites) if not rewards: # No sprites get through the filter, so make reward NaN return np.nan dense_reward = np.sum(rewards) if all(np.array(rewards) >= 0): # task succeeded reward += self._terminate_bonus reward += dense_reward elif not self._sparse_reward: reward += dense_reward return reward def success(self, sprites): return all(np.array(self._filtered_sprites_rewards(sprites)) >= 0) class Clustering(AbstractTask): """Task for cluster by color/shape conditions.""" def __init__(self, cluster_distribs, termination_threshold=2.5, terminate_bonus=0.0, sparse_reward=False, reward_range=10): """Reward depends on clustering sprites based on color/shape. We indicate what feature matters for the clustering with the list of cluster distribs. We can then compute intra-extra pairwise distances and use the Davies-Bouldin clustering metric. See https://en.wikipedia.org/wiki/Cluster_analysis#Internal_evaluation for some discussion about different metrics. Args: cluster_distribs: list of factor distributions defining the clusters. termination_threshold: Threshold that the metric should pass to terminate an episode. Default of 2.5 seems to work well for 2 or 3 clusters. terminate_bonus: Extra bonus upon task success. sparse_reward: Boolean (default True), whether to provide dense shaping rewards or just the sparse ones at the end of an episode. reward_range: Scalar, specifies range [-reward_range, 0] we remap the rewards to whenever possible. """ self._cluster_distribs = cluster_distribs self._num_clusters = len(cluster_distribs) self._termination_threshold = termination_threshold self._terminate_bonus = terminate_bonus self._sparse_reward = sparse_reward self._reward_range = reward_range def _cluster_assignments(self, sprites): """Return index of cluster for all sprites.""" clusters = -np.ones(len(sprites), dtype='int') for i, sprite in enumerate(sprites): for c_i, distrib in enumerate(self._cluster_distribs): if distrib.contains(sprite.factors): clusters[i] = c_i break return clusters def _compute_clustering_metric(self, sprites): """Compute the different clustering metrics, higher should be better.""" # Get positions of sprites, and their cluster assignments cluster_assignments = self._cluster_assignments(sprites) positions = np.array([sprite.position for sprite in sprites]) # Ignore objects unassigned to any cluster positions = positions[cluster_assignments >= 0] cluster_assignments = cluster_assignments[cluster_assignments >= 0] return 1. / metrics.davies_bouldin_score(positions, cluster_assignments) def reward(self, sprites): """Calculate reward from sprites. Recommendation: Use Davies-Bouldin, with termination_threshold left to auto. Args: sprites: list of Sprites. Returns: Reward, high when clustering is good. """ reward = 0. metric = self._compute_clustering_metric(sprites) # Low DB index is better clustering dense_reward = (metric - self._termination_threshold) * self._reward_range / 2. if metric >= self._termination_threshold: # task succeeded reward += self._terminate_bonus reward += dense_reward elif not self._sparse_reward: reward += dense_reward return reward def success(self, sprites): metric = self._compute_clustering_metric(sprites) return metric >= self._termination_threshold class MetaAggregated(AbstractTask): """Combines several tasks together.""" REWARD_AGGREGATOR = { 'sum': np.nansum, 'max': np.nanmax, 'min': np.nanmin, 'mean': np.nanmean } TERMINATION_CRITERION = {'all': np.all, 'any': np.any} def __init__(self, subtasks, reward_aggregator='sum', termination_criterion='all', terminate_bonus=0.0): """MetaTasks which combines rewards between several subtasks. Args: subtasks: Iterable of Tasks. reward_aggregator: (string) how to combine rewards together. One of ('sum', 'max', 'min', 'mean'). termination_criterion: (string) how to decide when to terminate, given subtasks' termination signals. One of ('all', 'any') terminate_bonus: Extra bonus for solving all subtasks, combined with termination_criterion. """ if reward_aggregator not in MetaAggregated.REWARD_AGGREGATOR: raise ValueError('Unknown reward_aggregator. {} not in {}'.format( reward_aggregator, MetaAggregated.REWARD_AGGREGATOR)) if termination_criterion not in MetaAggregated.TERMINATION_CRITERION: raise ValueError('Unknown termination_criterion. {} not in {}'.format( termination_criterion, MetaAggregated.TERMINATION_CRITERION)) self._subtasks = subtasks self._reward_aggregator = MetaAggregated.REWARD_AGGREGATOR[ reward_aggregator] self._termination_criterion = MetaAggregated.TERMINATION_CRITERION[ termination_criterion] self._terminate_bonus = terminate_bonus def reward(self, sprites): rewards = self._reward_aggregator( [task.reward(sprites) for task in self._subtasks]) rewards += self._terminate_bonus * self.success(sprites) return rewards def success(self, sprites): return self._termination_criterion( [task.success(sprites) for task in self._subtasks])
spriteworld-master
spriteworld/tasks.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Constants for shapes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import enum import numpy as np from spriteworld import shapes # A selection of simple shapes SHAPES = { 'triangle': shapes.polygon(num_sides=3, theta_0=np.pi/2), 'square': shapes.polygon(num_sides=4, theta_0=np.pi/4), 'pentagon': shapes.polygon(num_sides=5, theta_0=np.pi/2), 'hexagon': shapes.polygon(num_sides=6), 'octagon': shapes.polygon(num_sides=8), 'circle': shapes.polygon(num_sides=30), 'star_4': shapes.star(num_sides=4, theta_0=np.pi/4), 'star_5': shapes.star(num_sides=5, theta_0=np.pi + np.pi/10), 'star_6': shapes.star(num_sides=6), 'spoke_4': shapes.spokes(num_sides=4, theta_0=np.pi/4), 'spoke_5': shapes.spokes(num_sides=5, theta_0=np.pi + np.pi/10), 'spoke_6': shapes.spokes(num_sides=6), } class ShapeType(enum.IntEnum): """Enumerate SHAPES, useful for a state description of the environment.""" triangle = 1 square = 2 pentagon = 3 hexagon = 4 octagon = 5 circle = 6 star_4 = 7 star_5 = 8 star_6 = 9 spoke_4 = 10 spoke_5 = 11 spoke_6 = 12
spriteworld-master
spriteworld/constants.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """__init__.py."""
spriteworld-master
spriteworld/__init__.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Spriteworld sprite.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from matplotlib import path as mpl_path from matplotlib import transforms as mpl_transforms import numpy as np from spriteworld import constants FACTOR_NAMES = ( 'x', # x-position of sprite center-of-mass (float) 'y', # y-position of sprite center-of-mass (float) 'shape', # shape (string) 'angle', # angle in degrees (scalar) 'scale', # size of sprite (float) 'c0', # first color component (scalar) 'c1', # second color component (scalar) 'c2', # third color component (scalar) 'x_vel', # x-component of velocity (float) 'y_vel', # y-component of velocity (float) ) # Just to catch infinite while-looping. Anything >1e4 should be plenty safe. _MAX_TRIES = int(1e6) class Sprite(object): """Sprite class. Sprites are simple shapes parameterized by a few factors (position, shape, angle, scale, color, velocity). They are the building blocks of Spriteworld, so every Spriteworld environment state is simple a collection of sprites. We assume that (x, y) are in mathematical coordinates, i.e. (0, 0) is at the lower-left of the frame. """ def __init__(self, x=0.5, y=0.5, shape='square', angle=0, scale=0.1, c0=0, c1=0, c2=0, x_vel=0.0, y_vel=0.0): """Construct sprite. This class is agnostic to the color scheme, namely (c1, c2, c3) could be in RGB coordinates or HSV, HSL, etc. without this class knowing. The color scheme conversion for rendering must be done in the renderer. Args: x: Float in [0, 1]. x-position. y: Float in [0, 1]. y-position. shape: String. Shape of the sprite. Must be a key of constants.SHAPES. angle: Int. Angle in degrees. scale: Float in [0, 1]. Scale of the sprite, from a point to the area of the entire frame. This scales linearly with respect to sprite width, hence with power 1/2 with respect to sprite area. c0: Scalar. First coordinate of color. c1: Scalar. Second coordinate of color. c2: Scalar. Third coordinate of color. x_vel: Float. x-velocity. y_vel: Float. y-velocity. """ self._position = np.array([x, y]) self._shape = shape self._angle = angle self._scale = scale self._color = (c0, c1, c2) self._velocity = (x_vel, y_vel) self._reset_centered_path() def _reset_centered_path(self): path = mpl_path.Path(constants.SHAPES[self._shape]) scale_rotate = ( mpl_transforms.Affine2D().scale(self._scale) + mpl_transforms.Affine2D().rotate_deg(self._angle)) self._centered_path = scale_rotate.transform_path(path) def move(self, motion, keep_in_frame=False): """Move the sprite, optionally keeping its centerpoint within the frame.""" self._position += motion if keep_in_frame: self._position = np.clip(self._position, 0.0, 1.0) def update_position(self, keep_in_frame=False): """Update position based on velocity.""" self.move(self.velocity, keep_in_frame=keep_in_frame) def contains_point(self, point): """Check if the point is contained in the Sprite.""" return self._centered_path.contains_point(point - self.position) def sample_contained_position(self): """Sample random position uniformly within sprite.""" low = np.min(self._centered_path.vertices, axis=0) high = np.max(self._centered_path.vertices, axis=0) for _ in range(_MAX_TRIES): sample = self._position + np.random.uniform(low, high) if self.contains_point(sample): return sample raise ValueError('max_tries exceeded. There is almost surely an error in ' 'the SpriteWorld library code.') @property def vertices(self): """Numpy array of vertices of the shape.""" transform = mpl_transforms.Affine2D().translate(*self._position) path = transform.transform_path(self._centered_path) return path.vertices @property def out_of_frame(self): return not (np.all(self._position >= [0., 0.]) and np.all(self._position <= [1., 1.])) @property def x(self): return self._position[0] @property def y(self): return self._position[1] @property def shape(self): return self._shape @shape.setter def shape(self, s): self._shape = s self._reset_centered_path() @property def angle(self): return self._angle @angle.setter def angle(self, a): rotate = mpl_transforms.Affine2D().rotate_deg(a - self._angle) self._centered_path = rotate.transform_path(self._centered_path) self._angle = a @property def scale(self): return self._scale @scale.setter def scale(self, s): rescale = mpl_transforms.Affine2D().scale(s - self._scale) self._centered_path = rescale.transform_path(self._centered_path) self._scale = s @property def c0(self): return self._color[0] @property def c1(self): return self._color[1] @property def c2(self): return self._color[2] @property def x_vel(self): return self._velocity[0] @property def y_vel(self): return self._velocity[1] @property def color(self): return self._color @property def position(self): return self._position @property def velocity(self): return self._velocity @property def factors(self): factors = collections.OrderedDict() for factor_name in FACTOR_NAMES: factors[factor_name] = getattr(self, factor_name) return factors
spriteworld-master
spriteworld/sprite.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Spriteworld environment.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import dm_env import numpy as np import six class Environment(dm_env.Environment): """Environment class for Spriteworld. This environment uses the `dm_env` interface. For details, see https://github.com/deepmind/dm_env """ def __init__(self, task, action_space, renderers, init_sprites, keep_in_frame=True, max_episode_length=1000, metadata=None): """Construct Spriteworld environment. Args: task: Object with methods: - reward: sprites -> float. - success: sprites -> bool. action_space: Action space with methods: - step: action, sprites, keep_in_frame -> reward. - action_spec: Callable returning ArraySpec or list/dict of such. renderers: Dict where values are renderers and keys are names, reflected in the keys of the observation. init_sprites: Callable returning iterable of sprites, called upon environment reset. keep_in_frame: Bool. Whether to keep sprites in frame when they move. This prevents episodes from terminating frequently when an agent moves a sprite out of frame. max_episode_length: Maximum number of steps beyond which episode will be terminated. metadata: Optional object to be added to the global_state. """ self._task = task self._action_space = action_space self._renderers = renderers self._init_sprites = init_sprites self._keep_in_frame = keep_in_frame self._max_episode_length = max_episode_length self._sprites = self._init_sprites() self._step_count = 0 self._reset_next_step = True self._renderers_initialized = False self._metadata = metadata def reset(self): self._sprites = self._init_sprites() self._step_count = 0 self._reset_next_step = False return dm_env.restart(self.observation()) def success(self): return self._task.success(self._sprites) def should_terminate(self): timeout = self._step_count >= self._max_episode_length out_of_frame = any([sprite.out_of_frame for sprite in self._sprites]) return self.success() or out_of_frame or timeout def step(self, action): """Step the environment with an action.""" if self._reset_next_step: return self.reset() self._step_count += 1 reward = self._action_space.step( action, self._sprites, keep_in_frame=self._keep_in_frame) # Update sprite positions from their velocities for sprite in self._sprites: sprite.update_position(keep_in_frame=self._keep_in_frame) reward += self._task.reward(self._sprites) observation = self.observation() if self.should_terminate(): self._reset_next_step = True return dm_env.termination(reward=reward, observation=observation) else: return dm_env.transition(reward=reward, observation=observation) def sample_contained_position(self): """Sample a random position contained in a sprite. This is useful for hand-crafted random agents. Note that this function does not uniformly sample with respect to sprite areas. Instead, it randomly selects a sprite, then selects a random position within that sprite. Consequently, small sprites are represented equally to large sprites, and in the case of occlusion forground sprites may be overrepresented relative to background sprites. Returns: Float numpy array of shape (2,) in [0, 1]. Position contained in one of the sprites. """ sprite = self._sprites[np.random.randint(len(self._sprites))] return sprite.sample_contained_position() def state(self): global_state = { 'success': self.success(), } if self._metadata: global_state['metadata'] = self._metadata return {'sprites': self._sprites, 'global_state': global_state} def observation(self): state = self.state() observation = { name: renderer.render(**state) for name, renderer in six.iteritems(self._renderers) } return observation def observation_spec(self): if not self._renderers_initialized: # Force a rendering so that the sizes of observeration_specs are correct. self.observation() self._renderers_initialized = True renderer_spec = { name: renderer.observation_spec() for name, renderer in six.iteritems(self._renderers) } return renderer_spec def action_spec(self): return self._action_space.action_spec() @property def action_space(self): return self._action_space
spriteworld-master
spriteworld/environment.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Wrapper to make Spriteworld conform to the OpenAI Gym interface.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from dm_env import specs from gym import spaces import numpy as np def _spec_to_space(spec): """Convert dm_env.specs to gym.Spaces.""" if isinstance(spec, list): return spaces.Tuple([_spec_to_space(s) for s in spec]) elif isinstance(spec, specs.DiscreteArray): return spaces.Discrete(spec.num_values) elif isinstance(spec, specs.BoundedArray): return spaces.Box( np.asscalar(spec.minimum), np.asscalar(spec.maximum), shape=spec.shape, dtype=spec.dtype) else: raise ValueError('Unknown type for specs: {}'.format(spec)) class GymWrapper(object): """Wraps a Spriteworld environment into a Gym interface. Observations will be a dictionary, with the same keys as the 'renderers' dict provided when constructing a Spriteworld environment. Rendering is always performed, so calling render() is a no-op. """ metadata = {'render.modes': ['rgb_array']} def __init__(self, env): self._env = env self._last_render = None self._action_space = None self._observation_space = None # Reset Spriteworld to setup the observation_specs correctly self._env.reset() def __getattr__(self, name): return getattr(self._env, name) @property def observation_space(self): if self._observation_space is None: components = {} for key, value in self._env.observation_spec().items(): components[key] = spaces.Box( -np.inf, np.inf, value.shape, dtype=value.dtype) self._observation_space = spaces.Dict(components) return self._observation_space @property def action_space(self): if self._action_space is None: self._action_space = _spec_to_space(self._env.action_spec()) return self._action_space def _process_obs(self, obs): """Convert and processes observations.""" for k, v in obs.items(): obs[k] = np.asarray(v) if obs[k].dtype == np.bool: # Convert boolean 'success' into an float32 to predict it. obs[k] = obs[k].astype(np.float32) if k == 'image': self._last_render = obs[k] return obs def step(self, action): """Main step function for the environment. Args: action: Array R^4 Returns: obs: dict of observations. Follows from the 'renderers' configuration provided as parameters to Spriteworld. reward: scalar reward. done: True if terminal state. info: dict with extra information (e.g. discount factor). """ time_step = self._env.step(action) obs = self._process_obs(time_step.observation) reward = time_step.reward or 0 done = time_step.last() info = {'discount': time_step.discount} return obs, reward, done, info def reset(self): """Reset environment. Returns: obs: dict of observations. Follows from the 'renderers' configuration provided as parameters to Spriteworld. """ time_step = self._env.reset() return self._process_obs(time_step.observation) def render(self, mode='rgb_array'): """Render function, noop for compatibility. Args: mode: unused, always returns an RGB array. Returns: Last RGB observation (cached from last observation with key 'image') """ del mode return self._last_render def close(self): """Unused.""" pass
spriteworld-master
spriteworld/gym_wrapper.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Interactive GUI for Spriteworld. Be aware that this UI overrides the action space and renderer for ease of playing, so those will be different from what are specified in the task config. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging as log import sys from absl import logging from matplotlib import gridspec import matplotlib.pylab as plt import numpy as np from spriteworld import action_spaces from spriteworld import environment from spriteworld import renderers class MatplotlibUI(object): """Class for visualising the environment based on Matplotlib.""" def __init__(self): self.rewards = 10 * [np.nan] self.rewards_bounds = [-10, 10] self.last_success = None plt.ion() self._fig = plt.figure( figsize=(9, 12), num='Spriteworld', facecolor='white') gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1]) self._ax_image = plt.subplot(gs[0]) self._ax_image.axis('off') self._ax_scalar = plt.subplot(gs[1]) self._ax_scalar.spines['right'].set_visible(False) self._ax_scalar.spines['top'].set_visible(False) self._ax_scalar.xaxis.set_ticks_position('bottom') self._ax_scalar.yaxis.set_ticks_position('left') self._setup_callbacks() @property def ax_image(self): return self._ax_image def _setup_callbacks(self): """Default callbacks for the UI.""" # Pressing escape should stop the UI def _onkeypress(event): if event.key == 'escape': # Stop UI logging.info('Pressed escape, stopping UI.') plt.close(self._fig) sys.exit() self._fig.canvas.mpl_connect('key_release_event', _onkeypress) # Disable default keyboard shortcuts for key in ('keymap.fullscreen', 'keymap.home', 'keymap.back', 'keymap.forward', 'keymap.pan', 'keymap.zoom', 'keymap.save', 'keymap.quit', 'keymap.grid', 'keymap.yscale', 'keymap.xscale', 'keymap.all_axes'): plt.rcParams[key] = '' # Disable logging of some matplotlib events log.getLogger('matplotlib').setLevel('WARNING') def _draw_observation(self, image, action): """Draw the latest observation.""" self._ax_image.clear() self._ax_image.imshow(image, interpolation='none') self._ax_image.set_xticks([]) self._ax_image.set_yticks([]) if action is not None: self._ax_image.annotate( '', xycoords='axes fraction', xy=action[:2], # Start of arrow xytext=action[2:], # End of arrow arrowprops={ 'arrowstyle': '<|-', 'color': 'red', 'lw': 4, }) # Indicate success linewidth = 1 color = 'black' if np.isnan(self.rewards[-1]): linewidth = 8 color = 'green' if self.last_success else 'red' for sp in self._ax_image.spines.values(): sp.set_color(color) sp.set_linewidth(linewidth) def _draw_rewards(self): """Draw the past rewards plot.""" self._ax_scalar.clear() self._ax_scalar.set_ylabel('Rewards') self._ax_scalar.set_xlabel('Timestep') xs = np.arange(-len(self.rewards), 0) self._ax_scalar.set_xticks(xs) self._ax_scalar.axhline(y=0.0, color='lightgrey', linestyle='--') self._ax_scalar.stem(xs, self.rewards, basefmt=' ') self._ax_scalar.set_xlim((xs[0] - 1.0, xs[-1] + 1.0)) self._ax_scalar.set_ylim( (self.rewards_bounds[0] - 1.0, self.rewards_bounds[1] + 1.0)) def register_callback(self, event_name, callback): """Register a callback for the given event.""" self._fig.canvas.mpl_connect(event_name, callback) def update(self, timestep, action): """Update the visualisation with the latest timestep and action.""" reward = timestep.reward if reward is None: reward = np.nan self.rewards = self.rewards[1:] + [reward] self.rewards_bounds[0] = np.nanmin( [np.nanmin(self.rewards), self.rewards_bounds[0]]) self.rewards_bounds[1] = np.nanmax( [np.nanmax(self.rewards), self.rewards_bounds[1]]) self._draw_observation(timestep.observation['image'], action) self._draw_rewards() plt.show(block=False) self.last_success = timestep.observation['success'] class HumanDragAndDropAgent(object): """Demo agent for mouse-clicking interface with DragAndDrop action space.""" def __init__(self, action_space, timeout=600): self._action_space = action_space self._click = None self._timeout = timeout def help(self): logging.info('Click to select an object, then click again to select where ' 'to move it.') def register_callbacks(self, ui): """Register the matplotlib callbacks required by the agent.""" def _onclick(event): if event.inaxes and event.inaxes == ui.ax_image: # Map the click into axis-fraction positions (origin at bottom-left). self._click = event.inaxes.transAxes.inverted().transform( (event.x, event.y)) else: self._click = None return ui.register_callback('button_press_event', _onclick) def begin_episode(self): logging.info('Starting episode') def step(self, timestep): """Take a step.""" del timestep # Unused def _get_click(): """Get mouse click.""" click = None while click is None: x = plt.waitforbuttonpress(timeout=self._timeout) if x is None: logging.info('Timed out. You took longer than %d seconds to click.', self._timeout) elif x: logging.info('You pressed a key, but were supposed to click with the ' 'mouse.') self.help() else: click = self._click return click def _get_action(): """Get action from user.""" logging.info('Select sprite') click_from = _get_click() logging.info('Select target') click_to = _get_click() try: action = np.concatenate((click_from, click_to)).astype(np.float32) if any(np.isnan(action)): raise ValueError self._action_space.action_spec().validate(action) return action except (ValueError, TypeError): logging.info('Select a valid action') return _get_action() action = _get_action() return action class HumanEmbodiedAgent(object): """Demo agent for keyboard interface with Embodied action space.""" MOTION_KEY_TO_ACTION = { 'up': 0, 'left': 1, 'down': 2, 'right': 3, 'w': 0, 'a': 1, 's': 2, 'd': 3 } def __init__(self, action_space, timeout=600): self._action_space = action_space self._key_press = None self._carry = False self._movement = None self._timeout = timeout def help(self): logging.info('Use WASD/arrow keys to move, hold Space to carry.') def register_callbacks(self, ui): """Register the matplotlib callbacks required by the agent.""" def _onkeypress(event): if event.key in HumanEmbodiedAgent.MOTION_KEY_TO_ACTION: self._movement = HumanEmbodiedAgent.MOTION_KEY_TO_ACTION[event.key] elif event.key == ' ': self._carry = True else: self.help() ui.register_callback('key_press_event', _onkeypress) def _onkeyrelease(event): if event.key == ' ': self._carry = False elif event.key in HumanEmbodiedAgent.MOTION_KEY_TO_ACTION: self._movement = None ui.register_callback('key_release_event', _onkeyrelease) def begin_episode(self): logging.info('Starting episode') def step(self, timestep): """Take a step.""" del timestep # Unused def _wait_for_movement_key_press(): """Get key press.""" ready = False while not ready: x = plt.waitforbuttonpress(timeout=self._timeout) if x is None: logging.info('Timed out. You took longer than %d seconds to click.', self._timeout) elif not x: logging.info('You clicked, but you are supposed to use the Keyboard.') self.help() elif self._movement is not None: ready = True def _get_action(): """Get action from user.""" _wait_for_movement_key_press() action = (int(self._carry), self._movement) for spec, a in zip(self._action_space.action_spec(), action): spec.validate(a) return action return _get_action() def setup_run_ui(env_config, render_size, task_hsv_colors, anti_aliasing): """Start a Demo UI given an env_config.""" if isinstance(env_config['action_space'], action_spaces.SelectMove): # DragAndDrop is a bit easier to demo than the SelectMove action space env_config['action_space'] = action_spaces.DragAndDrop(scale=0.5) agent = HumanDragAndDropAgent(env_config['action_space']) elif isinstance(env_config['action_space'], action_spaces.Embodied): agent = HumanEmbodiedAgent(env_config['action_space']) else: raise ValueError( 'Demo is not configured to run with action space {}.'.format( env_config['action_space'])) env_config['renderers'] = { 'image': renderers.PILRenderer( image_size=(render_size, render_size), color_to_rgb=renderers.color_maps.hsv_to_rgb if task_hsv_colors else None, anti_aliasing=anti_aliasing), 'success': renderers.Success() } env = environment.Environment(**env_config) ui = MatplotlibUI() agent.register_callbacks(ui) # Start RL loop timestep = env.reset() ui.update(timestep, action=None) while True: action = agent.step(timestep) timestep = env.step(action) if isinstance(env_config['action_space'], action_spaces.DragAndDrop): ui.update(timestep, action) else: ui.update(timestep, None)
spriteworld-master
spriteworld/demo_ui.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Action spaces for Spriteworld. This file contains action space classes compatible with Spriteworld. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from dm_env import specs import numpy as np class SelectMove(object): """Select-Move action space. This action space takes in a continuous vector of length 4 with each component in [0, 1]. This can be intuited as representing two consecutive clicks: [first_x, first_y, second_x, second_y]. These two clicks are then processed to generate a position and a motion: * Position = [first_x, first_y] * Motion = scale * [second_x - 0.5, second_y - 0.5] If the Position, viewed as a point in the arena, lies inside of a sprite, that sprite will be moved by Motion, which is a scaled version of the second click relative to the center of the arena. If the Position does not lie inside of a sprite then no sprite will move. So to move a sprite you have to click on it and click on the direction you want it to move, like a touch screen. There is an optional control cost proportional to the norm of the motion. """ def __init__(self, scale=1.0, motion_cost=0.0, noise_scale=None): """Constructor. Args: scale: Multiplier by which the motion is scaled down. Should be in [0.0, 1.0]. motion_cost: Factor by which motion incurs cost. noise_scale: Optional stddev of the noise. If scalar, applied to all action space components. If vector, must have same shape as action. """ self._scale = scale self._motion_cost = motion_cost self._noise_scale = noise_scale self._action_spec = specs.BoundedArray( shape=(4,), dtype=np.float32, minimum=0.0, maximum=1.0) def get_motion(self, action): delta_pos = (action[2:] - 0.5) * self._scale return delta_pos def apply_noise_to_action(self, action): if self._noise_scale: noise = np.random.normal( loc=0.0, scale=self._noise_scale, size=action.shape) return action + noise else: return action def get_sprite_from_position(self, position, sprites): for sprite in sprites[::-1]: if sprite.contains_point(position): return sprite return None def step(self, action, sprites, keep_in_frame): """Take an action and move the sprites. Args: action: Numpy array of shape (4,) in [0, 1]. First two components are the position selection, second two are the motion selection. sprites: Iterable of sprite.Sprite() instances. If a sprite is moved by the action, its position is updated. keep_in_frame: Bool. Whether to force sprites to stay in the frame by clipping their centers of mass to be in [0, 1]. Returns: Scalar cost of taking this action. """ noised_action = self.apply_noise_to_action(action) position = noised_action[:2] motion = self.get_motion(noised_action) clicked_sprite = self.get_sprite_from_position(position, sprites) if clicked_sprite is not None: clicked_sprite.move(motion, keep_in_frame=keep_in_frame) return -self._motion_cost * np.linalg.norm(motion) def sample(self): """Sample an action uniformly randomly.""" return np.random.uniform(0., 1., size=(4,)) def action_spec(self): return self._action_spec class DragAndDrop(SelectMove): """Drag-And-Drop action space. This action space takes in a continuous vector of length 4 with each component in [0, 1]. This can be intuited as representing two consecutive clicks: [first_x, first_y, second_x, second_y]. These two clicks are then processed to generate a position and a motion: * Position = [first_x, first_y] * Motion = scale * [second_x - first_x, second_y - first_y] * Target = [second_x, second_y] Similarly to SelectMove, a sprite will only move if Position lies in it. The only difference is here the Motion is relative to the Position, instead of relative to the center of the screen. So the second click effectively specifies a target location towards which the sprite moves. """ def get_motion(self, action): pos = action[:2] target = action[2:] delta_pos = (target - pos) * self._scale return delta_pos class Embodied(object): """Embodied-Grid action space. This action space treats sprites[-1] (the foreground sprite) as the agent's body. The action space has two components. The first is a binary `Carry/Don't Carry` component which allows the agent to carry the sprite immediately beneath it as it moves, if there is such a sprite. The second controls the agent's motion and consists of `Up/Down/Left/Right` options. """ def __init__(self, step_size=0.05, motion_cost=0.): """Constructor. Args: step_size: Fraction of the arena width the sprite moves for each step. motion_cost: Each step incurs cost motion_cost * step_size. """ self._step_size = step_size self._motion_cost = motion_cost self._action_spec = [ specs.DiscreteArray(num_values=2, dtype=np.int64), specs.DiscreteArray(num_values=4, dtype=np.int64), ] self.action_to_motion = { 0: np.array([0, self._step_size]), # Up 1: np.array([-self._step_size, 0]), # Left 2: np.array([0, -self._step_size]), # Down 3: np.array([self._step_size, 0]), # Right } def get_body_sprite(self, sprites): """Return the sprite representing the agent's body.""" return sprites[-1] def get_non_body_sprites(self, sprites): """Return all sprites except that representing the agent's body.""" return sprites[:-1] def get_carried_sprite(self, sprites): body_position = self.get_body_sprite(sprites).position for sprite in self.get_non_body_sprites(sprites)[::-1]: if sprite.contains_point(body_position): return sprite return None def step(self, action, sprites, keep_in_frame): """Take an action and move the sprites. Args: action: Iterable of length 2. First component must be in [0, 1] and second component must be in [0, 1, 2, 3]. sprites: Iterable of sprite.Sprite() instances. sprites[-1] is the agent's body. keep_in_frame: Bool. Whether to force sprites to stay in the frame by clipping their centers of mass to be in [0, 1]. Returns: Scalar cost of taking this action. """ carry = action[0] motion = self.action_to_motion[action[1]] # Move carried sprite if necessary if carry: carried_sprite = self.get_carried_sprite(sprites) if carried_sprite is not None: carried_sprite.move(motion, keep_in_frame=keep_in_frame) # Move agent body self.get_body_sprite(sprites).move(motion, keep_in_frame=keep_in_frame) return -self._motion_cost * self._step_size def sample(self): """Sample an action uniformly randomly.""" return [np.random.randint(0, 2), np.random.randint(0, 4)] def action_spec(self): return self._action_spec
spriteworld-master
spriteworld/action_spaces.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Functions to transform between color spaces for rendering.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import colorsys import numpy as np def hsv_to_rgb(c): """Convert HSV tuple to RGB tuple.""" return tuple((255 * np.array(colorsys.hsv_to_rgb(*c))).astype(np.uint8))
spriteworld-master
spriteworld/renderers/color_maps.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Abstract base class for renderers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six @six.add_metaclass(abc.ABCMeta) class AbstractRenderer(object): """Abstract base class for renderers.""" @abc.abstractmethod def render(self, sprites=(), global_state=None): """Renderer the sprites and global_state. Args: sprites: Iterable of sprites to be rendered. global_state: May contain extra information for rendering (e.g. background, symbolic/linguistic data, etc.). """ @abc.abstractmethod def observation_spec(self): """Get observation spec for the output. Returns: ArraySpec or nested structure of such. Must agree with the output of self.update(). """
spriteworld-master
spriteworld/renderers/abstract_renderer.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Expose renderer classes.""" from spriteworld.renderers import color_maps from spriteworld.renderers.abstract_renderer import AbstractRenderer from spriteworld.renderers.handcrafted import SpriteFactors from spriteworld.renderers.handcrafted import SpritePassthrough from spriteworld.renderers.handcrafted import Success from spriteworld.renderers.pil_renderer import PILRenderer
spriteworld-master
spriteworld/renderers/__init__.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Handcrafted renderers for Spriteworld.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from dm_env import specs import numpy as np from spriteworld import constants from spriteworld import sprite as sprite_lib from spriteworld.renderers import abstract_renderer class SpriteFactors(abstract_renderer.AbstractRenderer): """Aggregates factors of the sprites into an array.""" def __init__(self, factors=sprite_lib.FACTOR_NAMES): """Constructor. Outputs a list of dicts: [{object 1 factors} {object 2 factors} ...] Args: factors: Iterable of strings. Factors to record. Must be a subset of sprite.FACTOR_NAMES. """ if not set(factors).issubset(set(sprite_lib.FACTOR_NAMES)): raise ValueError('Factors have to belong to {}.'.format( sprite_lib.FACTOR_NAMES)) self._num_sprites = None self._factors = factors self._per_object_spec = { factor: specs.Array(shape=(), dtype=np.float32) for factor in factors } def render(self, sprites=(), global_state=None): """Renders a list of sprites into a list of sprite factors. Args: sprites: a list of sprites with a method `get_sprite`. This method receives a single argument `upscale_factor`, and returns a pygame sprite. global_state: Unused global state. Returns: A list of dictionaries of factor -> values mappings. """ del global_state # Set number of sprites so that observation_spec is callable self._num_sprites = len(sprites) def _process_factor(name, value): if name == 'shape': value = constants.ShapeType[value].value return float(value) def _sprite_to_factors(sprite): return { factor: _process_factor(factor, getattr(sprite, factor)) for factor in self._factors } return np.array([_sprite_to_factors(sprite) for sprite in sprites]) def observation_spec(self): return [self._per_object_spec for _ in range(self._num_sprites)] class SpritePassthrough(abstract_renderer.AbstractRenderer): """Passes the list of Sprites directly as observation.""" def __init__(self): """Constructor.""" self._num_sprites = None def render(self, sprites=(), global_state=None): """Sends the sprites (e.g. list of Sprites) directly through. Args: sprites: a list of sprites with a method `get_sprite`. This method receives a single argument `upscale_factor`, and returns a pygame sprite. global_state: Unused global state. Returns: A numpy array containing the concatenation of all desired attributes of all sprites. """ del global_state self._num_sprites = len(sprites) return sprites def observation_spec(self): return specs.Array(shape=(self._num_sprites,), dtype=np.object) class Success(abstract_renderer.AbstractRenderer): """Renders whether a task has been successfully solved.""" def render(self, sprites=(), global_state=None): """Returns task success. Args: sprites: Unused iterable of sprites. global_state: Must be a dictionary with key 'success'. Returns: Boolean indicating success. """ return global_state['success'] def observation_spec(self): return specs.Array(shape=(), dtype=np.bool)
spriteworld-master
spriteworld/renderers/handcrafted.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Python Image Library (PIL/Pillow) renderer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from dm_env import specs import numpy as np from PIL import Image from PIL import ImageDraw from spriteworld.renderers import abstract_renderer class PILRenderer(abstract_renderer.AbstractRenderer): """Render using Python Image Library (PIL/Pillow).""" def __init__(self, image_size=(64, 64), anti_aliasing=1, bg_color=None, color_to_rgb=None): """Construct PIL renderer. Args: image_size: Int tuple (height, width). Size of output of .render(). anti_aliasing: Int. Anti-aliasing factor. Linearly scales the size of the internal canvas. bg_color: None or 3-tuple of ints in [0, 255]. Background color. If None, background is (0, 0, 0). color_to_rgb: Callable converting a tuple (c1, c2, c3) to a uint8 tuple (r, g, b) in [0, 255]. """ self._image_size = image_size self._anti_aliasing = anti_aliasing self._canvas_size = (anti_aliasing * image_size[0], anti_aliasing * image_size[1]) if color_to_rgb is None: color_to_rgb = lambda x: x self._color_to_rgb = color_to_rgb if bg_color is None: bg_color = (0, 0, 0) self._canvas_bg = Image.new('RGB', self._canvas_size, bg_color) self._observation_spec = specs.Array( shape=self._image_size + (3,), dtype=np.uint8) self._canvas = Image.new('RGB', self._canvas_size) self._draw = ImageDraw.Draw(self._canvas) def render(self, sprites=(), global_state=None): """Render sprites. Sprites are ordered from background to foreground. Args: sprites: Iterable of sprite.Sprite instances. global_state: Unused global state. Returns: Numpy uint8 RGB array of size self._image_size + (3,). """ self._canvas.paste(self._canvas_bg) for obj in sprites: vertices = self._canvas_size * obj.vertices color = self._color_to_rgb(obj.color) self._draw.polygon([tuple(v) for v in vertices], fill=color) image = self._canvas.resize(self._image_size, resample=Image.ANTIALIAS) # PIL uses a coordinate system with the origin (0, 0) at the upper-left, but # our environment uses an origin at the bottom-left (i.e. mathematical # convention). Hence we need to flip the render vertically to correct for # that. image = np.flipud(np.array(image)) return image def observation_spec(self): return self._observation_spec
spriteworld-master
spriteworld/renderers/pil_renderer.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """__init__.py."""
spriteworld-master
spriteworld/configs/__init__.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Goal-Finding task for embodied agent. In this task there are target sprites of orange-green-ish color. All target sprites must be brought to the goal location, which is the center of the arena. There are also distractor sprites, which are blue-purple-ish color and do not contribute to the reward. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from spriteworld import action_spaces from spriteworld import factor_distributions as distribs from spriteworld import renderers as spriteworld_renderers from spriteworld import sprite_generators from spriteworld import tasks TERMINATE_DISTANCE = 0.075 NUM_TARGETS = lambda: np.random.randint(1, 4) NUM_DISTRACTORS = lambda: np.random.randint(1, 4) def get_config(mode=None): """Generate environment config. Args: mode: Unused task mode. Returns: config: Dictionary defining task/environment configuration. Can be fed as kwargs to environment.Environment. """ del mode shared_factors = distribs.Product([ distribs.Continuous('x', 0.1, 0.9), distribs.Continuous('y', 0.1, 0.9), distribs.Discrete('shape', ['square', 'triangle', 'circle']), distribs.Discrete('scale', [0.13]), distribs.Continuous('c1', 0.3, 1.), distribs.Continuous('c2', 0.9, 1.), ]) target_hue = distribs.Continuous('c0', 0., 0.4) distractor_hue = distribs.Continuous('c0', 0.5, 0.9) target_factors = distribs.Product([ target_hue, shared_factors, ]) distractor_factors = distribs.Product([ distractor_hue, shared_factors, ]) target_sprite_gen = sprite_generators.generate_sprites( target_factors, num_sprites=NUM_TARGETS) distractor_sprite_gen = sprite_generators.generate_sprites( distractor_factors, num_sprites=NUM_DISTRACTORS) sprite_gen = sprite_generators.chain_generators(target_sprite_gen, distractor_sprite_gen) # Randomize sprite ordering to eliminate any task information from occlusions sprite_gen = sprite_generators.shuffle(sprite_gen) # Create the agent body agent_body_factors = distribs.Product([ distribs.Continuous('x', 0.1, 0.9), distribs.Continuous('y', 0.1, 0.9), distribs.Discrete('shape', ['circle']), distribs.Discrete('scale', [0.07]), distribs.Discrete('c0', [1.]), distribs.Discrete('c1', [0.]), distribs.Discrete('c2', [1.]), ]) agent_body_gen = sprite_generators.generate_sprites( agent_body_factors, num_sprites=1) sprite_gen = sprite_generators.chain_generators(sprite_gen, agent_body_gen) task = tasks.FindGoalPosition( filter_distrib=target_hue, terminate_distance=TERMINATE_DISTANCE) renderers = { 'image': spriteworld_renderers.PILRenderer( image_size=(64, 64), anti_aliasing=5, color_to_rgb=spriteworld_renderers.color_maps.hsv_to_rgb) } config = { 'task': task, 'action_space': action_spaces.Embodied(step_size=0.05), 'renderers': renderers, 'init_sprites': sprite_gen, 'max_episode_length': 50, 'metadata': { 'name': os.path.basename(__file__), } } return config
spriteworld-master
spriteworld/configs/examples/goal_finding_embodied.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """__init__.py.""" from spriteworld.configs.examples import goal_finding_clustering from spriteworld.configs.examples import goal_finding_embodied
spriteworld-master
spriteworld/configs/examples/__init__.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 r"""Goal-Finding and clustering combined task. To demo this task, navigate to the main directory and run the following: ''' $ python demo --config=spriteworld.configs.examples.goal_finding_clustering \ --task_hsv_colors=False ''' This is a complicated task designed only to exemplify the features of the task specification procedures. In this task there are three kinds of sprites: 1) Those to be clustered. These are triangles, squares, and pentagons. They must be clustered according to their color. 2) Those to be brought to goal regions. These are 4-spokes and 4-stars. They must be brought to different sides of the arena according to their color. Namely, the reddish ones must be brought to the right side of the arena and the greenish ones must be brought to the left side of the arena (the y-position is irrelevant). 3) Distractors. These are circles. There is a train/test split: In test mode, the colors of the objects to be clustered and the scales of those to be brought to goals are different. Note that the colors in this task are defined in RGB space, so be sure when running the demo on it to set --task_hsv_colors=False. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from spriteworld import action_spaces from spriteworld import factor_distributions as distribs from spriteworld import renderers as spriteworld_renderers from spriteworld import sprite_generators from spriteworld import tasks def get_config(mode='train'): """Generate environment config. Args: mode: Unused task mode. Returns: config: Dictionary defining task/environment configuration. Can be fed as kwargs to environment.Environment. """ # Factor distributions common to all objects. common_factors = distribs.Product([ distribs.Continuous('x', 0.1, 0.9), distribs.Continuous('y', 0.1, 0.9), distribs.Continuous('angle', 0, 360, dtype='int32'), ]) # train/test split for goal-finding object scales and clustering object colors goal_finding_scale_test = distribs.Continuous('scale', 0.08, 0.12) green_blue_colors = distribs.Product([ distribs.Continuous('c1', 64, 256, dtype='int32'), distribs.Continuous('c2', 64, 256, dtype='int32'), ]) if mode == 'train': goal_finding_scale = distribs.SetMinus( distribs.Continuous('scale', 0.05, 0.15), goal_finding_scale_test, ) cluster_colors = distribs.Product( [distribs.Continuous('c0', 128, 256, dtype='int32'), green_blue_colors]) elif mode == 'test': goal_finding_scale = goal_finding_scale_test cluster_colors = distribs.Product( [distribs.Continuous('c0', 0, 128, dtype='int32'), green_blue_colors]) else: raise ValueError( 'Invalid mode {}. Mode must be "train" or "test".'.format(mode)) # Create clustering sprite generators sprite_gen_list = [] cluster_shapes = [ distribs.Discrete('shape', [s]) for s in ['triangle', 'square', 'pentagon'] ] for shape in cluster_shapes: factors = distribs.Product([ common_factors, cluster_colors, shape, distribs.Continuous('scale', 0.08, 0.12), ]) sprite_gen_list.append( sprite_generators.generate_sprites(factors, num_sprites=2)) # Create goal-finding sprite generators goal_finding_colors = [ distribs.Product([ distribs.Continuous('c0', 192, 256, dtype='int32'), distribs.Continuous('c1', 0, 128, dtype='int32'), distribs.Continuous('c2', 64, 128, dtype='int32'), ]), distribs.Product([ distribs.Continuous('c0', 0, 128, dtype='int32'), distribs.Continuous('c1', 192, 256, dtype='int32'), distribs.Continuous('c2', 64, 128, dtype='int32'), ]) ] # Goal positions corresponding to the colors in goal_finding_colors goal_finding_positions = [(0., 0.5), (1., 0.5)] goal_finding_shapes = distribs.Discrete('shape', ['spoke_4', 'star_4']) for colors in goal_finding_colors: factors = distribs.Product([ common_factors, goal_finding_scale, goal_finding_shapes, colors, ]) sprite_gen_list.append( sprite_generators.generate_sprites( factors, num_sprites=lambda: np.random.randint(1, 3))) # Create distractor sprite generator distractor_factors = distribs.Product([ common_factors, distribs.Discrete('shape', ['circle']), distribs.Continuous('c0', 64, 256, dtype='uint8'), distribs.Continuous('c1', 64, 256, dtype='uint8'), distribs.Continuous('c2', 64, 256, dtype='uint8'), distribs.Continuous('scale', 0.08, 0.12), ]) sprite_gen_list.append(sprite_generators.generate_sprites( distractor_factors, num_sprites=lambda: np.random.randint(0, 3))) # Concat clusters into single scene to generate sprite_gen = sprite_generators.chain_generators(*sprite_gen_list) # Randomize sprite ordering to eliminate any task information from occlusions sprite_gen = sprite_generators.shuffle(sprite_gen) # Create the combined task of goal-finding and clustering task_list = [] task_list.append( tasks.Clustering(cluster_shapes, terminate_bonus=0., reward_range=10.)) for colors, goal_pos in zip(goal_finding_colors, goal_finding_positions): goal_finding_task = tasks.FindGoalPosition( distribs.Product([colors, goal_finding_shapes]), goal_position=goal_pos, weights_dimensions=(1, 0), terminate_distance=0.15, raw_reward_multiplier=30) task_list.append(goal_finding_task) task = tasks.MetaAggregated( task_list, reward_aggregator='sum', termination_criterion='all') renderers = { 'image': spriteworld_renderers.PILRenderer( image_size=(64, 64), anti_aliasing=5) } config = { 'task': task, 'action_space': action_spaces.SelectMove(scale=0.5), 'renderers': renderers, 'init_sprites': sprite_gen, 'max_episode_length': 50, 'metadata': { 'name': os.path.basename(__file__), 'mode': mode } } return config
spriteworld-master
spriteworld/configs/examples/goal_finding_clustering.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Goal-Finding tasks testing for generalization to new shapes. In this task there are target sprites of orange-green-ish color. In train mode there is one target, while in test mode there are two. All target sprites must be brought to the goal location, which is the center of the arena. There are always two distractor sprites, which are blue-purple-ish color and do not contribute to the reward. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from spriteworld import factor_distributions as distribs from spriteworld import sprite_generators from spriteworld import tasks from spriteworld.configs.cobra import common TERMINATE_DISTANCE = 0.075 NUM_DISTRACTORS = 2 MODES_NUM_TARGETS = { 'train': 1, 'test': 2, } def get_config(mode='train'): """Generate environment config. Args: mode: 'train' or 'test'. Returns: config: Dictionary defining task/environment configuration. Can be fed as kwargs to environment.Environment. """ shared_factors = distribs.Product([ distribs.Continuous('x', 0.1, 0.9), distribs.Continuous('y', 0.1, 0.9), distribs.Discrete('shape', ['square', 'triangle', 'circle']), distribs.Discrete('scale', [0.13]), distribs.Continuous('c1', 0.3, 1.), distribs.Continuous('c2', 0.9, 1.), ]) target_hue = distribs.Continuous('c0', 0., 0.4) distractor_hue = distribs.Continuous('c0', 0.5, 0.9) target_factors = distribs.Product([ target_hue, shared_factors, ]) distractor_factors = distribs.Product([ distractor_hue, shared_factors, ]) target_sprite_gen = sprite_generators.generate_sprites( target_factors, num_sprites=MODES_NUM_TARGETS[mode]) distractor_sprite_gen = sprite_generators.generate_sprites( distractor_factors, num_sprites=NUM_DISTRACTORS) sprite_gen = sprite_generators.chain_generators(target_sprite_gen, distractor_sprite_gen) # Randomize sprite ordering to eliminate any task information from occlusions sprite_gen = sprite_generators.shuffle(sprite_gen) task = tasks.FindGoalPosition( filter_distrib=target_hue, terminate_distance=TERMINATE_DISTANCE) config = { 'task': task, 'action_space': common.action_space(), 'renderers': common.renderers(), 'init_sprites': sprite_gen, 'max_episode_length': 20, 'metadata': { 'name': os.path.basename(__file__), 'mode': mode } } return config
spriteworld-master
spriteworld/configs/cobra/goal_finding_more_targets.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Goal-Finding tasks testing for generalization to new shapes. In this task there is one sprite per episode. That sprite must be brought to the goal location, which is always the center of the arena. At training time the sprite is a square. At test time it is either a circle or a triangle. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from spriteworld import factor_distributions as distribs from spriteworld import sprite_generators from spriteworld import tasks from spriteworld.configs.cobra import common TERMINATE_DISTANCE = 0.075 NUM_TARGETS = 1 MODES_SHAPES = { 'train': distribs.Discrete('shape', ['square']), 'test': distribs.Discrete('shape', ['triangle', 'circle']), } def get_config(mode='train'): """Generate environment config. Args: mode: 'train' or 'test'. Returns: config: Dictionary defining task/environment configuration. Can be fed as kwargs to environment.Environment. """ factors = distribs.Product([ MODES_SHAPES[mode], distribs.Continuous('x', 0.1, 0.9), distribs.Continuous('y', 0.1, 0.9), distribs.Discrete('scale', [0.13]), distribs.Continuous('c0', 0., 0.4), distribs.Continuous('c1', 0.3, 1.), distribs.Continuous('c2', 0.9, 1.), ]) sprite_gen = sprite_generators.generate_sprites( factors, num_sprites=NUM_TARGETS) # Randomize sprite ordering to eliminate any task information from occlusions sprite_gen = sprite_generators.shuffle(sprite_gen) task = tasks.FindGoalPosition(terminate_distance=TERMINATE_DISTANCE) config = { 'task': task, 'action_space': common.action_space(), 'renderers': common.renderers(), 'init_sprites': sprite_gen, 'max_episode_length': 20, 'metadata': { 'name': os.path.basename(__file__), 'mode': mode } } return config
spriteworld-master
spriteworld/configs/cobra/goal_finding_new_shape.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Goal-Finding tasks testing for generalization to new initial positions. In this task there is one target sprite of orange-green-ish color and one distractor sprite of blue-purple-ish color. The target must be brought to the goal location, which is the center of the arena, while the distractor does not contribute to the reward. In train mode the target is initialized in any position except the lower-right quadrant, while in test mode it is initialized only in the lower-right quadrant. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from spriteworld import factor_distributions as distribs from spriteworld import sprite_generators from spriteworld import tasks from spriteworld.configs.cobra import common TERMINATE_DISTANCE = 0.075 NUM_TARGETS = 1 NUM_DISTRACTORS = 1 MODES_TARGET_POSITIONS = { 'train': distribs.SetMinus( distribs.Product(( distribs.Continuous('x', 0.1, 0.9), distribs.Continuous('y', 0.1, 0.9), )), distribs.Product(( distribs.Continuous('x', 0.5, 0.9), distribs.Continuous('y', 0.5, 0.9), )), ), 'test': distribs.Product(( distribs.Continuous('x', 0.5, 0.9), distribs.Continuous('y', 0.5, 0.9), )), } def get_config(mode='train'): """Generate environment config. Args: mode: 'train' or 'test'. Returns: config: Dictionary defining task/environment configuration. Can be fed as kwargs to environment.Environment. """ shared_factors = distribs.Product([ distribs.Discrete('shape', ['square', 'triangle', 'circle']), distribs.Discrete('scale', [0.13]), distribs.Continuous('c1', 0.3, 1.), distribs.Continuous('c2', 0.9, 1.), ]) target_hue = distribs.Continuous('c0', 0., 0.4) distractor_hue = distribs.Continuous('c0', 0.5, 0.9) target_factors = distribs.Product([ MODES_TARGET_POSITIONS[mode], target_hue, shared_factors, ]) distractor_factors = distribs.Product([ distribs.Continuous('x', 0.1, 0.9), distribs.Continuous('y', 0.1, 0.9), distractor_hue, shared_factors, ]) target_sprite_gen = sprite_generators.generate_sprites( target_factors, num_sprites=NUM_TARGETS) distractor_sprite_gen = sprite_generators.generate_sprites( distractor_factors, num_sprites=NUM_DISTRACTORS) sprite_gen = sprite_generators.chain_generators(target_sprite_gen, distractor_sprite_gen) # Randomize sprite ordering to eliminate any task information from occlusions sprite_gen = sprite_generators.shuffle(sprite_gen) task = tasks.FindGoalPosition( filter_distrib=target_hue, terminate_distance=TERMINATE_DISTANCE) config = { 'task': task, 'action_space': common.action_space(), 'renderers': common.renderers(), 'init_sprites': sprite_gen, 'max_episode_length': 20, 'metadata': { 'name': os.path.basename(__file__), 'mode': mode } } return config
spriteworld-master
spriteworld/configs/cobra/goal_finding_new_position.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Clustering task used in COBRA. Cluster sprites by color. We use 4 types of sprites, based on their hue. We then compute a Davies-Bouldin clustering metric to assess clustering quality (and generate a reward). The Clustering task uses a threshold to terminate an episode when the clustering metric is good enough. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from spriteworld import factor_distributions as distribs from spriteworld import sprite_generators from spriteworld import tasks from spriteworld.configs.cobra import common # Task Parameters NUM_SPRITES_PER_CLUSTER = 2 MAX_EPISODE_LENGTH = 50 # Define possible clusters (here using Hue as selection attribute) CLUSTERS_DISTS = { 'red': distribs.Continuous('c0', 0.9, 1.), 'blue': distribs.Continuous('c0', 0.55, 0.65), 'green': distribs.Continuous('c0', 0.27, 0.37), 'yellow': distribs.Continuous('c0', 0.1, 0.2), } # Define train/test generalization splits MODES = { 'train': ('blue', 'green'), 'test': ('red', 'yellow'), } def get_config(mode='train'): """Generate environment config. Args: mode: 'train' or 'test'. Returns: config: Dictionary defining task/environment configuration. Can be fed as kwargs to environment.Environment. """ # Select clusters to use, and their c0 factor distribution. c0_clusters = [CLUSTERS_DISTS[cluster] for cluster in MODES[mode]] print('Clustering task: {}, #sprites: {}'.format(MODES[mode], NUM_SPRITES_PER_CLUSTER)) other_factors = distribs.Product([ distribs.Continuous('x', 0.1, 0.9), distribs.Continuous('y', 0.1, 0.9), distribs.Discrete('shape', ['square', 'triangle', 'circle']), distribs.Discrete('scale', [0.13]), distribs.Continuous('c1', 0.3, 1.), distribs.Continuous('c2', 0.9, 1.), ]) # Generate the sprites to be used in this task, by combining Hue with the # other factors. sprite_factors = [ distribs.Product((other_factors, c0)) for c0 in c0_clusters ] # Convert to sprites, generating the appropriate number per cluster. sprite_gen_per_cluster = [ sprite_generators.generate_sprites( factors, num_sprites=NUM_SPRITES_PER_CLUSTER) for factors in sprite_factors ] # Concat clusters into single scene to generate. sprite_gen = sprite_generators.chain_generators(*sprite_gen_per_cluster) # Randomize sprite ordering to eliminate any task information from occlusions sprite_gen = sprite_generators.shuffle(sprite_gen) # Clustering task will define rewards task = tasks.Clustering(c0_clusters, terminate_bonus=0., reward_range=10.) config = { 'task': task, 'action_space': common.action_space(), 'renderers': common.renderers(), 'init_sprites': sprite_gen, 'max_episode_length': MAX_EPISODE_LENGTH, 'metadata': { 'name': os.path.basename(__file__), 'mode': mode } } return config
spriteworld-master
spriteworld/configs/cobra/clustering.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Exploration task used in COBRA. There is no reward for this task, as it is used for task-free curiosity-drive exploration. Episodes last 10 steps, and each is initialized with 1-6 sprites of random shape, color, and position. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from spriteworld import factor_distributions as distribs from spriteworld import sprite_generators from spriteworld import tasks from spriteworld.configs.cobra import common def get_config(mode=None): """Generate environment config. Args: mode: Unused. Returns: config: Dictionary defining task/environment configuration. Can be fed as kwargs to environment.Environment. """ del mode # No train/test split for pure exploration factors = distribs.Product([ distribs.Continuous('x', 0.1, 0.9), distribs.Continuous('y', 0.1, 0.9), distribs.Discrete('shape', ['square', 'triangle', 'circle']), distribs.Discrete('scale', [0.13]), distribs.Continuous('c0', 0., 1.), distribs.Continuous('c1', 0.3, 1.), distribs.Continuous('c2', 0.9, 1.), ]) num_sprites = lambda: np.random.randint(1, 7) sprite_gen = sprite_generators.generate_sprites( factors, num_sprites=num_sprites) task = tasks.NoReward() config = { 'task': task, 'action_space': common.action_space(), 'renderers': common.renderers(), 'init_sprites': sprite_gen, 'max_episode_length': 10, 'metadata': { 'name': os.path.basename(__file__) } } return config
spriteworld-master
spriteworld/configs/cobra/exploration.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Sorting task used in COBRA. Sort sprites into target locations based on color. We use 5 narrow hue ranges (red, blue, green, purple, yellow), and associated to each a goal location (the corners and center of the arena). Each episode we sample two sprites in random locations with different colors and reward the agent for bringing them each to their respective goal location. in the training mode we hold out one color pair, and in the test mode we sample only that pair. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import os import numpy as np from spriteworld import factor_distributions as distribs from spriteworld import sprite_generators from spriteworld import tasks from spriteworld.configs.cobra import common # Task Parameters MAX_EPISODE_LENGTH = 50 TERMINATE_DISTANCE = 0.075 RAW_REWARD_MULTIPLIER = 20. NUM_TARGETS = 2 # Sub-tasks for each color/goal SUBTASKS = ( { 'distrib': distribs.Continuous('c0', 0.9, 1.), # red 'goal_position': np.array([0.75, 0.75]) }, { 'distrib': distribs.Continuous('c0', 0.55, 0.65), # blue 'goal_position': np.array([0.75, 0.25]) }, { 'distrib': distribs.Continuous('c0', 0.27, 0.37), # green 'goal_position': np.array([0.25, 0.75]) }, { 'distrib': distribs.Continuous('c0', 0.73, 0.83), # purple 'goal_position': np.array([0.25, 0.25]) }, { 'distrib': distribs.Continuous('c0', 0.1, 0.2), # yellow 'goal_position': np.array([0.5, 0.5]) }, ) def get_config(mode='train'): """Generate environment config. Args: mode: 'train' or 'test'. Returns: config: Dictionary defining task/environment configuration. Can be fed as kwargs to environment.Environment. """ # Create the subtasks and their corresponding sprite generators subtasks = [] sprite_gen_per_subtask = [] for subtask in SUBTASKS: subtasks.append(tasks.FindGoalPosition( filter_distrib=subtask['distrib'], goal_position=subtask['goal_position'], terminate_distance=TERMINATE_DISTANCE, raw_reward_multiplier=RAW_REWARD_MULTIPLIER)) factors = distribs.Product(( subtask['distrib'], distribs.Continuous('x', 0.1, 0.9), distribs.Continuous('y', 0.1, 0.9), distribs.Discrete('shape', ['square', 'triangle', 'circle']), distribs.Discrete('scale', [0.13]), distribs.Continuous('c1', 0.3, 1.), distribs.Continuous('c2', 0.9, 1.), )) sprite_gen_per_subtask.append( sprite_generators.generate_sprites(factors, num_sprites=1)) # Consider all combinations of subtasks subtask_combos = list( itertools.combinations(np.arange(len(SUBTASKS)), NUM_TARGETS)) if mode == 'train': # Randomly sample a combination of subtasks, holding one combination out sprite_gen = sprite_generators.sample_generator([ sprite_generators.chain_generators( *[sprite_gen_per_subtask[i] for i in c]) for c in subtask_combos[1:] ]) elif mode == 'test': # Use the held-out subtask combination for testing sprite_gen = sprite_generators.chain_generators( *[sprite_gen_per_subtask[i] for i in subtask_combos[0]]) else: raise ValueError('Invalide mode {}.'.format(mode)) # Randomize sprite ordering to eliminate any task information from occlusions sprite_gen = sprite_generators.shuffle(sprite_gen) task = tasks.MetaAggregated( subtasks, reward_aggregator='sum', termination_criterion='all') config = { 'task': task, 'action_space': common.action_space(), 'renderers': common.renderers(), 'init_sprites': sprite_gen, 'max_episode_length': MAX_EPISODE_LENGTH, 'metadata': { 'name': os.path.basename(__file__), 'mode': mode } } return config
spriteworld-master
spriteworld/configs/cobra/sorting.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """__init__.py.""" from spriteworld.configs.cobra import clustering from spriteworld.configs.cobra import exploration from spriteworld.configs.cobra import goal_finding_more_distractors from spriteworld.configs.cobra import goal_finding_more_targets from spriteworld.configs.cobra import goal_finding_new_position from spriteworld.configs.cobra import goal_finding_new_shape from spriteworld.configs.cobra import sorting
spriteworld-master
spriteworld/configs/cobra/__init__.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Shared definitions and methods across all COBRA tasks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from spriteworld import action_spaces from spriteworld import renderers as spriteworld_renderers def action_space(): return action_spaces.SelectMove(scale=0.25) def renderers(): return { 'image': spriteworld_renderers.PILRenderer( image_size=(64, 64), anti_aliasing=5, color_to_rgb=spriteworld_renderers.color_maps.hsv_to_rgb, ) }
spriteworld-master
spriteworld/configs/cobra/common.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Goal-Finding tasks testing for generalization to more distractors. In this task there are two target sprites per episode of orange-green-ish color. Those sprites must be brought to the goal location, which is the center of the arena. There are also distractor sprites, which are blue-purple-ish color and do not contribute to the reward. In train mode there is 1 distractor, while in test mode there are two. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from spriteworld import factor_distributions as distribs from spriteworld import sprite_generators from spriteworld import tasks from spriteworld.configs.cobra import common TERMINATE_DISTANCE = 0.075 NUM_TARGETS = 2 MODES_NUM_DISTRACTORS = { 'train': 1, 'test': 2, } def get_config(mode='train'): """Generate environment config. Args: mode: 'train' or 'test'. Returns: config: Dictionary defining task/environment configuration. Can be fed as kwargs to environment.Environment. """ shared_factors = distribs.Product([ distribs.Continuous('x', 0.1, 0.9), distribs.Continuous('y', 0.1, 0.9), distribs.Discrete('shape', ['square', 'triangle', 'circle']), distribs.Discrete('scale', [0.13]), distribs.Continuous('c1', 0.3, 1.), distribs.Continuous('c2', 0.9, 1.), ]) target_hue = distribs.Continuous('c0', 0., 0.4) distractor_hue = distribs.Continuous('c0', 0.5, 0.9) target_factors = distribs.Product([ target_hue, shared_factors, ]) distractor_factors = distribs.Product([ distractor_hue, shared_factors, ]) target_sprite_gen = sprite_generators.generate_sprites( target_factors, num_sprites=NUM_TARGETS) distractor_sprite_gen = sprite_generators.generate_sprites( distractor_factors, num_sprites=MODES_NUM_DISTRACTORS[mode]) sprite_gen = sprite_generators.chain_generators(target_sprite_gen, distractor_sprite_gen) # Randomize sprite ordering to eliminate any task information from occlusions sprite_gen = sprite_generators.shuffle(sprite_gen) task = tasks.FindGoalPosition( filter_distrib=target_hue, terminate_distance=TERMINATE_DISTANCE) config = { 'task': task, 'action_space': common.action_space(), 'renderers': common.renderers(), 'init_sprites': sprite_gen, 'max_episode_length': 20, 'metadata': { 'name': os.path.basename(__file__), 'mode': mode } } return config
spriteworld-master
spriteworld/configs/cobra/goal_finding_more_distractors.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Tests for shapes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from absl.testing import parameterized import numpy as np from PIL import Image from PIL import ImageDraw from spriteworld import shapes class ShapesTest(parameterized.TestCase): def _test_area(self, path): im_size = 1000 path = im_size * path / 2 + im_size / 2 im = Image.new('RGB', (im_size, im_size)) draw = ImageDraw.Draw(im) draw.polygon([tuple(p) for p in path], fill=(255, 255, 255)) desired_area = 0.25 * im_size * im_size * 3 true_area = np.sum(np.array(im) > 0) self.assertAlmostEqual(desired_area / true_area, 1, delta=1e-2) @parameterized.parameters(3, 4, 5, 6, 7, 8, 10) def testPolygon(self, num_sides): path = shapes.polygon(num_sides) self._test_area(path) @parameterized.parameters((3, 0.5), (3, 1.5), (5, 0.6), (5, 2.0), (8, 0.2), (8, 3.0), (11, 1.2)) def testStar(self, num_sides, point_height): path = shapes.star(num_sides, point_height) self._test_area(path) @parameterized.parameters((3, 0.5), (3, 1.5), (5, 0.6), (5, 2.0), (8, 0.2), (8, 3.0), (11, 1.2)) def testSpokes(self, num_sides, spoke_height): path = shapes.star(num_sides, spoke_height) self._test_area(path) if __name__ == '__main__': absltest.main()
spriteworld-master
tests/shapes_test.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Tests for sprite.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from absl.testing import parameterized import numpy as np from six.moves import range from spriteworld import sprite class SpriteTest(parameterized.TestCase): def testBasicInitialization(self): sprite.Sprite( x=0.2, y=0.8, shape='triangle', angle=45, scale=0.3, c0=200, c1=150, c2=100, x_vel=-0.2, y_vel=0.1) @parameterized.parameters( (0.5, 0.5, (-0.3, 0.2), (0.2, 0.7), False), (0.1, 0.1, (-0.3, 0.2), (-0.2, 0.3), False), (0.1, 0.1, (-0.3, 0.2), (0.0, 0.3), True)) def testMove(self, x, y, motion, final_position, keep_in_frame): s = sprite.Sprite(x=x, y=y) s.move(motion, keep_in_frame=keep_in_frame) self.assertSequenceAlmostEqual(s.position, final_position, delta=1e-6) @parameterized.parameters( dict( x=0.5, y=0.5, shape='square', angle=0, scale=0.5, containment=[ [False, False, False, False], [False, True, True, False], [False, True, True, False], [False, False, False, False], ]), dict( x=0.5, y=0.5, shape='square', angle=45, scale=1, containment=[ [False, True, True, False], [True, True, True, True], [True, True, True, True], [False, True, True, False], ]), dict( x=0.75, y=0.75, shape='square', angle=0, scale=0.5, containment=[ [False, False, True, True], [False, False, True, True], [False, False, False, False], [False, False, False, False], ]), dict( x=0.65, y=0.55, shape='triangle', angle=0, scale=0.5, containment=[ [False, False, True, False], [False, False, True, False], [False, True, True, True], [False, False, False, False], ]), dict( x=0.37, y=0.55, shape='star_5', angle=0, scale=0.6, containment=[ [False, True, False, False], [True, True, True, False], [False, True, False, False], [False, False, False, False], ]), ) def testContainsPoint(self, x, y, shape, angle, scale, containment): # As we use plots to prepare these tests, it's easier to write the matrix # "in the wrong orientation" (i.e. with origin='lower') and flip it. containment = np.flipud(containment) linspace = np.linspace(0.1, 0.9, 4) grid = np.stack(np.meshgrid(linspace, linspace), axis=-1) s = sprite.Sprite(x=x, y=y, shape=shape, angle=angle, scale=scale) eval_containment = np.array( [[s.contains_point(p) for p in row] for row in grid]) self.assertTrue(np.allclose(eval_containment, containment)) @parameterized.parameters( (0.5, 0.5, 'square', 0, 0.25), (0.1, 0.8, 'square', 0, 0.25), (0.5, 0.5, 'triangle', 0, 0.5), (0.5, 0.5, 'triangle', 30, 0.5)) def testSampleContainedPosition(self, x, y, shape, angle, scale): s = sprite.Sprite(x=x, y=y, shape=shape, angle=angle, scale=scale) for _ in range(5): p = s.sample_contained_position() self.assertTrue(s.contains_point(p)) def testResetShape(self): s = sprite.Sprite(scale=0.25, shape='square') square_vertices = [[0.625, 0.625], [0.375, 0.625], [0.375, 0.375], [0.625, 0.375]] self.assertSequenceAlmostEqual( np.ravel(s.vertices), np.ravel(square_vertices), delta=1e-3) s.shape = 'triangle' triangle_vertices = [[0.5, 0.72], [0.31, 0.39], [0.69, 0.39]] self.assertSequenceAlmostEqual( np.ravel(s.vertices), np.ravel(triangle_vertices), delta=1e-2) def testResetAngle(self): init_vertices = [[0.625, 0.625], [0.375, 0.625], [0.375, 0.375], [0.625, 0.375]] s = sprite.Sprite(angle=0, scale=0.25, shape='square') self.assertSequenceAlmostEqual( np.ravel(s.vertices), np.ravel(init_vertices), delta=1e-3) s.angle = -45 rotated_vertices = [[0.677, 0.5], [0.5, 0.677], [0.323, 0.5], [0.5, 0.323]] self.assertSequenceAlmostEqual( np.ravel(s.vertices), np.ravel(rotated_vertices), delta=1e-3) def testResetScale(self): s = sprite.Sprite(scale=0.25, shape='square') init_vertices = [[0.625, 0.625], [0.375, 0.625], [0.375, 0.375], [0.625, 0.375]] self.assertSequenceAlmostEqual( np.ravel(s.vertices), np.ravel(init_vertices), delta=1e-3) s.scale = 0.5 scaled_vertices = [[0.531, 0.531], [0.469, 0.531], [0.469, 0.469], [0.531, 0.469]] self.assertSequenceAlmostEqual( np.ravel(s.vertices), np.ravel(scaled_vertices), delta=1e-3) if __name__ == '__main__': absltest.main()
spriteworld-master
tests/sprite_test.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Tests for factor_distributions.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from absl.testing import parameterized from six.moves import range from spriteworld import factor_distributions as distribs def test_sampling_and_containment(test_object, d, contained, not_contained): for _ in range(5): test_object.assertTrue(d.contains(d.sample())) for contained_spec in contained: try: contained = d.contains(contained_spec) except KeyError: # Having the wrong keys also indicate it is not contained. contained = False test_object.assertTrue(contained) for not_contained_spec in not_contained: try: contained = d.contains(not_contained_spec) except KeyError: contained = False test_object.assertFalse(contained) class ContinuousTest(parameterized.TestCase): """Runs tests for Continuous distribution.""" @parameterized.parameters( (0.0, 1.0, (-0.5, 2.0)), (-1.0, -0.1, (-1.4, 0.5)), ) def testSamplingContainmentContinuous(self, minval, maxval, not_contained): d = distribs.Continuous('x', minval, maxval) for _ in range(5): self.assertTrue(d.contains(d.sample())) for not_contained_value in not_contained: self.assertFalse(d.contains({'x': not_contained_value})) def testDType(self): d_int = distribs.Continuous('x', 0, 1, dtype='int32') d_float = distribs.Continuous('x', 0, 1, dtype='float32') self.assertTrue(d_int.contains({'x': 0})) self.assertTrue(d_float.contains({'x': 0})) self.assertFalse(d_int.contains({'x': 1})) self.assertFalse(d_float.contains({'x': 1})) for _ in range(5): self.assertEqual(d_int.sample(), {'x': 0}) class DiscreteTest(parameterized.TestCase): """Runs tests for Discrete distribution.""" @parameterized.parameters( ([1, 2, 3], [1, 2, 3], [0, 4]), (['a', 'b', 'c'], ['a', 'b', 'c'], ['d', 0]), ) def testSamplingContainmentDiscrete(self, candidates, contained, not_contained): d = distribs.Discrete('x', candidates) cont = [{'x': value} for value in contained] not_cont = [{'x': value} for value in not_contained] test_sampling_and_containment(self, d, cont, not_cont) class MixtureTest(parameterized.TestCase): """Runs tests for Mixture of distributions.""" @parameterized.named_parameters( ('DisjointContinuous', distribs.Continuous( 'x', 0, 1), distribs.Continuous('x', 2, 3), [0.5, 2.5], [1.5, 3.5]), ('OverlappingContinuous', distribs.Continuous( 'x', 0, 2), distribs.Continuous('x', 1, 3), [0.5, 2.5], [-0.5, 3.5]), ('DisjointDiscrete', distribs.Discrete( 'x', [0, 1]), distribs.Discrete('x', [2, 3]), [1, 2], [-1, 4]), ('OverlappingDiscrete', distribs.Discrete( 'x', [0, 1]), distribs.Discrete('x', [1, 2]), [0, 1, 2], [-1, 3]), ('ContinuousDiscrete', distribs.Continuous( 'x', 0, 2), distribs.Discrete('x', [1, 3]), [0.5, 3], [2.5]), ) def testSamplingContainmentMixtureTwo(self, c_0, c_1, contained, not_contained): d = distribs.Mixture((c_0, c_1)) contained = [{'x': value} for value in contained] not_contained = [{'x': value} for value in not_contained] test_sampling_and_containment(self, d, contained, not_contained) def testSamplingContainmentMixtureMultiple(self): dists = [ distribs.Continuous('x', 0, 2), distribs.Continuous('x', 1, 5), distribs.Continuous('x', 9, 12), distribs.Discrete('x', [7, 10]), distribs.Discrete('x', [14]), ] contained = [0.5, 4, 11, 7, 14] not_contained = [5.5, 6, 8, 13] d = distribs.Mixture(dists) contained = [{'x': value} for value in contained] not_contained = [{'x': value} for value in not_contained] test_sampling_and_containment(self, d, contained, not_contained) def testRaisesError(self): c_0 = distribs.Discrete('x', [0]) c_1 = distribs.Discrete('y', [1]) with self.assertRaises(ValueError): distribs.Mixture((c_0, c_1)) def testProbs(self): c_0 = distribs.Discrete('x', [0]) c_1 = distribs.Discrete('x', [1]) d_0 = distribs.Mixture([c_0, c_1], probs=(0.3, 0.7)) d_1 = distribs.Mixture([c_0, c_1], probs=(0.0, 1.0)) for _ in range(5): self.assertTrue(d_0.contains(d_0.sample())) for _ in range(5): self.assertEqual(d_1.sample(), {'x': 1}) class IntersectionTest(parameterized.TestCase): """Runs tests for Intersection of distributions.""" @parameterized.named_parameters( ('ContinuousContinuous', distribs.Continuous( 'x', 0, 2), distribs.Continuous('x', 1, 3), [1.5], [0.5, 2.5]), ('DiscreteDiscrete', distribs.Discrete( 'x', [0, 1]), distribs.Discrete('x', [1, 2]), [1], [0, 2]), ('DiscreteContinuous', distribs.Discrete( 'x', [1, 3]), distribs.Continuous('x', 0, 2), [1], [0.5, 1.5, 3]), ) def testSamplingContainmentIntersectionTwo(self, d_0, d_1, contained, not_contained): d = distribs.Intersection((d_0, d_1)) contained = [{'x': value} for value in contained] not_contained = [{'x': value} for value in not_contained] test_sampling_and_containment(self, d, contained, not_contained) def testSamplingContainmentIntersectionMultiple(self): dists = [ distribs.Discrete('x', [1, 2.5, 3, 4, 6]), distribs.Discrete('x', [1, 2.5, 3, 12]), distribs.Continuous('x', 0, 5), distribs.Continuous('x', 2, 10), ] contained = [2.5, 3] not_contained = [1, 4, 8] d = distribs.Intersection(dists) contained = [{'x': value} for value in contained] not_contained = [{'x': value} for value in not_contained] test_sampling_and_containment(self, d, contained, not_contained) def testRaisesError(self): d_0 = distribs.Continuous('x', 0, 1) d_1 = distribs.Continuous('x', 2, 3) d = distribs.Intersection((d_0, d_1)) with self.assertRaises(ValueError): d.sample() def testIndexForSampling(self): d_0 = distribs.Continuous('x', 0, 2) d_1 = distribs.Discrete('x', [1, 3]) d = distribs.Intersection((d_0, d_1), index_for_sampling=1) d.sample() with self.assertRaises(ValueError): d = distribs.Intersection((d_0, d_1), index_for_sampling=0) d.sample() def testKeys(self): d_0 = distribs.Product( (distribs.Continuous('x', 0, 2), distribs.Continuous('y', 0, 1))) d_1 = distribs.Product( (distribs.Continuous('x', 0, 1), distribs.Continuous('y', 0, 0.5))) d_2 = distribs.Continuous('x', 0.4, 0.6) distribs.Intersection((d_0, d_1)) with self.assertRaises(ValueError): distribs.Intersection((d_0, d_2)) class SelectionTest(parameterized.TestCase): """Runs tests for Selection of distributions.""" @parameterized.named_parameters( ( 'Continuous', distribs.Continuous('x', 0, 2), distribs.Continuous('x', 1, 3), [{ 'x': 1.5 }], [{ 'x': 0.5 }, { 'x': 2.5 }], ), ( 'Discrete', distribs.Discrete('x', [0, 1]), distribs.Discrete('x', [1, 2]), [{ 'x': 1 }], [{ 'x': 0 }, { 'x': 2 }], ), ( 'MultiDimensional', distribs.Product( (distribs.Discrete('x', [1, 2]), distribs.Discrete('y', [3, 4]))), distribs.Discrete('x', [2]), [{ 'x': 2, 'y': 3 }], [{ 'x': 1, 'y': 3 }, { 'x': 2 }, { 'x': 2, 'y': 5 }], ), ) def testSamplingContainmentSelection(self, d_base, d_filter, contained, not_contained): d = distribs.Selection(d_base, d_filter) test_sampling_and_containment(self, d, contained, not_contained) def testRaisesErrorFailedSampling(self): d_base = distribs.Continuous('x', 0, 1) d_filter = distribs.Continuous('x', 2, 3) d = distribs.Selection(d_base, d_filter) with self.assertRaises(ValueError): d.sample() def testKeys(self): d_base = distribs.Product( (distribs.Continuous('x', 0, 2), distribs.Continuous('y', 0, 1))) d_filter_1 = distribs.Continuous('x', 0, 1) d_filter_2 = distribs.Continuous('z', 0.4, 0.6) distribs.Selection(d_base, d_filter_1) with self.assertRaises(ValueError): distribs.Selection(d_base, d_filter_2) class ProductTest(parameterized.TestCase): """Runs tests for Product of distributions.""" @parameterized.named_parameters( ('ContinuousContinuous', distribs.Continuous( 'x', 0, 2), distribs.Continuous('y', 1, 3), [{ 'x': 0.5, 'y': 2.5 }, { 'x': 1.5, 'y': 1.5 }], [{ 'x': 0.5, 'y': 0.5 }, { 'x': 2.5, 'y': 1.5 }]), ('DiscreteDiscrete', distribs.Discrete( 'x', [0, 1]), distribs.Discrete('y', [1, 2]), [{ 'x': 0, 'y': 2 }, { 'x': 1, 'y': 1 }], [{ 'x': 1, 'y': 0 }, { 'x': 2, 'y': 2 }]), ('DiscreteContinuous', distribs.Discrete( 'x', [1, 3]), distribs.Continuous('y', 0, 2), [{ 'x': 1, 'y': 1 }, { 'x': 3, 'y': 0.5 }], [{ 'x': 2, 'y': 1 }, { 'x': 3, 'y': 3 }]), ) def testSamplingContainmentProductTwo(self, d_0, d_1, contained, not_contained): d = distribs.Product((d_0, d_1)) test_sampling_and_containment(self, d, contained, not_contained) def testSamplingContainmentProductMultiple(self): dists = [ distribs.Discrete('x', [1, 2.5, 3, 4, 6]), distribs.Discrete('y', [1, 2.5, 3, 12]), distribs.Continuous('z', 0, 5), distribs.Continuous('w', 2, 10), ] contained = [{'x': 2.5, 'y': 12, 'z': 3.5, 'w': 9}] not_contained = [ {'x': 2.5, 'y': 12, 'z': 3.5, 'w': 1}, {'x': 3.5, 'y': 12, 'z': 3.5, 'w': 9}, ] d = distribs.Product(dists) test_sampling_and_containment(self, d, contained, not_contained) def testRaisesError(self): d_0 = distribs.Continuous('x', 0, 1) d_1 = distribs.Continuous('x', 2, 3) with self.assertRaises(ValueError): distribs.Product((d_0, d_1)) def testkeys(self): dists = [ distribs.Discrete('x', [1, 2.5, 3, 12]), distribs.Continuous('y', 0, 5), distribs.Continuous('z', 2, 10), ] d = distribs.Product(dists) self.assertEqual(d.keys, set(('x', 'y', 'z'))) class SetMinusTest(parameterized.TestCase): """Runs tests for SetMinus of distributions.""" @parameterized.named_parameters( ('ContinuousContinuous', distribs.Continuous( 'x', 0, 2), distribs.Continuous('x', 1, 3), [0.5], [1.5]), ('DiscreteDiscrete', distribs.Discrete( 'x', [0, 1]), distribs.Discrete('x', [1, 2]), [0], [1]), ('DiscreteContinuous', distribs.Discrete( 'x', [1, 3]), distribs.Continuous('x', 0, 2), [3], [1]), ('ContinuousDiscrete', distribs.Continuous( 'x', 0, 2), distribs.Discrete('x', [1, 3]), [0.5, 1.5], [1]), ) def testSamplingContainmentSetMinusTwo(self, d_0, d_1, contained, not_contained): d = distribs.SetMinus(d_0, d_1) contained = [{'x': value} for value in contained] not_contained = [{'x': value} for value in not_contained] test_sampling_and_containment(self, d, contained, not_contained) def testSamplingContainmentSetMinusMultiple(self): base = distribs.Continuous('x', 2, 10) hold_out = distribs.Mixture([ distribs.Discrete('x', [1, 4, 6]), distribs.Discrete('x', [3, 8, 9, 12]), distribs.Continuous('x', 3, 5), ]) contained = [{'x': value} for value in [2.5, 5.5, 7, 9.5]] not_contained = [{'x': value} for value in [4, 6, 9, 11]] d = distribs.SetMinus(base, hold_out) test_sampling_and_containment(self, d, contained, not_contained) def testRaisesError(self): d_0 = distribs.Continuous('x', 0, 2) d_1 = distribs.Continuous('y', 1, 3) with self.assertRaises(ValueError): distribs.SetMinus(d_0, d_1) class CompositionTest(parameterized.TestCase): """Runs tests for compositions of distribution operations.""" def testCornerUnion(self): square_0 = distribs.Product([ distribs.Continuous('x', 0, 3), distribs.Continuous('y', 0, 3), ]) hold_out_0 = distribs.Product([ distribs.Continuous('x', 1, 3), distribs.Continuous('y', 0, 2), ]) square_1 = distribs.Product([ distribs.Continuous('x', 2, 5), distribs.Continuous('y', 0, 3), ]) hold_out_1 = distribs.Product([ distribs.Continuous('x', 2, 4), distribs.Continuous('y', 1, 3), ]) corner_0 = distribs.SetMinus(square_0, hold_out_0) corner_1 = distribs.SetMinus(square_1, hold_out_1) corner_union = distribs.Mixture([corner_0, corner_1]) contained = [ {'x': 0.5, 'y': 0.5}, {'x': 0.5, 'y': 2.5}, {'x': 2.5, 'y': 2.5}, {'x': 2.5, 'y': 0.5}, {'x': 4.5, 'y': 0.5}, {'x': 4.5, 'y': 2.5}, ] not_contained = [ {'x': 1.5, 'y': 0.5}, {'x': 1.5, 'y': 1.5}, {'x': 2.5, 'y': 1.5}, {'x': 3.5, 'y': 1.5}, {'x': 3.5, 'y': 2.5}, ] test_sampling_and_containment(self, corner_union, contained, not_contained) def testCubeWithTunnel(self): cube = distribs.Product([ distribs.Continuous('x', 0, 1), distribs.Continuous('y', 0, 1), distribs.Continuous('z', 0, 1), ]) tunnel = distribs.Product([ distribs.Continuous('x', 0.25, 0.75), distribs.Continuous('y', 0.25, 0.75), ]) cube_with_tunnel = distribs.SetMinus(cube, tunnel) contained = [ {'x': 0.2, 'y': 0.2, 'z': 0.2}, {'x': 0.2, 'y': 0.2, 'z': 0.5}, {'x': 0.2, 'y': 0.5, 'z': 0.5} ] not_contained = [ {'x': 0.5, 'y': 0.5, 'z': 0.5}, {'x': 0.5, 'y': 0.5, 'z': 0.2}, ] test_sampling_and_containment(self, cube_with_tunnel, contained, not_contained) if __name__ == '__main__': absltest.main()
spriteworld-master
tests/factor_distributions_test.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """__init__.py."""
spriteworld-master
tests/__init__.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Tests for gym wrapper.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from gym import spaces import numpy as np from six.moves import range from spriteworld import action_spaces from spriteworld import environment from spriteworld import gym_wrapper from spriteworld import renderers as spriteworld_renderers from spriteworld import sprite from spriteworld import tasks class GymWrapperTest(absltest.TestCase): def testContinuousActions(self): renderers = { 'image': spriteworld_renderers.PILRenderer(image_size=(64, 64),) } init_sprites = lambda: [sprite.Sprite(c0=255)] max_episode_length = 5 spriteworld_env = environment.Environment( tasks.NoReward(), action_spaces.SelectMove(), renderers, init_sprites, max_episode_length=max_episode_length) env = gym_wrapper.GymWrapper(spriteworld_env) self.assertEqual( env.observation_space, spaces.Dict({ 'image': spaces.Box(-np.inf, np.inf, shape=(64, 64, 3), dtype=np.uint8) })) self.assertEqual(env.action_space, spaces.Box(0., 1., shape=(4,), dtype=np.float32)) for _ in range(3): env.reset() for _ in range(max_episode_length - 1): action = env.action_space.sample() obs, reward, done, _ = env.step(action) self.assertEqual(obs['image'].dtype, np.uint8) self.assertFalse(done) self.assertEqual(reward, 0.) action = env.action_space.sample() _, _, done, _ = env.step(action) self.assertTrue(done) _, _, done, _ = env.step(action) self.assertFalse(done) def testEmbodiedActions(self): renderers = { 'image': spriteworld_renderers.PILRenderer(image_size=(64, 64),) } init_sprites = lambda: [sprite.Sprite(c0=255)] max_episode_length = 5 spriteworld_env = environment.Environment( tasks.NoReward(), action_spaces.Embodied(), renderers, init_sprites, max_episode_length=max_episode_length) env = gym_wrapper.GymWrapper(spriteworld_env) self.assertEqual( env.observation_space, spaces.Dict({ 'image': spaces.Box(-np.inf, np.inf, shape=(64, 64, 3), dtype=np.uint8) })) self.assertEqual(env.action_space, spaces.Tuple([spaces.Discrete(2), spaces.Discrete(4)])) for _ in range(3): env.reset() for _ in range(max_episode_length - 1): action = env.action_space.sample() obs, reward, done, _ = env.step(action) self.assertEqual(obs['image'].dtype, np.uint8) self.assertFalse(done) self.assertEqual(reward, 0.) action = env.action_space.sample() _, _, done, _ = env.step(action) self.assertTrue(done) _, _, done, _ = env.step(action) self.assertFalse(done) if __name__ == '__main__': absltest.main()
spriteworld-master
tests/gym_wrapper_test.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Tests for tasks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from absl.testing import parameterized import mock import numpy as np from spriteworld import factor_distributions as distribs from spriteworld import sprite from spriteworld import tasks class GoalPositionTest(parameterized.TestCase): def _mock_sprites(self, sprite_positions): sprites = [] for sprite_pos in sprite_positions: mocksprite = mock.Mock(spec=sprite.Sprite) mocksprite.position = sprite_pos sprites.append(mocksprite) return sprites @parameterized.parameters( ([np.array([0., 0.])], (0.5, 0.5), -30.4, False), ([np.array([0.4, 0.6])], (0.5, 0.5), -2.1, False), ([np.array([0.43, 0.56])], (0.5, 0.5), 0.4, True), ([np.array([0.48, 0.52]), np.array([0.4, 0.6])], (0.5, 0.5), 1.5, False), ([np.array([0.48, 0.52]), np.array([0.5, 0.5])], (0.5, 0.5), 8.6, True)) def testBasicReward(self, sprite_positions, goal_position, reward, success): sprites = self._mock_sprites(sprite_positions) task = tasks.FindGoalPosition( goal_position=goal_position, terminate_distance=0.1) self.assertAlmostEqual(task.reward(sprites), reward, delta=0.1) self.assertEqual(task.success(sprites), success) @parameterized.parameters( ([np.array([0.4, 0.6])], 0.15, 0.4, True), ([np.array([0.36, 0.5])], 0.15, 0.5, True), ([np.array([0.34, 0.5])], 0.15, -0.5, False), ([np.array([0.34, 0.5])], 0.2, 2., True), ([np.array([0.34, 0.39])], 0.2, 0.2, True), ([np.array([0.34, 0.37])], 0.2, -0.3, False)) def testTerminateDistance(self, sprite_positions, terminate_distance, reward, success): sprites = self._mock_sprites(sprite_positions) task = tasks.FindGoalPosition( goal_position=(0.5, 0.5), terminate_distance=terminate_distance) self.assertAlmostEqual(task.reward(sprites), reward, delta=0.1) self.assertEqual(task.success(sprites), success) @parameterized.parameters( ([np.array([0.4, 0.52])], 3., -0.1), ([np.array([0.43, 0.52])], 3., 4.4), ([np.array([0.43, 0.52])], 1., 2.4), ([np.array([0.43, 0.52]), np.array([0.4, 0.52])], 3., 1.3), ([np.array([0.43, 0.52]), np.array([0.43, 0.52])], 3., 5.7)) def testTerminateBonus(self, sprite_positions, terminate_bonus, reward): sprites = self._mock_sprites(sprite_positions) task = tasks.FindGoalPosition( goal_position=(0.5, 0.5), terminate_distance=0.1, terminate_bonus=terminate_bonus) self.assertAlmostEqual(task.reward(sprites), reward, delta=0.1) @parameterized.parameters( ([np.array([0.43, 0.52])], (1, 1), 1.4, True), ([np.array([0.43, 0.52])], (3, 1), -1.1, False), ([np.array([0.3, 0.52])], (7, 2), -21.5, False), ([np.array([0.3, 0.52])], (0.1, 0.2), 1.8, True), ) def testWeightsDimensions(self, sprite_positions, weights_dimensions, reward, success): sprites = self._mock_sprites(sprite_positions) task = tasks.FindGoalPosition( goal_position=(0.5, 0.5), terminate_distance=0.1, weights_dimensions=weights_dimensions) self.assertAlmostEqual(task.reward(sprites), reward, delta=0.1) self.assertEqual(task.success(sprites), success) @parameterized.parameters( ([np.array([0.35, 0.52])], 0., 50.0, -2.6), ([np.array([0.35, 0.52])], 0., 10.0, -0.5), ([np.array([0.43, 0.52])], 1., 10.0, 1.3), ([np.array([0.43, 0.52]), np.array([0.4, 0.52])], 0., 50.0, 1.3), ([np.array([0.43, 0.52]), np.array([0.43, 0.52])], 0., 10.0, 0.5)) def testRewardMultiplier(self, sprite_positions, terminate_bonus, reward_multiplier, reward): sprites = self._mock_sprites(sprite_positions) task = tasks.FindGoalPosition( goal_position=(0.5, 0.5), terminate_distance=0.1, terminate_bonus=terminate_bonus, raw_reward_multiplier=reward_multiplier) self.assertAlmostEqual(task.reward(sprites), reward, delta=0.1) @parameterized.parameters( ([np.array([0.35, 0.52])], 1., 0.), ([np.array([0.43, 0.52])], 1., 2.4), ([np.array([0.43, 0.52])], 3., 4.4), ([np.array([0.43, 0.52]), np.array([0.4, 0.55])], 1., 0.), ([np.array([0.43, 0.52]), np.array([0.43, 0.52])], 1., 3.7), ([np.array([0.43, 0.52]), np.array([0.43, 0.52])], 3., 5.7)) def testSparseReward(self, sprite_positions, terminate_bonus, reward): sprites = self._mock_sprites(sprite_positions) task = tasks.FindGoalPosition( goal_position=(0.5, 0.5), terminate_distance=0.1, sparse_reward=True, terminate_bonus=terminate_bonus) self.assertAlmostEqual(task.reward(sprites), reward, delta=0.1) def testFilterDistrib(self): sprites = [ sprite.Sprite(x=0.45, y=0.45, c0=64), sprite.Sprite(x=0.45, y=0.55, c0=128), sprite.Sprite(x=0.55, y=0.45, c0=192), sprite.Sprite(x=0.4, y=0.4, c0=255), ] filter_distribs = [ distribs.Continuous('c0', 0, 65), # selects sprites[:1] distribs.Continuous('c0', 0, 129), # selects sprites[:2] distribs.Continuous('c0', 0, 193), # selects sprites[:3] distribs.Continuous('c0', 0, 256), # selects sprites[:4] distribs.Continuous('c0', 65, 256), # selects sprites[1:4] ] task_list = [ tasks.FindGoalPosition( filter_distrib=x, goal_position=(0.5, 0.5), terminate_distance=0.1) for x in filter_distribs ] rewards = [1.5, 2.9, 4.4, 2.3, 0.9] successes = [True, True, True, False, False] for t, r, s in zip(task_list, rewards, successes): self.assertAlmostEqual(t.reward(sprites), r, delta=0.1) self.assertEqual(t.success(sprites), s) def testNoFilteredSprites(self): sprites = [sprite.Sprite(x=0.45, y=0.45, c0=255)] filter_distrib = distribs.Continuous('c0', 0, 254) r = tasks.FindGoalPosition( filter_distrib=filter_distrib, goal_position=(0.5, 0.5), terminate_distance=0.1).reward(sprites) self.assertTrue(np.isnan(r)) class ClusteringTest(parameterized.TestCase): def setUp(self): super(ClusteringTest, self).setUp() self.sprites = [ sprite.Sprite(x=0.2, y=0.2, c0=64), sprite.Sprite(x=0.3, y=0.3, c0=128), sprite.Sprite(x=0.8, y=0.9, c0=192), sprite.Sprite(x=0.9, y=0.8, c0=255), ] self.cluster_distribs = [ distribs.Continuous('c0', 0, 129), distribs.Continuous('c0', 190, 256), ] @parameterized.parameters( ([[0.2, 0.2], [0.21, 0.21], [0.8, 0.8], [0.81, 0.81]], 287.5 , True), ([[0.2, 0.2], [0.25, 0.25], [0.8, 0.8], [0.81, 0.81]], 84.2, True), ([[0.2, 0.2], [0.53, 0.53], [0.8, 0.8], [0.81, 0.81]], 0.4, True), ([[0.2, 0.53], [0.53, 0.2], [0.8, 0.8], [0.81, 0.81]], 0.4, True), ([[0.2, 0.2], [0.53, 0.53], [0.8, 0.8], [0.9, 0.9]], -1.2, False), ([[0.2, 0.2], [0.53, 0.53], [0.8, 0.9], [0.9, 0.8]], -1.2, False), ) def test4Sprites(self, positions, reward, success): sprites = [ sprite.Sprite(x=positions[0][0], y=positions[0][1], c0=64), sprite.Sprite(x=positions[1][0], y=positions[1][1], c0=128), sprite.Sprite(x=positions[2][0], y=positions[2][1], c0=192), sprite.Sprite(x=positions[3][0], y=positions[3][1], c0=255), ] cluster_distribs = [ distribs.Continuous('c0', 0, 129), distribs.Continuous('c0', 190, 256), ] task = tasks.Clustering(cluster_distribs=cluster_distribs) self.assertAlmostEqual(task.reward(sprites), reward, delta=0.1) self.assertEqual(task.success(sprites), success) @parameterized.parameters( ([[0.2, 0.2], [0.3, 0.3]], [[0.8, 0.8], [0.8, 0.9], [0.9, 0.9]], 18.7), ([[0.2, 0.2], [0.3, 0.3]], [[0.8, 0.8], [0.8, 0.9], [0.9, 0.2]], -2.9), ([[0.2, 0.2], [0.3, 0.3], [0.25, 0.3]], [[0.8, 0.8], [0.8, 0.9], [0.9, 0.9]], 21.2), ([[0.2, 0.2], [0.3, 0.3], [0.4, 0.8]], [[0.8, 0.8], [0.8, 0.9], [0.9, 0.9]], -1.8), ) def testMoreSprites(self, positions_0, positions_1, reward): sprites = [sprite.Sprite(x=p[0], y=p[1], c0=75) for p in positions_0] sprites.extend([sprite.Sprite(x=p[0], y=p[1], c0=225) for p in positions_1]) cluster_distribs = [ distribs.Continuous('c0', 50, 100), distribs.Continuous('c0', 200, 250), ] task = tasks.Clustering(cluster_distribs=cluster_distribs) self.assertAlmostEqual(task.reward(sprites), reward, delta=0.1) def test3Clusters(self): sprites = [ sprite.Sprite(x=0.2, y=0.2, c0=64), sprite.Sprite(x=0.3, y=0.3, c0=64), sprite.Sprite(x=0.8, y=0.9, c0=128), sprite.Sprite(x=0.9, y=0.8, c0=128), sprite.Sprite(x=0.8, y=0.9, c0=255), sprite.Sprite(x=0.9, y=0.8, c0=255), ] cluster_distribs = [ distribs.Continuous('c0', 0, 100), distribs.Continuous('c0', 100, 150), distribs.Continuous('c0', 200, 256), ] task = tasks.Clustering(cluster_distribs=cluster_distribs) self.assertAlmostEqual(task.reward(sprites), 17.5, delta=0.1) @parameterized.parameters( (2.5, 17.5), (5., 5.), (10., -20.), ) def testTerminationThreshold(self, termination_threshold, reward): task = tasks.Clustering( cluster_distribs=self.cluster_distribs, termination_threshold=termination_threshold) self.assertAlmostEqual(task.reward(self.sprites), reward, delta=0.1) @parameterized.parameters( (2.5, 0., 17.5), (2.5, 5., 22.5), (5., 3., 8.), (10., 7., -20.), ) def testTerminateBonus(self, termination_threshold, terminate_bonus, reward): task = tasks.Clustering( cluster_distribs=self.cluster_distribs, terminate_bonus=terminate_bonus, termination_threshold=termination_threshold) self.assertAlmostEqual(task.reward(self.sprites), reward, delta=0.1) @parameterized.parameters( (2.5, 10., 17.5), (2.5, 5., 8.8), (5., 3., 1.5), (10., 7., -14.), ) def testRewardRange(self, termination_threshold, reward_range, reward): task = tasks.Clustering( cluster_distribs=self.cluster_distribs, reward_range=reward_range, termination_threshold=termination_threshold) self.assertAlmostEqual(task.reward(self.sprites), reward, delta=0.1) @parameterized.parameters( (2.5, 0., 17.5), (7., 0., 0.), (10., 0., 0.), (5., 5., 10.), ) def testSparseReward(self, termination_threshold, terminate_bonus, reward): task = tasks.Clustering( cluster_distribs=self.cluster_distribs, sparse_reward=True, terminate_bonus=terminate_bonus, termination_threshold=termination_threshold) self.assertAlmostEqual(task.reward(self.sprites), reward, delta=0.1) class MetaAggregatedTest(parameterized.TestCase): def setUp(self): super(MetaAggregatedTest, self).setUp() self.subtasks = [ tasks.FindGoalPosition( filter_distrib=distribs.Continuous('c0', 0, 100), goal_position=np.array([0.2, 0.2]), terminate_distance=0.1), tasks.FindGoalPosition( filter_distrib=distribs.Continuous('c0', 100, 200), goal_position=np.array([0.5, 0.5]), terminate_distance=0.1, terminate_bonus=5.0), tasks.FindGoalPosition( filter_distrib=distribs.Continuous('c0', 200, 256), goal_position=np.array([0.8, 0.8]), terminate_distance=0.1, terminate_bonus=10.0), ] self.success_sprites = [ sprite.Sprite(x=0.2, y=0.2, c0=50), sprite.Sprite(x=0.5, y=0.45, c0=150), sprite.Sprite(x=0.85, y=0.75, c0=250), ] self.success_rewards = [5., 7.5, 11.5] self.failure_sprites = [ sprite.Sprite(x=0.2, y=0.8, c0=50), sprite.Sprite(x=0.3, y=0.45, c0=150), sprite.Sprite(x=0.9, y=0.75, c0=250), ] self.failure_rewards = [-25., -5.3, -0.6] def _get_sprites_and_reward_list(self, successes): success_inds = np.nonzero(successes)[0] failure_inds = np.nonzero(np.logical_not(successes))[0] sprites = [self.success_sprites[i] for i in success_inds] sprites.extend([self.failure_sprites[i] for i in failure_inds]) reward_list = [self.success_rewards[i] for i in success_inds] reward_list.extend([self.failure_rewards[i] for i in failure_inds]) return sprites, reward_list @parameterized.parameters( ('all', (True, True, True), True), ('all', (True, True, False), False), ('all', (True, False, False), False), ('all', (False, False, False), False), ('any', (True, True, True), True), ('any', (True, True, False), True), ('any', (True, False, False), True), ('any', (False, False, False), False), ) def testSum(self, termination_criterion, successes, success): task = tasks.MetaAggregated( self.subtasks, reward_aggregator='sum', termination_criterion=termination_criterion) sprites, reward_list = self._get_sprites_and_reward_list(successes) self.assertAlmostEqual(task.reward(sprites), sum(reward_list), delta=0.1) self.assertEqual(task.success(sprites), success) @parameterized.parameters( ((True, True, True),), ((True, True, False),), ((True, False, False),), ((False, False, False),), ) def testMax(self, successes): task = tasks.MetaAggregated( self.subtasks, reward_aggregator='max') sprites, reward_list = self._get_sprites_and_reward_list(successes) self.assertAlmostEqual(task.reward(sprites), max(reward_list), delta=0.1) @parameterized.parameters( ((True, True, True),), ((True, True, False),), ((True, False, False),), ((False, False, False),), ) def testMin(self, successes): task = tasks.MetaAggregated(self.subtasks, reward_aggregator='min') sprites, reward_list = self._get_sprites_and_reward_list(successes) self.assertAlmostEqual(task.reward(sprites), min(reward_list), delta=0.1) @parameterized.parameters( ((True, True, True),), ((True, True, False),), ((True, False, False),), ((False, False, False),), ) def testMean(self, successes): task = tasks.MetaAggregated(self.subtasks, reward_aggregator='mean') sprites, reward_list = self._get_sprites_and_reward_list(successes) self.assertAlmostEqual( task.reward(sprites), np.mean(reward_list), delta=0.1) @parameterized.parameters( ((True, True, True), 'sum', 0., 24.), ((True, True, True), 'sum', 5., 29.), ((True, True, False), 'sum', 5., 11.9), ((True, True, True), 'min', 0., 5.), ((True, True, True), 'min', 5., 10.), ((True, True, False), 'min', 5., -0.6), ) def testTerminateBonus(self, successes, reward_aggregator, terminate_bonus, reward): task = tasks.MetaAggregated( self.subtasks, reward_aggregator=reward_aggregator, terminate_bonus=terminate_bonus) sprites, _ = self._get_sprites_and_reward_list(successes) self.assertAlmostEqual(task.reward(sprites), reward, delta=0.1) if __name__ == '__main__': absltest.main()
spriteworld-master
tests/tasks_test.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Tests for sprite_generators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from absl.testing import parameterized import numpy as np from spriteworld import factor_distributions as distribs from spriteworld import sprite from spriteworld import sprite_generators _distrib_0 = distribs.Product([ distribs.Discrete('x', [0.5]), distribs.Discrete('y', [0.5]), distribs.Discrete('shape', ['square', 'triangle']), distribs.Discrete('c0', [255]), distribs.Discrete('c1', [255]), distribs.Discrete('c2', [255]), ]) _distrib_1 = distribs.Product([ distribs.Discrete('x', [0.5]), distribs.Discrete('y', [0.5]), distribs.Discrete('shape', ['hexagon', 'circle', 'star_5']), distribs.Discrete('c0', [255]), distribs.Discrete('c1', [255]), distribs.Discrete('c2', [255]), ]) class SpriteGeneratorTest(parameterized.TestCase): @parameterized.parameters(1, 2, 5) def testGenerateSpritesLengthType(self, num_sprites): g = sprite_generators.generate_sprites(_distrib_0, num_sprites=num_sprites) sprite_list = g() self.assertIsInstance(sprite_list, list) self.assertLen(sprite_list, num_sprites) self.assertIsInstance(sprite_list[0], sprite.Sprite) def testGenerateSpritesCallableNum(self): minval = 3 maxval = 6 num_sprites = np.random.randint(minval, maxval) g = sprite_generators.generate_sprites(_distrib_0, num_sprites=num_sprites) sprite_list = g() self.assertGreaterEqual(len(sprite_list), minval) self.assertLess(len(sprite_list), maxval) class ChainGeneratorsTest(absltest.TestCase): def testOutput(self): g_0 = sprite_generators.generate_sprites(_distrib_0, num_sprites=1) g_1 = sprite_generators.generate_sprites(_distrib_1, num_sprites=2) g_chain = sprite_generators.chain_generators(g_0, g_1) sprite_list = g_chain() self.assertIsInstance(sprite_list, list) self.assertLen(sprite_list, 3) self.assertTrue(_distrib_0.contains(sprite_list[0].factors)) self.assertTrue(_distrib_1.contains(sprite_list[1].factors)) self.assertTrue(_distrib_1.contains(sprite_list[2].factors)) class SampleGeneratorTest(absltest.TestCase): def testOutput(self): g_0 = sprite_generators.generate_sprites(_distrib_0, num_sprites=1) g_1 = sprite_generators.generate_sprites(_distrib_1, num_sprites=1) g_chain = sprite_generators.sample_generator((g_0, g_1)) sprite_list = g_chain() self.assertIsInstance(sprite_list, list) self.assertLen(sprite_list, 1) self.assertNotEqual( _distrib_0.contains(sprite_list[0].factors), _distrib_1.contains(sprite_list[0].factors)) class ShuffleTest(absltest.TestCase): def testOutput(self): g = sprite_generators.generate_sprites(_distrib_0, num_sprites=5) g_shuffle = sprite_generators.shuffle(g) sprite_list = g_shuffle() self.assertIsInstance(sprite_list, list) self.assertLen(sprite_list, 5) if __name__ == '__main__': absltest.main()
spriteworld-master
tests/sprite_generators_test.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Tests for environment.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from dm_env import test_utils import numpy as np from six.moves import range from spriteworld import action_spaces from spriteworld import environment from spriteworld import renderers from spriteworld import sprite from spriteworld import tasks class EnvironmentTest(test_utils.EnvironmentTestMixin, absltest.TestCase): def assertValidObservation(self, observation): # Override this method from test_utils.EnvironmentTestMixin to make it # support a dict of specs as observation. observation_spec = self.environment.observation_spec() for k, v in observation.items(): self.assertConformsToSpec(v, observation_spec[k]) def make_object_under_test(self): """Environment creator used by test_utils.EnvironmentTestMixin.""" env = environment.Environment( task=tasks.NoReward(), action_space=action_spaces.SelectMove(), renderers={}, init_sprites=lambda: [sprite.Sprite(c0=255)], max_episode_length=7) return env def testMaxEpisodeLength(self): env = self.make_object_under_test() action = np.array([0.5, 0.5, 0.5, 0.5]) env.step(action) for _ in range(3): for _ in range(6): timestep = env.step(action) self.assertTrue(timestep.mid()) timestep = env.step(action) self.assertTrue(timestep.last()) timestep = env.step(action) self.assertTrue(timestep.first()) def testTaskTermination(self): task = tasks.FindGoalPosition(goal_position=(0.5, 0.5)) action_space = action_spaces.SelectMove() env_renderers = {} init_sprites = lambda: [sprite.Sprite(x=0.25, y=0.25, c0=255)] env = environment.Environment(task, action_space, env_renderers, init_sprites) donothing_action = np.array([0.25, 0.25, 0.5, 0.5]) success_action = np.array([0.25, 0.25, 0.75, 0.75]) timestep = env.step(donothing_action) self.assertTrue(timestep.first()) timestep = env.step(donothing_action) self.assertTrue(timestep.mid()) timestep = env.step(success_action) self.assertTrue(timestep.last()) timestep = env.step(success_action) self.assertTrue(timestep.first()) class EnvironmentRenderersTest(absltest.TestCase): def make_object_under_test(self, renderer): self.environment = environment.Environment( task=tasks.NoReward(), action_space=action_spaces.SelectMove(), renderers={'obs': renderer}, init_sprites=lambda: [sprite.Sprite(c0=255)], max_episode_length=7) def testSpriteFactors(self): self.make_object_under_test(renderer=renderers.SpriteFactors()) self.environment.observation_spec() action = np.array([0.5, 0.5, 0.5, 0.5]) self.environment.step(action) if __name__ == '__main__': absltest.main()
spriteworld-master
tests/environment_test.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Tests for action_spaces.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from absl.testing import parameterized import numpy as np from spriteworld import action_spaces from spriteworld import sprite class SelectMoveTest(parameterized.TestCase): @parameterized.named_parameters( ('Motion', 1, np.array([0.5, 0.5, 0.2, 0.75]), (-0.3, 0.25)), ('SameMotion', 1, np.array([0.2, 0.5, 0.2, 0.75]), (-0.3, 0.25)), ('SmallerScale', 0.5, np.array([0.2, 0.5, 0.2, 0.75]), (-0.15, 0.125)), ) def testGetMotion(self, scale, action, true_motion): action_space = action_spaces.SelectMove(scale=scale) motion = action_space.get_motion(action) self.assertTrue(np.allclose(motion, true_motion, atol=1e-4)) @parameterized.named_parameters( ('NoCost', 1, np.array([0.5, 0.5, 0.2, 0.75]), 0., 0.), ('Cost', 1, np.array([0.5, 0.5, 0.2, 0.75]), 1., -0.39), ('SameCost', 1, np.array([0.2, 0.3, 0.2, 0.75]), 1., -0.39), ('LowerCost', 0.5, np.array([0.5, 0.5, 0.2, 0.75]), 1., -0.195), ) def testMotionCost(self, scale, action, motion_cost, true_cost): action_space = action_spaces.SelectMove( scale=scale, motion_cost=motion_cost) cost = action_space.step(action, sprites=[], keep_in_frame=False) self.assertAlmostEqual(cost, true_cost, delta=0.01) def testMoveSprites(self): """Take a series of actions and repeatedly check sprite motions.""" action_space = action_spaces.SelectMove(scale=0.5) sprites = [sprite.Sprite(x=0.55, y=0.5), sprite.Sprite(x=0.5, y=0.5)] # Move second (top) sprite action_space.step( np.array([0.52, 0.52, 0.5, 0.48]), sprites, keep_in_frame=False) self.assertTrue(np.allclose(sprites[0].position, [0.55, 0.5], atol=1e-5)) self.assertTrue(np.allclose(sprites[1].position, [0.5, 0.49], atol=1e-5)) # Move first (bottom) sprite action_space.step( np.array([0.58, 0.5, 0.9, 0.9]), sprites, keep_in_frame=False) self.assertTrue(np.allclose(sprites[0].position, [0.75, 0.7], atol=1e-5)) self.assertTrue(np.allclose(sprites[1].position, [0.5, 0.49], atol=1e-5)) # Move neither sprite action_space.step( np.array([0.58, 0.5, 0.9, 0.9]), sprites, keep_in_frame=False) self.assertTrue(np.allclose(sprites[0].position, [0.75, 0.7], atol=1e-5)) self.assertTrue(np.allclose(sprites[1].position, [0.5, 0.49], atol=1e-5)) # Move second (top) sprite action_space.step( np.array([0.5, 0.5, 0.2, 0.5]), sprites, keep_in_frame=False) self.assertTrue(np.allclose(sprites[0].position, [0.75, 0.7], atol=1e-5)) self.assertTrue(np.allclose(sprites[1].position, [0.35, 0.49], atol=1e-5)) # Move first (bottom) sprite action_space.step( np.array([0.78, 0.74, 0.9, 0.9]), sprites, keep_in_frame=False) self.assertTrue(np.allclose(sprites[0].position, [0.95, 0.9], atol=1e-5)) self.assertTrue(np.allclose(sprites[1].position, [0.35, 0.49], atol=1e-5)) # Move first (bottom) sprite action_space.step( np.array([0.92, 0.9, 0.9, 0.5]), sprites, keep_in_frame=True) self.assertTrue(np.allclose(sprites[0].position, [1., 0.9], atol=1e-5)) self.assertTrue(np.allclose(sprites[1].position, [0.35, 0.49], atol=1e-5)) # Move first (bottom) sprite action_space.step( np.array([0.98, 0.9, 0.7, 0.9]), sprites, keep_in_frame=False) self.assertTrue(np.allclose(sprites[0].position, [1.1, 1.1], atol=1e-5)) self.assertTrue(np.allclose(sprites[1].position, [0.35, 0.49], atol=1e-5)) @parameterized.named_parameters( ('NoNoise', np.array([0.5, 0.5, 0.2, 0.75]), 0.), ('Noise', np.array([0.5, 0.5, 0.2, 0.75]), 0.2), ('NoiseOutOfBounds', np.array([0.2, 0.3, 0.9, 0.05]), 0.2), ('HighNoise', np.array([0.5, 0.5, 0.2, 0.75]), 0.5)) def testNoiseScale(self, action, noise_scale): action_space = action_spaces.SelectMove(scale=0.1, noise_scale=noise_scale) action_space.apply_noise_to_action(action) class DragAndDropTest(parameterized.TestCase): @parameterized.named_parameters( ('MoveUpRight', 1, np.array([0.5, 0.5, 0.75, 0.75]), (0.25, 0.25)), ('MoveDownLeft', 1, np.array([0.2, 0.5, -0.2, -0.75]), (-0.4, -1.25)), ('ScaledMove', 0.5, np.array([0.5, 0.5, 0.8, 0.8]), (0.15, 0.15)), ('MoveEdge', 0.5, np.array([0.0, 0.0, -0.2, -0.4]), (-0.1, -0.2)), ) def testGetMotion(self, scale, action, true_motion): action_space = action_spaces.DragAndDrop(scale=scale) motion = action_space.get_motion(action) self.assertTrue(np.allclose(motion, true_motion, atol=1e-4)) def testMoveSprites(self): """Take a series of actions and repeatedly check sprite motions.""" action_space = action_spaces.DragAndDrop(scale=0.5) sprites = [sprite.Sprite(x=0.55, y=0.5), sprite.Sprite(x=0.5, y=0.5)] # Move second (top) sprite action_space.step( np.array([0.52, 0.52, 0.52, 0.5]), sprites, keep_in_frame=False) self.assertTrue(np.allclose(sprites[0].position, [0.55, 0.5], atol=1e-5)) self.assertTrue(np.allclose(sprites[1].position, [0.5, 0.49], atol=1e-5)) # Move first (bottom) sprite action_space.step( np.array([0.58, 0.5, 0.98, 0.9]), sprites, keep_in_frame=False) self.assertTrue(np.allclose(sprites[0].position, [0.75, 0.7], atol=1e-5)) self.assertTrue(np.allclose(sprites[1].position, [0.5, 0.49], atol=1e-5)) # Move neither sprite action_space.step( np.array([0.58, 0.5, 0.9, 0.9]), sprites, keep_in_frame=False) self.assertTrue(np.allclose(sprites[0].position, [0.75, 0.7], atol=1e-5)) self.assertTrue(np.allclose(sprites[1].position, [0.5, 0.49], atol=1e-5)) # Move second (top) sprite action_space.step( np.array([0.5, 0.5, 0.2, 0.5]), sprites, keep_in_frame=False) self.assertTrue(np.allclose(sprites[0].position, [0.75, 0.7], atol=1e-5)) self.assertTrue(np.allclose(sprites[1].position, [0.35, 0.49], atol=1e-5)) # Move first (bottom) sprite action_space.step( np.array([0.78, 0.74, 0.98, 0.94]), sprites, keep_in_frame=False) self.assertTrue(np.allclose(sprites[0].position, [0.85, 0.8], atol=1e-5)) self.assertTrue(np.allclose(sprites[1].position, [0.35, 0.49], atol=1e-5)) # Move first (bottom) sprite action_space.step( np.array([0.82, 0.8, 1.3, 1.0]), sprites, keep_in_frame=True) self.assertTrue(np.allclose(sprites[0].position, [1., 0.9], atol=1e-5)) self.assertTrue(np.allclose(sprites[1].position, [0.35, 0.49], atol=1e-5)) # Move first (bottom) sprite action_space.step( np.array([0.99, 0.9, 1.19, 1.3]), sprites, keep_in_frame=False) self.assertTrue(np.allclose(sprites[0].position, [1.1, 1.1], atol=1e-5)) self.assertTrue(np.allclose(sprites[1].position, [0.35, 0.49], atol=1e-5)) class EmbodiedTest(parameterized.TestCase): @parameterized.named_parameters( ('Up', 0, 0.1, (0., 0.1)), ('Down', 2, 0.1, (0., -0.1)), ('Left', 1, 0.1, (-0.1, 0.)), ('Right', 3, 0.1, (0.1, 0.)), ('MoreRight', 3, 0.5, (0.5, 0.)), ) def testGetMotion(self, motion_action, step_size, true_motion): action_space = action_spaces.Embodied(step_size=step_size) motion = action_space.action_to_motion[motion_action] self.assertTrue(np.allclose(motion, true_motion, atol=1e-5)) @parameterized.named_parameters( dict( testcase_name='Up', init_positions=[[0.5, 0.5], [0.2, 0.8]], action=(0, 0), final_positions=[[0.5, 0.5], [0.2, 0.9]]), dict( testcase_name='UpCarry', init_positions=[[0.5, 0.5], [0.2, 0.8]], action=(1, 0), final_positions=[[0.5, 0.5], [0.2, 0.9]]), dict( testcase_name='RightCarry', init_positions=[[0.5, 0.5], [0.45, 0.55]], action=(1, 3), final_positions=[[0.6, 0.5], [0.55, 0.55]]), dict( testcase_name='LeftCarry', init_positions=[[0.5, 0.5], [0.45, 0.55]], action=(1, 1), final_positions=[[0.4, 0.5], [0.35, 0.55]]), dict( testcase_name='DownCarry', init_positions=[[0.5, 0.5], [0.45, 0.55]], action=(1, 2), final_positions=[[0.5, 0.4], [0.45, 0.45]]), dict( testcase_name='StayInBounds', init_positions=[[0.95, 0.02], [0.95, 0.05]], action=(1, 3), final_positions=[[1., 0.02], [1., 0.05]]), dict( testcase_name='GoOutOfBound', init_positions=[[0.95, 0.02], [0.95, 0.05]], action=(1, 3), final_positions=[[1.05, 0.02], [1.05, 0.05]], keep_in_frame=False), dict( testcase_name='MoveCorrectEmbodied', init_positions=[[0.45, 0.55], [0.5, 0.5], [0.45, 0.55]], action=(1, 3), final_positions=[[0.45, 0.55], [0.6, 0.5], [0.55, 0.55]]), ) def testMoveSprites(self, init_positions, action, final_positions, keep_in_frame=True): """Take a series of actions and repeatedly check sprite motions.""" action_space = action_spaces.Embodied(step_size=0.1) sprites = [ sprite.Sprite(x=pos[0], y=pos[1], shape='square', scale=0.15) for pos in init_positions ] action_space.step(action, sprites, keep_in_frame=keep_in_frame) for s, p in zip(sprites, final_positions): self.assertTrue(np.allclose(s.position, p, atol=1e-5)) if __name__ == '__main__': absltest.main()
spriteworld-master
tests/action_spaces_test.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """__init__.py."""
spriteworld-master
tests/renderers/__init__.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Tests for pil_renderer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import colorsys from absl.testing import absltest import numpy as np from spriteworld import sprite from spriteworld.renderers import pil_renderer class PilRendererTest(absltest.TestCase): def _get_sprites(self): """Get list of sprites.""" sprites = [ sprite.Sprite( x=0.75, y=0.95, shape='spoke_6', scale=0.2, c0=20, c1=50, c2=80), sprite.Sprite( x=0.2, y=0.3, shape='triangle', scale=0.1, c0=150, c1=255, c2=100), sprite.Sprite( x=0.7, y=0.5, shape='square', scale=0.3, c0=0, c1=255, c2=0), sprite.Sprite( x=0.5, y=0.5, shape='square', scale=0.3, c0=255, c1=0, c2=0), ] return sprites def testBasicFunctionality(self): renderer = pil_renderer.PILRenderer(image_size=(64, 64)) renderer.render(self._get_sprites()) def testBackground(self): bg_color = (5, 6, 7) renderer = pil_renderer.PILRenderer(image_size=(64, 64), bg_color=bg_color) image = renderer.render(self._get_sprites()) self.assertSequenceEqual(list(image[5, 5]), bg_color) def testOcclusion(self): renderer = pil_renderer.PILRenderer(image_size=(64, 64)) image = renderer.render(self._get_sprites()) self.assertSequenceEqual(list(image[32, 32]), [255, 0, 0]) self.assertSequenceEqual(list(image[32, 50]), [0, 255, 0]) def testAntiAliasing(self): renderer = pil_renderer.PILRenderer(image_size=(16, 16), anti_aliasing=5) image = renderer.render(self._get_sprites()) self.assertSequenceEqual(list(image[4, 6]), [0, 0, 0]) self.assertSequenceEqual(list(image[6, 6]), [255, 0, 0]) # Python2 and Python3 give slightly different anti-aliasing, so we specify # bounds for border values: self.assertTrue(all(image[5, 6] >= [50, 0, 0])) self.assertTrue(all(image[5, 6] <= [120, 30, 0])) self.assertTrue(all(image[7, 6] >= [200, 0, 0])) self.assertTrue(all(image[7, 6] <= [255, 50, 0])) renderer = pil_renderer.PILRenderer(image_size=(16, 16), anti_aliasing=1) image = renderer.render(self._get_sprites()) self.assertSequenceEqual(list(image[4, 6]), [0, 0, 0]) self.assertSequenceEqual(list(image[6, 6]), [255, 0, 0]) self.assertSequenceEqual(list(image[7, 6]), [255, 0, 0]) def testColorToRGB(self): s = sprite.Sprite(x=0.5, y=0.5, shape='square', c0=0.2, c1=0.5, c2=0.5) def _color_to_rgb(c): return tuple((255 * np.array(colorsys.hsv_to_rgb(*c))).astype(np.uint8)) renderer = pil_renderer.PILRenderer( image_size=(64, 64), color_to_rgb=_color_to_rgb) image = renderer.render([s]) self.assertSequenceEqual(list(image[32, 32]), [114, 127, 63]) if __name__ == '__main__': absltest.main()
spriteworld-master
tests/renderers/pil_renderer_test.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Tests for handcrafted.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from absl.testing import parameterized import numpy as np from six.moves import range from spriteworld import constants as const from spriteworld import sprite as sprite_lib from spriteworld.renderers import handcrafted class SpriteFactorsTest(parameterized.TestCase): def testWrongFactors(self): handcrafted.SpriteFactors(factors=('x', 'y', 'scale')) with self.assertRaises(ValueError): handcrafted.SpriteFactors(factors=('position', 'scale')) with self.assertRaises(ValueError): handcrafted.SpriteFactors(factors=('x', 'y', 'size')) def testSingleton(self): sprite = sprite_lib.Sprite( x=0.1, y=0.3, shape='square', scale=0.5, c0=0, c1=0, c2=255) renderer = handcrafted.SpriteFactors() renderer.render(sprites=[sprite]) def testSequence(self): sprites = [ sprite_lib.Sprite(x=np.random.rand(), y=np.random.rand()) for _ in range(5) ] renderer = handcrafted.SpriteFactors() renderer.render(sprites=sprites) @parameterized.parameters(1, 2, 5) def testOutputLength(self, num_sprites): sprites = [sprite_lib.Sprite() for _ in range(num_sprites)] renderer = handcrafted.SpriteFactors() outputs = renderer.render(sprites=sprites) self.assertLen(outputs, num_sprites) @parameterized.parameters((1, ('x', 'y', 'scale', 'c0', 'c1', 'c2', 'shape', 'angle', 'x_vel', 'y_vel')), (1, ('x', 'y', 'scale', 'c0', 'c1', 'c2', 'shape')), (2, ('x', 'y', 'scale', 'c0', 'c1', 'c2', 'shape')), (5, ('x', 'y', 'angle', 'x_vel', 'y_vel'))) def testFactorSubset(self, num_sprites, factors): sprites = [sprite_lib.Sprite() for _ in range(num_sprites)] renderer = handcrafted.SpriteFactors(factors=factors) outputs = renderer.render(sprites=sprites) output_keys = [set(x) for x in outputs] self.assertSequenceEqual(output_keys, num_sprites * [set(factors)]) @parameterized.parameters((1, ('x', 'y', 'scale', 'c0', 'c1', 'c2', 'shape', 'angle', 'x_vel', 'y_vel')), (1, ('x', 'y', 'scale', 'c0', 'c1', 'c2', 'shape')), (2, ('x', 'y', 'scale', 'c0', 'c1', 'c2', 'shape')), (5, ('x', 'y', 'angle', 'x_vel', 'y_vel'))) def testObservationSpec(self, num_sprites, factors): sprites = [sprite_lib.Sprite() for _ in range(num_sprites)] renderer = handcrafted.SpriteFactors(factors=factors) renderer.render(sprites=sprites) obs_spec = renderer.observation_spec() for v in obs_spec[0].values(): self.assertEqual(v.shape, ()) obs_spec_keys = [set(x) for x in obs_spec] self.assertSequenceEqual(obs_spec_keys, num_sprites * [set(factors)]) @parameterized.parameters( (0.5, 0.5, 'square', 0, 0, 255, 0.5, 0), (0.5, 0.5, 'square', 255, 0, 0, 0.5, 0), (0.5, 0.8, 'octagon', 0.4, 0.8, 0.5, 0.6, 90), (0.5, 0.3, 'star_5', 180, 180, 0, 0.2, 240), ) def testAttributesSingleton(self, x, y, shape, c0, c1, c2, scale, angle): sprite = sprite_lib.Sprite( x=x, y=y, shape=shape, c0=c0, c1=c1, c2=c2, scale=scale, angle=angle) renderer = handcrafted.SpriteFactors() outputs = renderer.render(sprites=[sprite])[0] self.assertEqual(outputs['shape'], const.ShapeType[shape].value) for (name, value) in (('x', x), ('y', y), ('c0', c0), ('c1', c1), ('c2', c2), ('scale', scale), ('angle', angle)): self.assertAlmostEqual(outputs[name], value, delta=1e-4) def testAttributesTwoSprites(self): x = [0.5, 0.3] y = [0.4, 0.8] shape = ['square', 'spoke_4'] c0 = [0, 200] c1 = [255, 100] c2 = [0, 200] scale = [0.2, 0.3] angle = [0, 120] x_vel = [0.0, 0.1] y_vel = [-0.2, 0.05] sprites = [] for i in range(2): sprites.append( sprite_lib.Sprite( x=x[i], y=y[i], shape=shape[i], c0=c0[i], c1=c1[i], c2=c2[i], scale=scale[i], angle=angle[i], x_vel=x_vel[i], y_vel=y_vel[i])) renderer = handcrafted.SpriteFactors() outputs = renderer.render(sprites=sprites) for i in range(2): self.assertEqual(outputs[i]['shape'], const.ShapeType[shape[i]].value) for (name, value) in (('x', x), ('y', y), ('c0', c0), ('c1', c1), ('c2', c2), ('scale', scale), ('angle', angle), ('x_vel', x_vel), ('y_vel', y_vel)): self.assertAlmostEqual(outputs[i][name], value[i], delta=1e-4) class SpritePassthroughTest(parameterized.TestCase): def testRenderOne(self): sprite = sprite_lib.Sprite( x=0.1, y=0.3, shape='square', scale=0.5, c0=0, c1=0, c2=255) renderer = handcrafted.SpritePassthrough() observation = renderer.render(sprites=[sprite]) self.assertEqual(observation, [sprite]) @parameterized.parameters((3,), (5,), (10,)) def testKSprites(self, num_sprites): sprites = [ sprite_lib.Sprite(x=np.random.rand(), y=np.random.rand()) for _ in range(num_sprites) ] renderer = handcrafted.SpritePassthrough() observation = renderer.render(sprites=sprites) self.assertSequenceEqual(observation, sprites) obs_spec = renderer.observation_spec() self.assertTrue(obs_spec.shape, (num_sprites,)) class SuccessTest(absltest.TestCase): def testRender(self): renderer = handcrafted.Success() self.assertTrue(renderer.render(global_state={'success': True})) self.assertFalse(renderer.render(global_state={'success': False})) with self.assertRaises(KeyError): renderer.render(global_state={}) if __name__ == '__main__': absltest.main()
spriteworld-master
tests/renderers/handcrafted_test.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """__init__.py."""
spriteworld-master
tests/configs/__init__.py
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # python2 python3 """Tests for task configs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from absl.testing import parameterized from six.moves import range from spriteworld import environment from spriteworld.configs import cobra from spriteworld.configs import examples class ConfigsTest(parameterized.TestCase): @parameterized.parameters( (cobra.exploration,), (cobra.goal_finding_more_distractors,), (cobra.goal_finding_more_targets,), (cobra.goal_finding_new_position,), (cobra.goal_finding_new_shape,), (cobra.clustering,), (cobra.sorting,), (examples.goal_finding_embodied,), ) def testConfig(self, task_module, modes=('train', 'test'), replicas=3): for mode in modes: print(mode) for _ in range(replicas): config = task_module.get_config(mode=mode) config['renderers'] = {} env = environment.Environment(**config) env.observation_spec() action = env.action_space.sample() num_episodes = 0 step = env.reset() while num_episodes < 5: if step.first(): num_episodes += 1 step = env.step(action) if __name__ == '__main__': absltest.main()
spriteworld-master
tests/configs/configs_test.py
#!/usr/bin/python # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import heapq import numpy as np import simulated_environment C = 12. # constant for l_i def structured_procrastination(env, n, epsilon, delta, zeta, k0, k_bar, theta_multiplier): """Implementation of Structured Procrastination.""" # The names of the variables used here agree with the pseudocode in the paper, # except q is used instead of the paper's upper-case Q, and qq is used instead # of the paper's lower-case q. The pseudocode overloads l: here, ll is used to # represent the scalar (appears as l in paper), and l is used to represent the # array (appears as l_i in the paper). For efficiency, we implement the argmin # in line 10 of the paper with a heap. k, l, q, qq, r, r_sum, heap = [], [], [], [], [], [], [] beta = np.log2(k_bar / k0) for i in xrange(n): # Line 2 in paper. k.append(0) l.append( int(np.ceil(C / (epsilon * epsilon) * np.log(3 * beta * n / zeta)))) q.append([]) qq.append(0) r.append([]) r_sum.append(0) heapq.heappush(heap, (0, i)) for ll in xrange(l[i]): # Line 6 in paper. r[i].append(0) q[i].append((ll, k0)) # Main loop. current_delta = 1 iter_count = 0 while current_delta > delta: # Line 9, but stop when target delta reached. iter_count += 1 _, i = heapq.heappop(heap) ll, theta = q[i].pop(0) if r[i][ll] == 0: # Line 12 in paper. k[i] += 1 qq[i] = int( np.ceil( C / (epsilon * epsilon) * np.log(3 * beta * n * k[i] * k[i] / zeta))) did_timeout, elapsed = env.run(config_id=i, timeout=theta, instance_id=ll) if not did_timeout: # Line 15 in paper. r_sum[i] += elapsed - r[i][ll] r[i][ll] = elapsed else: r_sum[i] += theta - r[i][ll] r[i][ll] = theta q[i].append((ll, theta_multiplier * theta)) while len(q[i]) < qq[i]: # Line 20 in paper. l[i] += 1 r[i].append(0) q[i].insert(0, (l[i] - 1, theta)) heapq.heappush(heap, (r_sum[i] / k[i], i)) # Bookeeping for the heap. if iter_count % 10000 == 0: # Recalculate delta, as in line 25 of the paper. We recalculate it within # this while loop, because instead of an anytime algorithm, we want one # that stops when the target delta is reached. i_star = np.argmax(r_sum) current_delta = np.sqrt(1 + epsilon) * qq[i_star] / k[i_star] print('iter_count={}, delta={}, theta={}, total runtime so far={}'.format( iter_count, current_delta, theta, env.get_total_runtime())) return i_star, current_delta def main(): parser = argparse.ArgumentParser( description='Executes Structured Procrastination ' 'with a simulated environment.') parser.add_argument('--epsilon', help='Epsilon from the paper', type=float, default=0.2) parser.add_argument('--delta', help='Delta from the paper', type=float, default=0.2) parser.add_argument('--zeta', help='Zeta from the paper', type=float, default=0.1) parser.add_argument('--k0', help='Kappa_0 from the paper', type=float, default=1.) parser.add_argument('--k-bar', help='bar{Kappa} from the paper', type=float, default=1000000.) parser.add_argument('--theta-multiplier', help='Theta multiplier from the paper', type=float, default=2.0) parser.add_argument('--measurements-filename', help='Filename to load measurement results from', type=str, default='measurements.dump') parser.add_argument('--measurements-timeout', help='Timeout (seconds) used for the measurements', type=float, default=900.) args = vars(parser.parse_args()) epsilon = args['epsilon'] delta = args['delta'] zeta = args['zeta'] k0 = args['k0'] k_bar = args['k_bar'] theta_multiplier = args['theta_multiplier'] results_file = args['measurements_filename'] timeout = args['measurements_timeout'] env = simulated_environment.Environment(results_file, timeout) num_configs = env.get_num_configs() best_config_index, delta = structured_procrastination( env, num_configs, epsilon, delta, zeta, k0, k_bar, theta_multiplier) print('best_config_index={}, delta={}'.format(best_config_index, delta)) env.print_config_stats(best_config_index) def format_runtime(runtime): return '{}s = {}m = {}h = {}d'.format( runtime, runtime / 60, runtime / 3600, runtime / (3600 * 24)) print('total runtime: ' + format_runtime(env.get_total_runtime())) print('total resumed runtime: ' + format_runtime(env.get_total_resumed_runtime())) if __name__ == '__main__': main()
leaps-and-bounds-master
structured_procrastination.py
#!/usr/bin/python # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import math import numpy as np import simulated_environment R = 44 # Constant used for calculating b. R2 = 32 # Constant used for the stopping condition (Appendix D, line 25). def leaps_and_bounds(env, n, epsilon, delta, zeta, k0, theta_multiplier): """Implementation of LeapsAndBounds.""" # This implementation makes some adjustments to the constants that control # how the failure probability budget zeta is allocated between the different # high-probability events that guarantee correctness. theta = k0 * 16. / 7 k = 0 while True: k += 1 b = int( math.ceil(R * math.log(40 * 3 * n * k * (k + 1) / zeta) / (delta * epsilon * epsilon))) print('b={}, theta={}, total runtime so far={}'.format( b, theta, env.get_total_runtime())) q_hat = [] for i in xrange(n): q_hat_i = ebgstop_slave_alg(env, i, b, delta, theta, k, epsilon, zeta, n) q_hat.append(q_hat_i) if np.min(q_hat) < theta: best_config_index = np.argmin(q_hat) return (best_config_index, q_hat[best_config_index], 4 * theta / (3 * delta)) theta *= theta_multiplier def ebgstop_slave_alg(env, i, b, delta, theta, k, epsilon, zeta, n): """Implementation of RuntimeEst with EBGStop, as in Appendix D in paper.""" beta = 1.10 t = b * theta # Corresponds to T in the paper. tau = 4 * theta / (3 * delta) q = [] sumq, sum_q_squared = 0, 0 kk = 0 # Corresponds to l in the paper. for j in xrange(b): elapsed = 0 if t > 0: _, elapsed = env.run(config_id=i, instance_id=j, timeout=min(t, tau)) t -= elapsed q.append(elapsed) sumq += elapsed sum_q_squared += elapsed * elapsed if t == 0: return theta q_mean = sumq / (j + 1) q_var = max((sum_q_squared - q_mean * sumq) / (j + 1), 0) if j + 1 > np.floor(np.power(beta, kk)): kk += 1 alpha = np.floor(np.power(beta, kk)) / np.floor(np.power(beta, kk - 1)) dk = (2.1 * k ** 1.5 * 2.61238 * (kk ** 1.1) * 10.5844 * n) / zeta x = alpha * np.log(3 * dk) if j > 0: confidence = np.sqrt(q_var * 2 * x / (j + 1)) + 3 * tau * x / (j + 1) lower_bound = q_mean - confidence if (1 + 3 * epsilon / 7) * lower_bound > theta and q_mean > theta: return theta d_prime = zeta / (40 * 3 * n * k * (k + 1) * j * (j + 1)) r2 = math.ceil(-R2 * np.log(d_prime) / delta) if j + 1 >= r2 and confidence <= epsilon / 3 * (q_mean + lower_bound): return q_mean return np.mean(q) def main(): parser = argparse.ArgumentParser( description='Executes LeapsAndBounds with a simulated environment.') parser.add_argument('--epsilon', help='Epsilon from the paper', type=float, default=0.2) parser.add_argument('--delta', help='Delta from the paper', type=float, default=0.2) parser.add_argument('--zeta', help='Zeta from the paper', type=float, default=0.1) parser.add_argument('--k0', help='Kappa_0 from the paper', type=float, default=1.) parser.add_argument('--theta-multiplier', help='Theta multiplier from the paper', type=float, default=1.25) parser.add_argument('--measurements-filename', help='Filename to load measurement results from', type=str, default='measurements.dump') parser.add_argument('--measurements-timeout', help='Timeout (seconds) used for the measurements', type=float, default=900.) args = vars(parser.parse_args()) epsilon = args['epsilon'] delta = args['delta'] zeta = args['zeta'] k0 = args['k0'] theta_multiplier = args['theta_multiplier'] results_file = args['measurements_filename'] timeout = args['measurements_timeout'] env = simulated_environment.Environment(results_file, timeout) num_configs = env.get_num_configs() best_config_index, capped_avg, tau = leaps_and_bounds( env, num_configs, epsilon, delta, zeta, k0, theta_multiplier) print('best_config_index={}, capped_avg={}, tau={}'.format( best_config_index, capped_avg, tau)) env.print_config_stats(best_config_index, tau=tau) def format_runtime(runtime): return '{}s = {}m = {}h = {}d'.format( runtime, runtime / 60, runtime / 3600, runtime / (3600 * 24)) print('total runtime: ' + format_runtime(env.get_total_runtime())) print('total resumed runtime: ' + format_runtime(env.get_total_resumed_runtime())) if __name__ == '__main__': main()
leaps-and-bounds-master
leapsandbounds.py
#!/usr/bin/python # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import pickle import numpy as np class Environment(object): """This class is used for simulating runs and collecting statistics.""" def __init__(self, results_file, timeout): """Prepares an instance that can simulate runs based on a measurements file. Args: results_file: the location of the pickle dump containing the results of the runtime measurements. timeout: the timeout used for the runtime measurements. """ self._timeout = timeout # Load measurements. with open(results_file, 'r') as f: results = pickle.load(f) self._results = [results[k] for k in sorted(results.keys())] self._instance_count = len(self._results[0]) self.reset() def reset(self): """Reset the state of the environment.""" # Total runtime, without resuming, of any configuration ran on any instance. # Without resuming means that if the same configuration-instance pair is # run, `total_runtime` will track the time taken as if the execution had to # be restarted, rather than resumed from when it was last interrupted # due to a timeout. self._total_runtime = 0 # Total runtime, with resuming, of any configuration ran on any instance. self._total_resumed_runtime = 0 # Dict mapping a configuration to how long it was run, with resuming, on all # instances combined. self._runtime_per_config = collections.defaultdict(float) # Dict mapping a configuration and an instance to how long it ran so far # in total, with resuming. Summing the runtimes for all instances for a # configuration will be equal to the relevant value in `runtime_per_config`. self._ran_so_far = collections.defaultdict( lambda: collections.defaultdict(float)) def get_num_configs(self): return len(self._results) def get_num_instances(self): return self._instance_count def get_total_runtime(self): return self._total_runtime def get_total_resumed_runtime(self): return self._total_resumed_runtime def run(self, config_id, timeout, instance_id=None): """Simulates a run of a configuration on an instance with a timeout. Args: config_id: specifies which configuration to run. Integer from 0 to get_num_configs() - 1. timeout: the timeout to simulate the run with. instance_id: the instance to run. If not specified, a random instance will be run. Raises: ValueError: if the supplied timeout is larger than self.timeout, the requested simulation cannot be completed and this error will be raised. Returns: A tuple of whether the simulated run timed out, and how long it ran. """ if timeout > self._timeout: raise ValueError('timeout provided is too high to be simulated.') if instance_id is None: instance_id = np.random.randint(self._instance_count) runtime = min(timeout, self._results[config_id][instance_id % self._instance_count]) self._total_runtime += runtime resumed_runtime = runtime - self._ran_so_far[config_id][instance_id] self._runtime_per_config[config_id] += resumed_runtime self._ran_so_far[config_id][instance_id] = runtime self._total_resumed_runtime += resumed_runtime return (timeout <= self._results[config_id][instance_id % self._instance_count], runtime) def print_config_stats(self, config_id, tau=None): """Prints statistics about a particular configuration.""" # Compute average runtime capped at TIMEOUT. average = np.mean([min(self._timeout, r) for r in self._results[config_id]]) print('avg runtime capped at the dataset\'s timeout: {}'.format(average)) timeout_count = 0 for t in self._results[config_id]: if t > self._timeout: timeout_count += 1 print('fraction of instances timing out at the timeout of the dataset: {}'. format(float(timeout_count) / len(self._results[config_id]))) if tau is not None: timeout_count = 0 for t in self._results[config_id]: if t > tau: timeout_count += 1 print('fraction of instances timing out at tau: {}'.format( float(timeout_count) / len(self._results[config_id]))) with open('runtime_per_config.dump', 'wb') as outf: pickle.dump(self._runtime_per_config, outf)
leaps-and-bounds-master
simulated_environment.py
# Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup for mp_noisy_or package.""" import setuptools if __name__ == '__main__': setuptools.setup( name='mp_noisy_or', version='0.0.1', packages=setuptools.find_packages(), license='Apache 2.0', author='DeepMind', description=( 'Code for the ICML 2023 paper "Learning noisy-OR Bayesian Networks' ' with Max-Product Belief Propagation"' ), long_description=open('README.md').read(), long_description_content_type='text/markdown', author_email='adedieu@google.com', requires_python='>=3.10', )
max_product_noisy_or-main
setup.py
# Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Train the noisy OR models.""" from ml_collections import config_flags from mp_noisy_or import noisy_or_bp from mp_noisy_or import noisy_or_hybrid from mp_noisy_or import noisy_or_vi from absl import app _CONFIGS = config_flags.DEFINE_config_file( name="config", default="config.py", help_string="Training configuration", ) # pylint: disable=invalid-name def train(_): """Train the noisy OR network on a dataset.""" config = _CONFIGS.value dataset = config.dataset method = config.method # First extract the config for the dataset if dataset == "20news": config_BP = config.config_BP_20news config_VI = config.config_VI_20news elif dataset == "synthetic": config_BP = config.config_BP_synthetic config_VI = config.config_VI_synthetic elif dataset == "BMF": config_BP = config.config_BP_BMF config_VI = config.config_VI_BMF elif dataset == "2D_deconvolution": config_BP = config.config_BP_2Ddeconv config_VI = config.config_VI_2Ddeconv elif dataset == "overparam": config_BP = config.config_BP_overparam config_VI = None elif dataset == "yelp": config_BP = config.config_BP_yelp config_VI = config.config_VI_yelp elif dataset == "imdb": config_BP = config.config_BP_imdb config_VI = config.config_VI_imdb elif dataset == "abstract": config_BP = config.config_BP_abstract config_VI = config.config_VI_abstract elif dataset == "agnews": config_BP = config.config_BP_agnews config_VI = config.config_VI_agnews elif dataset == "patent": config_BP = config.config_BP_patent config_VI = config.config_VI_patent else: raise ValueError("Unknown dataset", dataset) # Second train the selected method if method == "BP": noisy_OR = noisy_or_bp.NoisyOR_BP(config_BP) elif method == "VI": noisy_OR = noisy_or_vi.NoisyOR_VI(config_VI) elif method == "hybrid": noisy_OR = noisy_or_hybrid.NoisyOR_Hybrid( config_BP=config_BP, config_VI=config_VI ) else: raise ValueError("Unknown method", method) noisy_OR.train() if __name__ == "__main__": app.run(train)
max_product_noisy_or-main
mp_noisy_or/train_noisy_or.py
# Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Reimplements the authors' approach of http://auai.org/uai2019/proceedings/papers/317.pdf in JAX.""" import datetime import functools import itertools import time import chex import jax import jax.numpy as jnp import numpy as np import optax import tqdm from mp_noisy_or import data from mp_noisy_or import utils # pylint: disable=invalid-name # pylint: disable=g-doc-args # pylint: disable=g-doc-return-or-yield # pylint: disable=comparison-with-itself def create_indices_arrays( edges_c2p, X_shape, log_potentials_shape, hidden_visible_vars, leak_node_idx ): """Create dictionnaries mapping children to parents and parents' potentials, as well as parents to children and children's potentials.""" dict_child_to_parents = {} dict_child_to_parents_potentials = {} dict_parent_to_children = {idx: [] for idx in hidden_visible_vars} dict_parent_to_children_potentials = {idx: [] for idx in hidden_visible_vars} # Also return an array mapping nodes to the index connecting them to the leak if len(log_potentials_shape) == 1: nodes_to_leak = np.zeros(shape=X_shape) else: nodes_to_leak = np.zeros(shape=X_shape + (len(log_potentials_shape),)) for idx_child, idx_parents_idx_potentials in edges_c2p.items(): idx_parents = [] idx_parents_potentials = [] for idx_parent, idx_potential in idx_parents_idx_potentials.items(): if idx_parent == leak_node_idx: # Node to leak nodes_to_leak[idx_child] = idx_potential else: # Parent to child dict_parent_to_children[idx_parent].append(idx_child) dict_parent_to_children_potentials[idx_parent].append(idx_potential) idx_parents.append(idx_parent) idx_parents_potentials.append(idx_potential) # Node to parents dict_child_to_parents[idx_child] = jnp.array(idx_parents, dtype=int) dict_child_to_parents_potentials[idx_child] = jnp.array( idx_parents_potentials, dtype=int ) # Cast as int for idx_parent, idx_children in dict_parent_to_children.items(): dict_parent_to_children[idx_parent] = jnp.array(idx_children, dtype=int) for idx_parent, idx_potentials in dict_parent_to_children_potentials.items(): dict_parent_to_children_potentials[idx_parent] = jnp.array( idx_potentials, dtype=int ) nodes_to_leak = jnp.array(nodes_to_leak, dtype=int) return ( dict_child_to_parents, dict_child_to_parents_potentials, dict_parent_to_children, dict_parent_to_children_potentials, nodes_to_leak, ) class NoisyOR_VI: """Trains a NoisyOR model with VI by reimplementing the authors' approach.""" def __init__(self, config): self.config = config np.random.seed(self.config.seed) # Load data ( self.Xv_gt_train, self.Xv_gt_test, self.edges_c2p, self.X_shape, self.log_potentials_shape, self.leak_potentials_mask, self.dont_update_potentials_mask, self.slice_visible, self.slice_hidden, self.leak_node_idx, ) = data.DATA_LOADER[self.config.data.dataset](**self.config.data.args) # If the data is not an array of fixed shape, we use local models self.use_local_model = not isinstance(self.Xv_gt_train, np.ndarray) self.has_multidim_arrays = len(self.X_shape) > 1 assert not self.has_multidim_arrays or not self.use_local_model # Train-test split if self.Xv_gt_test is None: self.Xv_gt_train, self.Xv_gt_test = data.train_test_shuffle_split( self.Xv_gt_train, self.config.seed, self.config.data.ratio_train ) else: np.random.shuffle(self.Xv_gt_train) np.random.shuffle(self.Xv_gt_test) # Compute the visible variables if isinstance(self.slice_visible, slice): assert not self.has_multidim_arrays visible_start = ( self.slice_visible.start if self.slice_visible.start else 0 ) self.visible_vars = list(range(visible_start, self.slice_visible.stop)) else: visible_starts_stops = [] for this_slice in self.slice_visible: if isinstance(this_slice, int): visible_starts_stops.append(range(this_slice, this_slice + 1)) else: visible_start = this_slice.start if this_slice.start else 0 visible_starts_stops.append(range(visible_start, this_slice.stop)) self.visible_vars = list(itertools.product(*visible_starts_stops)) # Compute the hidden variables if isinstance(self.slice_hidden, slice): assert not self.has_multidim_arrays hidden_start = self.slice_hidden.start if self.slice_hidden.start else 0 self.hidden_vars = list(range(hidden_start, self.slice_hidden.stop)) else: hidden_starts_stops = [] for this_slice in self.slice_hidden: if isinstance(this_slice, int): hidden_starts_stops.append(range(this_slice, this_slice + 1)) else: hidden_start = this_slice.start if this_slice.start else 0 hidden_starts_stops.append(range(hidden_start, this_slice.stop)) self.hidden_vars = list(itertools.product(*hidden_starts_stops)) self.hidden_visible_vars = self.visible_vars + self.hidden_vars # Extract structure in the form of dicts where values are arrays of indices ( self.dict_child_to_parents, self.dict_child_to_parents_potentials, self.dict_parent_to_children, self.dict_parent_to_children_potentials, self.nodes_to_leak, ) = create_indices_arrays( self.edges_c2p, self.X_shape, self.log_potentials_shape, self.hidden_visible_vars, self.leak_node_idx, ) # Fill-in values used for future paddings if not self.has_multidim_arrays: fill_value_nodes = self.leak_node_idx + 1 fill_value_potentials = self.log_potentials_shape[0] + 1 else: fill_value_nodes = tuple(x + 1 for x in self.leak_node_idx) fill_value_potentials = tuple(x + 1 for x in self.log_potentials_shape) # From here, change the structure to only use arrays of fixed shape # This will allow jitting the JAX functions # For sparse data, build the local models and pad the visible and hidden if self.use_local_model: # For local models, X_visible and X_hidden are the activations indices self.Xh_gt_train = utils.build_local_model( self.Xv_gt_train, self.dict_child_to_parents, self.config.data.args.n_layers, ) self.Xh_gt_test = utils.build_local_model( self.Xv_gt_test, self.dict_child_to_parents, self.config.data.args.n_layers, ) # Pad the visible and hidden variables self.Xv_gt_train = utils.list_of_arrays_to_array( self.Xv_gt_train, dtype=int, fill_value=fill_value_nodes ) self.Xv_gt_test = utils.list_of_arrays_to_array( self.Xv_gt_test, dtype=int, fill_value=fill_value_nodes ) self.Xh_gt_train = utils.list_of_arrays_to_array( self.Xh_gt_train, dtype=int, fill_value=fill_value_nodes ) self.Xh_gt_test = utils.list_of_arrays_to_array( self.Xh_gt_test, dtype=int, fill_value=fill_value_nodes ) else: self.Xh_gt_train = None self.Xh_gt_test = None self.slice_hidden_visible = np.zeros(shape=self.X_shape, dtype=bool) self.slice_hidden_visible[self.slice_hidden] = True self.slice_hidden_visible[self.slice_visible] = True # Convert to arrays self.visible_vars = jnp.array(self.visible_vars) self.hidden_vars = jnp.array(self.hidden_vars) self.hidden_visible_vars = jnp.array(self.hidden_visible_vars) # Convert all the dictionnaries of indices into arrays of fixed shape self.arr_child_to_parents = utils.dict_to_array( self.dict_child_to_parents, self.has_multidim_arrays, dtype=int, fill_value=fill_value_nodes, ) self.arr_child_to_parents_potentials = utils.dict_to_array( self.dict_child_to_parents_potentials, self.has_multidim_arrays, dtype=int, fill_value=fill_value_potentials, ) self.arr_parent_to_children = utils.dict_to_array( self.dict_parent_to_children, self.has_multidim_arrays, dtype=int, fill_value=fill_value_nodes, ) self.arr_parent_to_children_potentials = utils.dict_to_array( self.dict_parent_to_children_potentials, self.has_multidim_arrays, dtype=int, fill_value=fill_value_potentials, ) print("arr_child_to_parents shape", self.arr_child_to_parents.shape) print("arr_parent_to_children shape", self.arr_parent_to_children.shape) # For out-of-bounds self.nodes_to_leak = self.nodes_to_leak.at[self.leak_node_idx].set( fill_value_potentials ) # Create optimizer self.opt = optax.adam(learning_rate=config.learning.learning_rate) def __hash__(self): # pylint: disable=line-too-long # See https://jax.readthedocs.io/en/latest/faq.html#strategy-2-marking-self-as-static return hash(tuple(self.edges_c2p.keys())) @functools.partial(jax.jit, static_argnames=("self", "is_training")) def compute_ELBOs_and_grad( self, log_potentials, Xv_batch, Xh_batch=None, is_training=True, ): """Compute the lower-bound of the ELBO and its gradients wrt the log potentials.""" n_samples = len(Xv_batch) # Compute the variational parameter if not self.use_local_model: all_qs, all_rs = jax.vmap(self.EStep, in_axes=(None, 0))( log_potentials, Xv_batch ) else: assert Xh_batch is not None all_qs, all_rs = jax.vmap(self.EStep, in_axes=(None, 0, 0))( log_potentials, Xv_batch, Xh_batch ) all_ELBO_lower_bounds = jax.vmap( self.compute_ELBO_lower_bound, in_axes=(None, 0, 0) )(log_potentials, all_qs, all_rs) chex.assert_equal(all_ELBO_lower_bounds.shape, (n_samples,)) sum_ELBO_lower_bound = jnp.sum(all_ELBO_lower_bounds) avg_ELBO_lower_bound = sum_ELBO_lower_bound / all_ELBO_lower_bounds.shape[0] # Compute the gradients of the Elbo wrt the log potentials if is_training: if not self.use_local_model: all_grad_log_potentials = jax.vmap( self.compute_grads, in_axes=(None, 0, 0) )(log_potentials, all_qs, all_rs) else: all_grad_log_potentials = jax.vmap( self.compute_grads, in_axes=(None, 0, 0, 0, 0) )(log_potentials, all_qs, all_rs, Xv_batch, Xh_batch) avg_grad_log_potentials = jnp.mean(all_grad_log_potentials, axis=0) chex.assert_equal_shape([log_potentials, avg_grad_log_potentials]) sum_ELBO_mode = None else: avg_grad_log_potentials = None all_ELBOs_mode, _ = jax.vmap( self.compute_ELBO_from_samples_given_qs, in_axes=(None, 0) )(log_potentials, all_qs) chex.assert_equal(all_ELBOs_mode.shape, (n_samples,)) sum_ELBO_mode = jnp.sum(all_ELBOs_mode) return ( avg_ELBO_lower_bound, sum_ELBO_lower_bound, avg_grad_log_potentials, sum_ELBO_mode, all_qs, ) @functools.partial(jax.jit, static_argnames="self") def EStep(self, log_potentials, X_visible, X_hidden=None): """Fast implementation of the variational expectation step.""" qs = self.init_q(X_visible, X_hidden) rs = self.init_r(log_potentials, X_visible, X_hidden) def outer_loop_update(qs_rs, _): (qs, rs), _ = jax.lax.scan( inner_loop_update, qs_rs, None, self.config.learning.n_inner_loops ) rs = self.update_r(log_potentials, qs, rs, X_visible, X_hidden) return (qs, rs), None def inner_loop_update(qs_rs, _): qs, rs = qs_rs qs = self.update_q(log_potentials, qs, rs, X_hidden) return (qs, rs), None (qs, rs), _ = jax.lax.scan( outer_loop_update, (qs, rs), None, self.config.learning.n_outer_loops ) return qs, rs @functools.partial(jax.jit, static_argnames="self") def init_q(self, X_visible, X_hidden=None): """Initialize the qs variables.""" init_qs = jnp.zeros(shape=self.X_shape) if not self.use_local_model: init_qs = init_qs.at[self.slice_visible].set(X_visible) init_qs = init_qs.at[self.slice_hidden].set(0.5) init_qs = init_qs.at[self.leak_node_idx].set(1.0) else: assert X_hidden is not None # For local models, X_visible and X_hidden are the activations indices init_qs = init_qs.at[X_visible].set(1.0) # Following Section 5.1, we only update the hidden variables in X_hidden init_qs = init_qs.at[X_hidden].set(0.5) init_qs = init_qs.at[self.leak_node_idx].set(1.0) return init_qs def set_values(self, args, it): """Useful method for setting values sequentially.""" values, all_new_values, all_idx_potentials = args new_values = all_new_values[it] idx_potentials = all_idx_potentials[it] # Out-of-bounds indices are dropped values = utils.set_value_for_indices( values, idx_potentials, new_values, self.has_multidim_arrays ) return (values, all_new_values, all_idx_potentials), None def add_values(self, args, it): """Useful method for adding values sequentially.""" values, all_new_values, all_idx_potentials = args new_values = all_new_values[it] idx_potentials = all_idx_potentials[it] # Out-of-bounds indices are dropped values = utils.add_value_to_indices( values, idx_potentials, new_values, self.has_multidim_arrays ) return (values, all_new_values, all_idx_potentials), None @functools.partial(jax.jit, static_argnames="self") def init_r(self, log_potentials, X_visible, X_hidden=None): """Initialize the rs variables, Section 4.1.3. Note: Sparse data is represented with static shapes, which allows to scan the initialization (similar to dense data). """ # Add epsilon for the division in the definition of u init_rs = jnp.zeros(shape=self.log_potentials_shape) + self.config.min_clip def init_r_node(init_rs, idx_node, switch): """Initialize rs for a single node.""" idx_potentials_wo_leak = utils.get_value_by_indices( self.arr_child_to_parents_potentials, idx_node, self.has_multidim_arrays, ) assert idx_potentials_wo_leak.shape[0] > 0 potentials_wo_leak = utils.get_value_by_indices( log_potentials, idx_potentials_wo_leak, self.has_multidim_arrays ) norm_potentials_wo_leak = potentials_wo_leak / ( jnp.sum(potentials_wo_leak) + self.config.min_clip ) old_rs = utils.get_value_by_indices( init_rs, idx_potentials_wo_leak, self.has_multidim_arrays ) chex.assert_equal_shape([norm_potentials_wo_leak, old_rs]) # 4.1.3: only set rs for active visible, and for hidden but the leak new_rs = switch * norm_potentials_wo_leak + (1 - switch) * old_rs return new_rs, idx_potentials_wo_leak def init_r_node_visible(init_rs, idx_node): """Initialize rs for a single visible node.""" if not self.use_local_model: if self.has_multidim_arrays: # Drop the first dimension of visible indices return init_r_node(init_rs, idx_node, X_visible[tuple(idx_node)[1:]]) else: return init_r_node(init_rs, idx_node, X_visible[idx_node]) else: # For local models, X_visible and X_hidden are the activations indices return init_r_node(init_rs, idx_node, 1.0) def init_r_node_hidden(init_rs, idx_node): """Initialize rs for a single hidden node.""" return init_r_node(init_rs, idx_node, 1.0) if not self.use_local_model: visible_vars = self.visible_vars hidden_vars = self.hidden_vars else: assert X_hidden is not None visible_vars = X_visible hidden_vars = X_hidden # Compute the visible initializations in parallel all_new_rs, all_idx_potentials_wo_leak = jax.vmap( init_r_node_visible, in_axes=(None, 0) )(init_rs, visible_vars) # Set the visible initializations sequentially (init_rs, _, _), _ = jax.lax.scan( self.set_values, (init_rs, all_new_rs, all_idx_potentials_wo_leak), jnp.arange(visible_vars.shape[0]), ) # Compute the hidden initializations in parallel all_new_rs, all_idx_potentials_wo_leak = jax.vmap( init_r_node_hidden, in_axes=(None, 0) )(init_rs, hidden_vars) # Set the hidden initializations sequentially (init_rs, _, _), _ = jax.lax.scan( self.set_values, (init_rs, all_new_rs, all_idx_potentials_wo_leak), jnp.arange(hidden_vars.shape[0]), ) return init_rs @functools.partial(jax.jit, static_argnames="self") def update_q(self, log_potentials, qs, rs, X_hidden=None): """Update all the qs variables, Section 4.1.2. Note: Sparse data is represented with static shapes, which allows to scan the updates (similar to dense data). """ if not self.use_local_model: order = self.hidden_vars else: assert X_hidden is not None # Step 2, section 5.1: only update the nodes in the local model order = X_hidden def update_q_node(qs, idx_hidden): """Update the qs variable associated to a node, Equations (11)-(12).""" # Get indices idx_children_potentials = utils.get_value_by_indices( self.arr_parent_to_children_potentials, idx_hidden, self.has_multidim_arrays, ) idx_children = utils.get_value_by_indices( self.arr_parent_to_children, idx_hidden, self.has_multidim_arrays ) idx_parents_potentials_wo_leak = utils.get_value_by_indices( self.arr_child_to_parents_potentials, idx_hidden, self.has_multidim_arrays, ) idx_parents_wo_leak = utils.get_value_by_indices( self.arr_child_to_parents, idx_hidden, self.has_multidim_arrays ) idx_node_to_leak = utils.get_value_by_indices( self.nodes_to_leak, idx_hidden, self.has_multidim_arrays ) # Leak node w_0i = utils.get_value_by_indices( log_potentials, idx_node_to_leak, self.has_multidim_arrays ) # Equation (12) q_i = w_0i + utils.log1mexp(w_0i) # Parents w_pi = utils.get_value_by_indices( log_potentials, idx_parents_potentials_wo_leak, self.has_multidim_arrays, ) q_pi = utils.get_value_by_indices( qs, idx_parents_wo_leak, self.has_multidim_arrays ) r_pi = utils.get_value_by_indices( rs, idx_parents_potentials_wo_leak, self.has_multidim_arrays ) # Clipping as out-ot-bounds entries have 0s value r_pi = jnp.clip(r_pi, self.config.min_clip, None) u_pi = w_0i + w_pi / r_pi q_i += jnp.sum( q_pi * (w_pi + r_pi * (utils.log1mexp(u_pi) - utils.log1mexp(w_0i))) ) # Children nodes_to_leak_children = utils.get_value_by_indices( self.nodes_to_leak, idx_children, self.has_multidim_arrays ) w_0c = utils.get_value_by_indices( log_potentials, nodes_to_leak_children, self.has_multidim_arrays ) w_ci = utils.get_value_by_indices( log_potentials, idx_children_potentials, self.has_multidim_arrays, ) q_ci = utils.get_value_by_indices( qs, idx_children, self.has_multidim_arrays ) r_ci = utils.get_value_by_indices( rs, idx_children_potentials, self.has_multidim_arrays ) # Clipping as out-ot-bounds entries have 0s value r_ci = jnp.clip(r_ci, self.config.min_clip, None) u_ci = w_0c + w_ci / r_ci # Equation (12) q_i += jnp.sum( q_ci * r_ci * (utils.log1mexp(u_ci) - utils.log1mexp(w_0c)) - (1 - q_ci) * w_ci ) # Equation (11) new_q_i = jnp.where( q_i >= 0, 1.0 / (1.0 + jnp.exp(-q_i)), jnp.exp(q_i) / (1.0 + jnp.exp(q_i)), ) new_q_i = jnp.clip(new_q_i, self.config.min_clip, None) # Out-of-bounds indices are dropped qs = utils.set_value_for_indices( qs, idx_hidden, new_q_i, self.has_multidim_arrays ) return qs, None # Scan the updates qs, _ = jax.lax.scan(update_q_node, qs, order) return qs @functools.partial(jax.jit, static_argnames="self") def update_r(self, log_potentials, qs, rs, X_visible, X_hidden=None): """Update the rs variables, Section 4.1.1. Note: Sparse data is represented with static shapes, which allows to scan the updates (similar to dense data). """ def update_r_node(rs, idx_node, switch): """Update the rs variable associated to a node.""" # Get indices idx_potentials_wo_leak = utils.get_value_by_indices( self.arr_child_to_parents_potentials, idx_node, self.has_multidim_arrays, ) idx_parents_wo_leak = utils.get_value_by_indices( self.arr_child_to_parents, idx_node, self.has_multidim_arrays ) idx_node_to_leak = utils.get_value_by_indices( self.nodes_to_leak, idx_node, self.has_multidim_arrays ) assert idx_parents_wo_leak.shape[0] > 0 # Get parameters values w_0i = utils.get_value_by_indices( log_potentials, idx_node_to_leak, self.has_multidim_arrays ) w_pi = utils.get_value_by_indices( log_potentials, idx_potentials_wo_leak, self.has_multidim_arrays ) q_pi = utils.get_value_by_indices( qs, idx_parents_wo_leak, self.has_multidim_arrays ) r_pi = utils.get_value_by_indices( rs, idx_potentials_wo_leak, self.has_multidim_arrays ) old_r_pi = r_pi.copy() # Clipping as out-ot-bounds entries have 0s value r_pi = jnp.clip(r_pi, self.config.min_clip, None) def update_r(r_pi, _): """Implement Equation (10).""" u_pi = w_0i + w_pi / r_pi r_pi = q_pi * ( r_pi * (utils.log1mexp(u_pi) - utils.log1mexp(w_0i)) - w_pi * f_prime(u_pi) ) r_pi /= jnp.sum(r_pi) + self.config.min_clip r_pi = jnp.clip(r_pi, self.config.min_clip, None) return r_pi, None r_pi, _ = jax.lax.scan( update_r, r_pi, None, self.config.learning.n_inner_loops ) chex.assert_equal_shape([r_pi, old_r_pi]) new_r_pi = switch * r_pi + (1 - switch) * old_r_pi new_r_pi = jnp.clip(new_r_pi, self.config.min_clip, None) new_r_pi /= jnp.sum(new_r_pi) return new_r_pi, idx_potentials_wo_leak def update_r_node_visible(rs, idx_node): """Single visible node update.""" if not self.use_local_model: if self.has_multidim_arrays: # Drop the first dimension of visible indices return update_r_node(rs, idx_node, X_visible[tuple(idx_node)[1:]]) else: return update_r_node(rs, idx_node, X_visible[idx_node]) else: # For local models, X_visible and X_hidden are the activations indices return update_r_node(rs, idx_node, 1.0) def update_r_node_hidden(rs, idx_node): """Single hidden node update.""" return update_r_node(rs, idx_node, 1.0) if not self.use_local_model: visible_vars = self.visible_vars hidden_vars = self.hidden_vars else: assert X_hidden is not None visible_vars = X_visible hidden_vars = X_hidden # Update the visible variables in parallel, as mentionned in 4.1.1 all_new_rs, all_idx_potentials_wo_leak = jax.vmap( update_r_node_visible, in_axes=(None, 0) )(rs, visible_vars) # Set the visible updates sequentially (rs, _, _), _ = jax.lax.scan( self.set_values, (rs, all_new_rs, all_idx_potentials_wo_leak), jnp.arange(visible_vars.shape[0]), ) # Update the hidden variables in parallel, as mentionned in 4.1.1 all_new_rs, all_idx_potentials_wo_leak = jax.vmap( update_r_node_hidden, in_axes=(None, 0) )(rs, hidden_vars) # Set the hidden updates sequentially (rs, _, _), _ = jax.lax.scan( self.set_values, (rs, all_new_rs, all_idx_potentials_wo_leak), jnp.arange(hidden_vars.shape[0]), ) return rs @functools.partial(jax.jit, static_argnames="self") def compute_grads( self, log_potentials, qs, rs, X_visible=None, X_hidden=None ): """Compute the gradients of the Elbo wrt log potentials, Section 4.2.1 and 4.2.2. Note: Sparse data is represented with static shapes, which allows to scan the computation (similar to dense data). """ def compute_grad_node(idx_node): """For each node, compute the partial derivatives for (1) the parameters connecting it to the parents and (2) the parameter connecting it to the leak.""" # Get indices idx_potentials_wo_leak = utils.get_value_by_indices( self.arr_child_to_parents_potentials, idx_node, self.has_multidim_arrays, ) idx_parents_wo_leak = utils.get_value_by_indices( self.arr_child_to_parents, idx_node, self.has_multidim_arrays ) idx_node_to_leak = utils.get_value_by_indices( self.nodes_to_leak, idx_node, self.has_multidim_arrays ) # Leak node w_0i = utils.get_value_by_indices( log_potentials, idx_node_to_leak, self.has_multidim_arrays ) if idx_parents_wo_leak.shape[0] == 0: sum_pi = 0 else: # Parents w_pi = utils.get_value_by_indices( log_potentials, idx_potentials_wo_leak, self.has_multidim_arrays ) q_pi = utils.get_value_by_indices( qs, idx_parents_wo_leak, self.has_multidim_arrays ) r_pi = utils.get_value_by_indices( rs, idx_potentials_wo_leak, self.has_multidim_arrays ) q_i = utils.get_value_by_indices(qs, idx_node, self.has_multidim_arrays) # Clipping as out-ot-bounds entries have 0s value r_pi = jnp.clip(r_pi, self.config.min_clip, None) u_pi = w_0i + w_pi / r_pi # Eqs (13)-(14): partial derivative wrt edges from parents to child grad_pi = jnp.where( u_pi >= 0, 1.0 / (1.0 - jnp.exp(-u_pi)), jnp.exp(u_pi) / (jnp.exp(u_pi) - 1.0), ) grad_pi = q_pi * (q_i * grad_pi - 1) chex.assert_equal_shape([grad_pi, w_pi]) # Useful quantity sum_pi = jnp.sum(q_pi * r_pi * (f_prime(u_pi) - f_prime(w_0i))) # Equations (15)-(16): partial derivative wrt edge from leak to child grad_leak_i = q_i * f_prime(w_0i) - (1.0 - q_i) + q_i * sum_pi return grad_pi, idx_potentials_wo_leak, grad_leak_i, idx_node_to_leak # Initialze the gradient grads_log_potentials = jnp.zeros_like(log_potentials) if not self.use_local_model: hidden_visible_vars = self.hidden_visible_vars else: assert X_visible is not None assert X_hidden is not None assert not self.has_multidim_arrays hidden_visible_vars = jnp.concatenate([X_visible, X_hidden]) # This works as self.arr_child_to_parents is 1D all_q_pi = utils.get_value_by_indices( qs, self.arr_child_to_parents, self.has_multidim_arrays ) # Equations (13)-(14): # partial derivative w.r.t non-leak edge not in local models is -q_k grads_log_potentials = utils.set_value_for_indices( grads_log_potentials, self.arr_child_to_parents_potentials, -all_q_pi, self.has_multidim_arrays, ) # Equations (15)-(16): # partial derivative w.r.t leak edge not in local models is -1 grads_log_potentials = utils.set_value_for_indices( grads_log_potentials, self.nodes_to_leak, -1.0, self.has_multidim_arrays, ) # Compute the gradient in parallel ( all_grad_potentials_wo_leak, all_idx_potentials_wo_leak, all_grad_potentials_leak, all_idx_node_to_leak, ) = jax.vmap(compute_grad_node, in_axes=(0,))(hidden_visible_vars) # Add or set the updates sequentially if self.has_multidim_arrays: # Note: a parameter can only be shared across edges in the multidim case # Gradient for all the parents-children potentials (grads_log_potentials, _, _), _ = jax.lax.scan( self.add_values, ( grads_log_potentials, all_grad_potentials_wo_leak, all_idx_potentials_wo_leak, ), jnp.arange(hidden_visible_vars.shape[0]), ) # Gradient for all the potentials connecting to the leak (grads_log_potentials, _, _), _ = jax.lax.scan( self.add_values, ( grads_log_potentials, all_grad_potentials_leak, all_idx_node_to_leak, ), jnp.arange(hidden_visible_vars.shape[0]), ) else: # Gradient for all the parents-children potentials (grads_log_potentials, _, _), _ = jax.lax.scan( self.set_values, ( grads_log_potentials, all_grad_potentials_wo_leak, all_idx_potentials_wo_leak, ), jnp.arange(hidden_visible_vars.shape[0]), ) # Gradient for all the potentials connecting to the leak (grads_log_potentials, _, _), _ = jax.lax.scan( self.set_values, ( grads_log_potentials, all_grad_potentials_leak, all_idx_node_to_leak, ), jnp.arange(hidden_visible_vars.shape[0]), ) return grads_log_potentials def compute_entropy(self, qs): """Compute the entropy.""" q_hidden = qs[self.slice_hidden] # extract the visible variables q_hidden_below = jnp.clip(q_hidden, self.config.min_clip, None) one_minus_q_hidden_above = jnp.clip( 1 - q_hidden, self.config.min_clip, None ) arr = q_hidden * jnp.log(q_hidden_below) + (1 - q_hidden) * jnp.log( one_minus_q_hidden_above ) entropy = -jnp.sum(arr) return entropy @functools.partial(jax.jit, static_argnames="self") def compute_ELBO_lower_bound(self, log_potentials, qs, rs): """Compute the lower bound of the ELBO, Equation (9), for a sample.""" def compute_ELogP_lower_bound_node(idx_node): """Compute the lower bound for a variable, Equation (8).""" # Get indices idx_potentials_wo_leak = utils.get_value_by_indices( self.arr_child_to_parents_potentials, idx_node, self.has_multidim_arrays, ) idx_parents_wo_leak = utils.get_value_by_indices( self.arr_child_to_parents, idx_node, self.has_multidim_arrays ) idx_node_to_leak = utils.get_value_by_indices( self.nodes_to_leak, idx_node, self.has_multidim_arrays ) # Get values w_0i = utils.get_value_by_indices( log_potentials, idx_node_to_leak, self.has_multidim_arrays ) w_pi = utils.get_value_by_indices( log_potentials, idx_potentials_wo_leak, self.has_multidim_arrays ) q_pi = utils.get_value_by_indices( qs, idx_parents_wo_leak, self.has_multidim_arrays ) r_pi = utils.get_value_by_indices( rs, idx_potentials_wo_leak, self.has_multidim_arrays ) q_i = utils.get_value_by_indices(qs, idx_node, self.has_multidim_arrays) # Clipping as out-ot-bounds entries have 0s value r_pi = jnp.clip(r_pi, self.config.min_clip, None) E_log_p_off = -w_0i - jnp.dot(w_pi, q_pi) # Compute the expectation in the second line of Equation (8) if idx_parents_wo_leak.shape[0] == 0: E_log_p_on = utils.log1mexp(w_0i) else: u_pi = w_0i + w_pi / r_pi E_log_p_on = utils.log1mexp(w_0i) + jnp.sum( q_pi * r_pi * (utils.log1mexp(u_pi) - utils.log1mexp(w_0i)) ) res = q_i * E_log_p_on + (1 - q_i) * E_log_p_off return res if not self.has_multidim_arrays: # Compute the lower bound at each node but the leak ELBOs = jax.vmap(compute_ELogP_lower_bound_node)(self.hidden_visible_vars) ELBO = jnp.sum(ELBOs) else: # When the shapes are 1D we can vectorize the computations all_w_0i = log_potentials[self.nodes_to_leak[self.slice_hidden_visible]] # Out-of-bounds entries are filled in with 0s all_w_pi = utils.get_value_by_indices( log_potentials, self.arr_child_to_parents_potentials, has_multidim_arrays=False, ) all_q_pi = utils.get_value_by_indices( qs, self.arr_child_to_parents, has_multidim_arrays=False ) all_w_dot_q = jax.vmap(jnp.dot, in_axes=(0, 0))(all_w_pi, all_q_pi) chex.assert_equal(all_w_0i.shape, all_w_dot_q.shape) all_r_pi = utils.get_value_by_indices( rs, self.arr_child_to_parents_potentials, has_multidim_arrays=False ) # Clipping as out-ot-bounds entries have 0s value all_r_pi = jnp.clip(all_r_pi, self.config.min_clip, None) E_log_p_off = -all_w_0i - all_w_dot_q all_u_pi = all_w_0i[:, None] + all_w_pi / all_r_pi E_log_p_on = utils.log1mexp(all_w_0i) + jnp.sum( all_q_pi * all_r_pi * (utils.log1mexp(all_u_pi) - utils.log1mexp(all_w_0i)[:, None]), axis=1, ) E_log_p_on = E_log_p_on.reshape(-1) chex.assert_equal(E_log_p_off.shape, E_log_p_on.shape) all_res = ( qs[self.slice_hidden_visible] * E_log_p_on + (1 - qs[self.slice_hidden_visible]) * E_log_p_off ) ELBO = jnp.sum(all_res) # Add the entropy ELBO += self.compute_entropy(qs) return ELBO @functools.partial(jax.jit, static_argnames="self") def compute_ELBO_from_samples_given_qs(self, log_potentials, all_qs): """Given the posterior qs, estimate the posterior mode then compute the max-product ELBO.""" # Estimate the posterior mode X_sample = jnp.round(all_qs) def log_joint_lik_node(X_sample, idx_node): """Joint likelihood of the binary hidden and visible, Equation (1).""" # Get indices idx_potentials_wo_leak = utils.get_value_by_indices( self.arr_child_to_parents_potentials, idx_node, self.has_multidim_arrays, ) idx_parents_wo_leak = utils.get_value_by_indices( self.arr_child_to_parents, idx_node, self.has_multidim_arrays ) idx_node_to_leak = utils.get_value_by_indices( self.nodes_to_leak, idx_node, self.has_multidim_arrays ) # Get values w_0i = utils.get_value_by_indices( log_potentials, idx_node_to_leak, self.has_multidim_arrays, ) w_pi = utils.get_value_by_indices( log_potentials, idx_potentials_wo_leak, self.has_multidim_arrays ) X_pi = utils.get_value_by_indices( X_sample, idx_parents_wo_leak, self.has_multidim_arrays ) X_i = utils.get_value_by_indices( X_sample, idx_node, self.has_multidim_arrays ) sum_factor = w_0i + jnp.dot(w_pi, X_pi) log_joint_lik_node = (1 - X_i) * (-sum_factor) + X_i * jnp.clip( jnp.log1p(-jnp.exp(-sum_factor)), utils.CLIP_INF, None ) return log_joint_lik_node if not self.has_multidim_arrays: # Joint likelihood of the hidden and the visible, Equation (1).""" log_joint_liks = jax.vmap(log_joint_lik_node, in_axes=(None, 0))( X_sample, self.hidden_visible_vars ) log_joint_lik = jnp.sum(log_joint_liks) else: # When the shapes are 1D we can vectorize the computations all_w_0i = log_potentials[self.nodes_to_leak[self.slice_hidden_visible]] # Out-of-bouns entries are filled in with 0s all_w_pi = utils.get_value_by_indices( log_potentials, self.arr_child_to_parents_potentials, has_multidim_arrays=False, ) X_sample_parents = utils.get_value_by_indices( X_sample, self.arr_child_to_parents, has_multidim_arrays=False ) all_w_dot_X = jax.vmap(jnp.dot, in_axes=(0, 0))( all_w_pi, X_sample_parents ) chex.assert_equal(all_w_0i.shape, all_w_dot_X.shape) sum_factor_XW = all_w_0i + all_w_dot_X # Clipping to avoid nan # Note: if sum_factor_XW[k] is so small that we need clipping, # then X_sample[k] = 0 and we do not care about the second term log_p_factors = -sum_factor_XW * ( 1 - X_sample[self.slice_hidden_visible] ) + X_sample[self.slice_hidden_visible] * jnp.clip( jnp.log1p(-jnp.exp(-sum_factor_XW)), utils.CLIP_INF, None ) log_joint_lik = log_p_factors.sum() return log_joint_lik, X_sample def update_log_potentials( self, Xv_batch, log_potentials, opt_state, Xh_batch=None ): """Update the log potentials.""" # Get the loss and the gradients (avg_ELBO_lower_bound, _, grad_log_potentials, _, _) = ( self.compute_ELBOs_and_grad( log_potentials, Xv_batch, Xh_batch, is_training=True ) ) # Update the log potentials grad_log_potentials *= -1.0 updates, new_opt_state = self.opt.update(grad_log_potentials, opt_state) new_log_potentials = optax.apply_updates(log_potentials, updates) new_log_potentials = jnp.clip( new_log_potentials, self.config.min_clip, None, ) if self.dont_update_potentials_mask is not None: new_log_potentials += self.dont_update_potentials_mask * ( log_potentials - new_log_potentials ) return new_log_potentials, new_opt_state, avg_ELBO_lower_bound def eval_ELBOs_dataset(self, Xv, log_potentials, Xh=None): """Compute two ELBOs on an entire dataset. (1) The first one is the regular ELBO for the VI mean-field posterior (2) The second one defines the posterior via a Dirac at its mode """ test_batch_size = self.config.inference.test_batch_size n_batches = (len(Xv) + test_batch_size - 1) // test_batch_size if Xh is not None: assert len(Xv) == len(Xh) sum_elbo_lower_bound = 0.0 sum_elbo_mode = 0.0 all_qs_batch = [] for batch_idx in tqdm.trange(n_batches): Xv_batch = Xv[ batch_idx * test_batch_size : (batch_idx + 1) * test_batch_size ] if self.use_local_model: Xh_batch = Xh[ batch_idx * test_batch_size : (batch_idx + 1) * test_batch_size ] else: Xh_batch = None ( _, sum_elbo_lower_bound_batch, _, sum_elbo_mode_batch, qs_batch, ) = self.compute_ELBOs_and_grad( log_potentials, Xv_batch, Xh_batch=Xh_batch, is_training=False, ) sum_elbo_lower_bound += sum_elbo_lower_bound_batch sum_elbo_mode += sum_elbo_mode_batch all_qs_batch.append(qs_batch) all_qs = np.concatenate(all_qs_batch, axis=0) return (sum_elbo_lower_bound / len(Xv), sum_elbo_mode / len(Xv), all_qs) def train(self, init_log_potentials=None): """Train the noisy OR model with VI.""" if init_log_potentials is not None: log_potentials = init_log_potentials log_potentials = jnp.clip(log_potentials, self.config.min_clip, None) else: log_potentials = utils.init_log_potentials( self.log_potentials_shape, self.config.learning.proba_init, self.leak_potentials_mask, self.config.learning.leak_proba_init, self.dont_update_potentials_mask, self.config.learning.leak_proba_init_not_updated, self.config.learning.noise_temperature_init, self.config.min_clip, ) opt_state = self.opt.init(log_potentials) current_step = 0 n_steps = self.config.learning.num_iters train_batch_size = self.config.learning.train_batch_size n_batches = ( len(self.Xv_gt_train) + train_batch_size - 1 ) // train_batch_size all_update_times = [] all_eval_times = [] all_train_avg_elbos_lb = [] all_test_avg_elbos_mode = [] all_test_avg_elbos_lb = [] # Training iterations print(f"Training for {n_steps} steps") pbar = tqdm.tqdm(range(n_steps + 1)) display = {} for it in pbar: # Extract batch batch_idx = it % n_batches Xv_batch = self.Xv_gt_train[ batch_idx * train_batch_size : (batch_idx + 1) * train_batch_size ] if self.use_local_model: Xh_batch = self.Xh_gt_train[ batch_idx * train_batch_size : (batch_idx + 1) * train_batch_size ] else: Xh_batch = None # Gradient step start_update = time.time() ( log_potentials, opt_state, avg_elbo_lower_bound, ) = self.update_log_potentials( Xv_batch, log_potentials, opt_state, Xh_batch=Xh_batch ) train_avg_elbo_lower_bound = float(jax.device_get(avg_elbo_lower_bound)) display["train_elbo_lb"] = round(train_avg_elbo_lower_bound, 4) # First iteration compiles if current_step > 0: update_time = time.time() - start_update all_update_times.append(update_time) all_train_avg_elbos_lb.append(train_avg_elbo_lower_bound) # Evaluation step if ( current_step % self.config.learning.eval_every == 0 or current_step == n_steps ): start_eval = time.time() ( test_avg_elbo_lower_bound, test_avg_elbo_mode, test_qs, ) = self.eval_ELBOs_dataset( self.Xv_gt_test[: self.config.inference.test_size_eval_and_store], log_potentials, self.Xh_gt_test, ) test_avg_elbo_lower_bound = float( jax.device_get(test_avg_elbo_lower_bound) ) test_avg_elbo_mode = float(jax.device_get(test_avg_elbo_mode)) display["test_elbo_lb"] = round(test_avg_elbo_lower_bound, 4) eval_time = time.time() - start_eval if current_step > 0: all_test_avg_elbos_lb.append(test_avg_elbo_lower_bound) all_test_avg_elbos_mode.append(test_avg_elbo_mode) all_eval_times.append(eval_time) # When we store_inference_results, evaluate on the training set in the end if ( current_step == n_steps and self.config.inference.store_inference_results ): ( last_train_avg_elbo_lower_bound, last_train_avg_elbo_mode, last_train_qs, ) = self.eval_ELBOs_dataset( self.Xv_gt_train[: self.config.inference.test_size_eval_and_store], log_potentials, self.Xh_gt_train, ) last_train_avg_elbo_lower_bound = float( jax.device_get(last_train_avg_elbo_lower_bound) ) last_train_avg_elbo_mode = float( jax.device_get(last_train_avg_elbo_mode) ) pbar.set_postfix(display) current_step += 1 print("Training finished") results = { "config": self.config, "log_potentials": log_potentials, "all_train_avg_elbos_lb": all_train_avg_elbos_lb, "all_test_avg_elbos_mode": all_test_avg_elbos_mode, "all_test_avg_elbos_lb": all_test_avg_elbos_lb, "all_update_times": all_update_times, "all_eval_times": all_eval_times, } return results def f_prime(x): """Stable implementation of the derivative of f(x)=log(1 - exp(-x)).""" stable_f_prime = jnp.where( x >= 0, jnp.exp(-x) / (1.0 - jnp.exp(-x)), 1.0 / (jnp.exp(x) - 1.0) ) return jnp.clip(stable_f_prime, utils.CLIP_INF, None)
max_product_noisy_or-main
mp_noisy_or/noisy_or_vi.py
# Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration to train the noisy OR models.""" import ml_collections # pylint: disable=invalid-name def get_config(): """Training config for both BP and VI.""" config = ml_collections.config_dict.ConfigDict() config.method = "" config.dataset = "" config.config_BP_20news = get_config_BP_20news() config.config_BP_BMF = get_config_BP_BMF() config.config_BP_2Ddeconv = get_config_BP_2Ddeconv() config.config_BP_yelp = get_config_BP_yelp() config.config_BP_imdb = get_config_BP_imdb() config.config_BP_abstract = get_config_BP_abstract() config.config_BP_agnews = get_config_BP_agnews() config.config_BP_patent = get_config_BP_patent() config.config_BP_overparam = get_config_BP_overparam() config.config_VI_20news = get_config_VI_20news() config.config_VI_BMF = get_config_VI_BMF() config.config_VI_2Ddeconv = get_config_VI_2Ddeconv() config.config_VI_yelp = get_config_VI_yelp() config.config_VI_imdb = get_config_VI_imdb() config.config_VI_abstract = get_config_VI_abstract() config.config_VI_agnews = get_config_VI_agnews() config.config_VI_patent = get_config_VI_patent() config.config_PMP_BMF = get_config_PMP_BMF() config.config_PMP_2Ddeconv = get_config_PMP_2Ddeconv() return config ############################################## ############## BP configs #################### ############################################## def get_config_BP() -> ml_collections.config_dict.ConfigDict: """Base config for BP.""" config = ml_collections.config_dict.ConfigDict() config.seed = 0 config.min_clip = 1e-5 config.backend = "bp" config.data = ml_collections.config_dict.ConfigDict() config.data.args = ml_collections.config_dict.ConfigDict() config.bp = ml_collections.config_dict.ConfigDict() config.bp.temperature = 0.0 # max-product config.bp.num_iters = 100 config.bp.damping = 0.5 config.learning = ml_collections.config_dict.ConfigDict() # Initialization parameters config.learning.proba_init = 0.5 config.learning.leak_proba_init = 0.9 config.learning.leak_proba_init_not_updated = 0.99 config.learning.noise_temperature_init = 0.0 config.learning.learning_rate = 1e-2 config.learning.num_iters = 1000 config.learning.train_batch_size = 100_000 config.learning.eval_every = 100 config.learning.n_hidden_by_sample = 1 config.learning.noise_temperature = 0.0 config.inference = ml_collections.config_dict.ConfigDict() config.inference.store_inference_results = False config.inference.test_size_eval_and_store = 100_000 config.inference.test_batch_size = 100_000 # Mode at test time config.inference.n_hidden_by_sample = 1 config.inference.noise_temperature = 0.0 return config def get_config_BP_20news() -> ml_collections.config_dict.ConfigDict: """Base config for BP on 20news.""" config = get_config_BP() config.data.dataset = "20news" config.data.ratio_train = 0.7 config.data.args.sparse_data = False config.data.args.n_layers = 3 return config def get_config_BP_yelp() -> ml_collections.config_dict.ConfigDict: """Base config for BP on yelp.""" config = get_config_BP() # Train set is 560_000, test is 38_000 config.data.dataset = "yelp_polarity_reviews" config.data.args.key_name = "text" config.data.args.vocab_size = 10_000 config.data.args.max_sequence_length = 500 config.data.args.n_layers = 5 config.learning.learning_rate = 3e-4 config.learning.train_batch_size = 128 config.learning.num_iters = 3_600 # then VI training config.learning.eval_every = 600 # eval is slow config.inference.test_batch_size = 512 return config def get_config_BP_imdb() -> ml_collections.config_dict.ConfigDict: """Base config for BP on imdb.""" config = get_config_BP_yelp() # Train set is 25_000, test is 25_000 config.data.dataset = "imdb_reviews" return config def get_config_BP_abstract() -> ml_collections.config_dict.ConfigDict: """Base config for BP on abstract.""" config = get_config_BP_yelp() # Train set is 203_037, test is 6_440 config.data.dataset = "scientific_papers" config.data.args.key_name = "abstract" return config def get_config_BP_agnews() -> ml_collections.config_dict.ConfigDict: """Base config for BP on abstract.""" config = get_config_BP_yelp() # Train set is 120_000, test is 7_600 config.data.dataset = "ag_news_subset" config.data.args.key_name = "description" return config def get_config_BP_patent() -> ml_collections.config_dict.ConfigDict: """Base config for BP on abstract.""" config = get_config_BP_yelp() # Train set is 85_568, test is 4_754 config.data.dataset = "patent" config.data.args.key_name = "description" return config def get_config_BP_BMF() -> ml_collections.config_dict.ConfigDict: """Training config for BP on binary deconvolution.""" config = get_config_BP() config.data.dataset = "BMF" config.data.ratio_train = 0.5 config.data.args.seed = 0 config.data.args.n_rows = 50 config.data.args.rank = 15 config.data.args.n_cols = 50 config.data.args.p_Xon = 0.25 config.learning.learning_rate = 1e-3 config.learning.train_batch_size = 20 config.learning.num_iters = 40_000 config.learning.eval_every = 4_00 config.inference.store_inference_results = True # Add noise to break symmetries config.learning.noise_temperature = 1.0 config.learning.noise_temperature_init = 0.1 return config def get_config_BP_2Ddeconv() -> ml_collections.config_dict.ConfigDict: """Training config for BP on binary deconvolution.""" config = get_config_BP() config.data.dataset = "2D_deconvolution" config.data.ratio_train = 0.8 config.data.args.dataset_name = "pmp" config.data.args.W_shape = (16, 5, 5) config.learning.num_iters = 3000 config.learning.eval_every = 300 config.inference.store_inference_results = True # Add noise to break symmetries config.learning.noise_temperature = 1.0 config.learning.noise_temperature_init = 0.1 return config def get_config_BP_overparam() -> ml_collections.config_dict.ConfigDict: """Training config for BP on binary deconvolution.""" config = get_config_BP() config.data.dataset = "overparam" config.data.ratio_train = 0.9 config.data.args.dataset_name = "PLNT" config.data.args.n_latent = 8 config.learning.learning_rate = 1e-3 # as in the paper config.learning.train_batch_size = 20 # as in the paper config.learning.num_iters = 45_000 # as in the paper config.learning.eval_every = 5_000 # Add noise to break symmetries config.learning.noise_temperature = 1.0 config.learning.noise_temperature_init = 0.1 return config ############################################## ############## VI configs #################### ############################################## def get_config_VI() -> ml_collections.config_dict.ConfigDict: """Training config for the VI method.""" config = ml_collections.config_dict.ConfigDict() config.seed = 0 config.init_model_path = "" config.min_clip = 1e-5 config.data = ml_collections.config_dict.ConfigDict() config.data.args = ml_collections.config_dict.ConfigDict() config.learning = ml_collections.config_dict.ConfigDict() # Initialization parameters config.learning.proba_init = 0.5 config.learning.leak_proba_init = 0.9 config.learning.leak_proba_init_not_updated = 0.99 config.learning.noise_temperature_init = 0.0 config.learning.n_inner_loops = 10 config.learning.n_outer_loops = 10 config.learning.learning_rate = 0.01 config.learning.eval_every = 10 config.learning.train_batch_size = 100_000 config.learning.num_iters = 1000 config.inference = ml_collections.config_dict.ConfigDict() config.inference.test_batch_size = 100_000 config.inference.test_size_eval_and_store = 100_000 config.inference.store_inference_results = False return config def get_config_VI_20news() -> ml_collections.config_dict.ConfigDict: """Training config for VI on 20news.""" config = get_config_VI() config.data.dataset = "20news" config.data.ratio_train = 0.7 config.data.args.sparse_data = False config.data.args.n_layers = 3 return config def get_config_VI_20news_from_authors() -> ml_collections.config_dict.ConfigDict: """Training config for VI on 20news.""" config = get_config_VI() config.data.dataset = "20news_from_authors" config.data.ratio_train = 0.7 config.data.args.sparse_data = False return config def get_config_VI_yelp() -> ml_collections.config_dict.ConfigDict: """Training config for VI on yelp.""" config = get_config_VI() # Train set is 560_000, test is 38_000 config.data.dataset = "yelp_polarity_reviews" config.data.args.key_name = "text" config.data.args.vocab_size = 10_000 config.data.args.max_sequence_length = 500 config.data.args.n_layers = 5 config.learning.train_batch_size = 128 config.learning.num_iters = 4_000 config.learning.eval_every = 400 config.inference.test_batch_size = 512 return config def get_config_VI_imdb() -> ml_collections.config_dict.ConfigDict: """Training config for VI on imdb.""" config = get_config_VI_yelp() # Train set is 25_000, test is 25_000 config.data.dataset = "imdb_reviews" return config def get_config_VI_abstract() -> ml_collections.config_dict.ConfigDict: """Training config for VI on abstract.""" config = get_config_VI_yelp() # Train set is 203_037, test is 6_440 config.data.dataset = "scientific_papers" config.data.args.key_name = "abstract" return config def get_config_VI_agnews() -> ml_collections.config_dict.ConfigDict: """Base config for BP on abstract.""" config = get_config_VI_yelp() # Train set is 120_000, test is 7_600 config.data.dataset = "ag_news_subset" config.data.args.key_name = "description" return config def get_config_VI_patent() -> ml_collections.config_dict.ConfigDict: """Base config for BP on abstract.""" config = get_config_VI_yelp() # Train set is 85_568, test is 4_754 config.data.dataset = "patent" config.data.args.key_name = "description" return config def get_config_VI_BMF() -> ml_collections.config_dict.ConfigDict: """Training config for BP on binary deconvolution.""" config = get_config_VI() config.data.dataset = "BMF" config.data.ratio_train = 0.5 config.data.args.seed = 0 config.data.args.n_rows = 50 config.data.args.rank = 15 config.data.args.n_cols = 50 config.data.args.p_Xon = 0.25 config.learning.learning_rate = 1e-3 config.learning.train_batch_size = 20 config.learning.num_iters = 40_000 config.learning.eval_every = 4_00 config.inference.store_inference_results = True # Add noise to break symmetries config.learning.noise_temperature_init = 0.1 return config def get_config_VI_2Ddeconv() -> ml_collections.config_dict.ConfigDict: """Training config for VI on binary deconvolution.""" config = get_config_VI() config.data.dataset = "2D_deconvolution" config.data.ratio_train = 0.8 config.learning.num_iters = 3000 config.learning.eval_every = 300 config.inference.store_inference_results = True # Add noise to break symmetries config.learning.noise_temperature_init = 0.1 return config ############################################## ############## PMP configs ################### ############################################## def get_config_PMP_BMF() -> ml_collections.config_dict.ConfigDict: """Training config for BP on binary deconvolution.""" config = ml_collections.config_dict.ConfigDict() config.seed = 0 config.n_rows = 50 config.rank = 15 config.n_cols = 50 config.p_Xon = 0.25 return config def get_config_PMP_2Ddeconv() -> ml_collections.config_dict.ConfigDict: """Training config for VI on binary deconvolution.""" config = ml_collections.config_dict.ConfigDict() config.seed = 0 config.ratio_train = 0.8 return config
max_product_noisy_or-main
mp_noisy_or/config.py
# Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Trains a noisy OR Bayesian network with max-product Belief Propagation in JAX.""" import datetime import functools import time import chex import jax import jax.numpy as jnp import numpy as np import optax from pgmax import factor from pgmax import fgraph from pgmax import fgroup from pgmax import infer from pgmax import vgroup import tqdm from mp_noisy_or import data from mp_noisy_or import utils # pylint: disable=g-complex-comprehension # pylint: disable=g-doc-args # pylint: disable=invalid-name # pylint: disable=g-doc-return-or-yield # pylint: disable=comparison-with-itself def build_noisy_or_fg(edges_children_to_parents, X_shape): """Build a factor graph with the PGMax representation of the noisy OR factors. Args: edges_children_to_parents: Dict {idx_child: {idx_parent: idx_potential}} X_shape: Shape of array containing all the hidden and visible variables Returns: fg: factor graph with the noisyOR factors factor_children_indices: Indices of all children factor_parents_indices: Indices of all children fator_log_potentials_indices: Indices of log-potentials """ children_to_parents = tuple( [ (idx_child, idx_parent) for idx_child, idx_parents_idx_potentials in edges_children_to_parents.items() for idx_parent in idx_parents_idx_potentials ] ) num_ORFactors = len(children_to_parents) children_to_parents_dict = dict( zip(children_to_parents, np.arange(num_ORFactors)) ) # Define variables groups X = vgroup.NDVarArray(num_states=2, shape=X_shape) noisy_X = vgroup.NDVarArray(num_states=2, shape=(num_ORFactors,)) # Define the factor graph fg = fgraph.FactorGraph(variable_groups=[X, noisy_X]) # Loop through the entries of the dictionnary variables_for_ORFactors = [] variables_for_NoisyFactors = [] factors_log_potentials_indices = [] for ( idx_child, idx_parents_idx_potentials, ) in edges_children_to_parents.items(): variables_for_ORFactor = [] for idx_parent, idx_potential in idx_parents_idx_potentials.items(): parent = X[idx_parent] idx_noisy_X = children_to_parents_dict[(idx_child, idx_parent)] noisy_parent = noisy_X[idx_noisy_X] variables_for_ORFactor.append(noisy_parent) # Noisy factor: order matters! variables_for_NoisyFactors.append([parent, noisy_parent]) factors_log_potentials_indices.append(idx_potential) child = X[idx_child] variables_for_ORFactor.append(child) variables_for_ORFactors.append(variables_for_ORFactor) # Build the FactorGroups OR_factor_group = fgroup.ORFactorGroup(variables_for_ORFactors) log_potential_matrix = np.zeros((num_ORFactors,) + (2, 2)) noisy_factor_group = fgroup.PairwiseFactorGroup( variables_for_factors=variables_for_NoisyFactors, log_potential_matrix=log_potential_matrix, ) # Add the FactorGroups, which is computationally efficient fg.add_factors([OR_factor_group, noisy_factor_group]) # Factor indices factor_children_indices = jnp.array(children_to_parents)[:, 0] factor_parents_indices = jnp.array(children_to_parents)[:, 1] fator_log_potentials_indices = jnp.array(factors_log_potentials_indices) def _get_indices(array): """Useful function to process indices.""" array_by_dim = tuple( [array[:, idx_col] for idx_col in range(array.shape[1])] ) return array_by_dim if len(X_shape) > 1: factor_children_indices = _get_indices(factor_children_indices) factor_parents_indices = _get_indices(factor_parents_indices) fator_log_potentials_indices = _get_indices(fator_log_potentials_indices) return ( fg, factor_children_indices, factor_parents_indices, fator_log_potentials_indices, ) class NoisyOR_BP: """Trains a NoisyOR model with max-product.""" def __init__(self, config): self.config = config np.random.seed(self.config.seed) self.rng = jax.random.PRNGKey(self.config.seed) # Load data ( self.Xv_gt_train, self.Xv_gt_test, self.edges_children_to_parents, self.X_shape, self.log_potentials_shape, self.leak_potentials_mask, self.dont_update_potentials_mask, self.slice_visible, self.slice_hidden, self.leak_node_idx, ) = data.DATA_LOADER[self.config.data.dataset](**self.config.data.args) if self.Xv_gt_test is None: # Train-test split self.Xv_gt_train, self.Xv_gt_test = data.train_test_shuffle_split( self.Xv_gt_train, self.config.seed, self.config.data.ratio_train ) else: np.random.shuffle(self.Xv_gt_train) np.random.shuffle(self.Xv_gt_test) self.has_dense_Xv = isinstance(self.Xv_gt_train, np.ndarray) if not isinstance(self.slice_visible, tuple): self.slice_visible = (self.slice_visible,) if not isinstance(self.slice_hidden, tuple): self.slice_hidden = (self.slice_hidden,) if not isinstance(self.leak_node_idx, tuple): self.leak_node_idx = (self.leak_node_idx,) # The mask indicates the hidden and visible variables self.X_mask = np.zeros(shape=self.X_shape, dtype=float) self.X_mask[self.slice_visible] = 1.0 self.X_mask[self.slice_hidden] = 1.0 # Create the factor graph ( self.fg, self.factor_children_indices, self.factor_parents_indices, self.factor_log_potentials_indices, ) = build_noisy_or_fg(self.edges_children_to_parents, self.X_shape) print("Factor graph created") # Get variable group and factor group from the factor graph self.X = self.fg.variable_groups[0] self.noisy_factor_group = self.fg.factor_groups[factor.EnumFactor][0] # Create the BP functions for max-product self.bp = infer.build_inferer(self.fg.bp_state, backend=config.backend) # Create the optimizer self.opt = optax.adam(learning_rate=config.learning.learning_rate) def __hash__(self): # pylint: disable=line-too-long # See https://jax.readthedocs.io/en/latest/faq.html#strategy-2-marking-self-as-static return hash(tuple(self.edges_children_to_parents.keys())) def densify(self, Xv_batch): """Densify a sparse batch of activations.""" # Get dense matrix of observations if self.has_dense_Xv: Xv_batch_dense = Xv_batch else: assert len(self.slice_visible) == 1 Xv_batch_dense = np.zeros(((len(Xv_batch), self.slice_visible[0].stop))) for idx_row, Xv_row in enumerate(Xv_batch): if Xv_row.shape[0] > 0: Xv_batch_dense[idx_row, Xv_row] = 1 return Xv_batch_dense @functools.partial( jax.jit, static_argnames=("self", "noise_temperature", "n_hidden_by_sample"), ) def posterior_sample( self, Xv_batch, rng, log_potentials, noise_temperature, n_hidden_by_sample, ): """Given a batch of visible variables, get samples or the mode of the posterior.""" n_samples = len(Xv_batch) # First, create copies of the visible variables if n_hidden_by_sample > 1: Xv_batch = jnp.repeat(Xv_batch, repeats=n_hidden_by_sample, axis=0) # Second, create the evidence array by clamping the visible variables uX = jnp.zeros((n_samples * n_hidden_by_sample,) + self.X_shape + (2,)) uX = uX.at[(slice(None, None, None),) + self.slice_visible + (0,)].set( (2 * Xv_batch - 1) * utils.CLIP_INF ) # utils.CLIP_INF acts as a noisy channel between the observations and X # Also clamp the node uX = uX.at[(slice(None, None, None),) + self.leak_node_idx + (0,)].set( utils.CLIP_INF ) # Third, add Gumbel noise to the hidden variables rng, rng_input = jax.random.split(rng) # Note: we use a prior of 0.5 for the hidden variables hidden_evidence = noise_temperature * jax.random.gumbel( rng_input, shape=uX[(slice(None, None, None),) + self.slice_hidden].shape, ) uX = uX.at[(slice(None, None, None),) + self.slice_hidden].set( hidden_evidence ) # Update the log potentials log_potentials_copied = log_potentials[self.factor_log_potentials_indices] log_potential_matrix = jnp.zeros((log_potentials_copied.shape[0], 2, 2)) log_potential_matrix = log_potential_matrix.at[:, 0, 0].set(0.0) log_potential_matrix = log_potential_matrix.at[:, 0, 1].set(utils.CLIP_INF) log_potential_matrix = log_potential_matrix.at[:, 1, 0].set( -log_potentials_copied ) log_potential_matrix = log_potential_matrix.at[:, 1, 1].set( utils.log1mexp(log_potentials_copied) ) # Useful function for jax.vmap def init_bp_arrays(uX, log_potential_matrix): bp_arrays = self.bp.init( evidence_updates={self.X: uX}, log_potentials_updates={ self.noisy_factor_group: log_potential_matrix }, ) return bp_arrays # Run max-product and get the beliefs bp_arrays = jax.vmap(init_bp_arrays, in_axes=(0, None), out_axes=0)( uX, log_potential_matrix ) assert self.config.backend == "bp" bp_arrays = jax.vmap( functools.partial( self.bp.run, num_iters=self.config.bp.num_iters, damping=self.config.bp.damping, temperature=self.config.bp.temperature, ), in_axes=0, out_axes=0, )(bp_arrays) beliefs = jax.vmap(self.bp.get_beliefs, in_axes=0, out_axes=0)(bp_arrays) map_states = infer.decode_map_states(beliefs) X_samples = map_states[self.X] # Clamp the visible variables and leak node X_samples_clamped = X_samples.at[ (slice(None, None, None),) + self.slice_visible ].set(Xv_batch) X_samples_clamped = X_samples_clamped.at[ (slice(None, None, None),) + self.leak_node_idx ].set(1.0) return X_samples_clamped, rng @functools.partial(jax.jit, static_argnames="self") def log_joint_lik(self, X_samples, log_potentials): """Compute the expectation under the posterior of the log joint likelihood.""" log_potentials_copied = log_potentials[self.factor_log_potentials_indices] def log_joint_lik_sample(X_sample): """Joint likelihood of the hidden and the visible.""" # Compute x_k * w_{k -> i} X_sample_parents = X_sample[self.factor_parents_indices] XW = X_sample_parents * log_potentials_copied # Sum for each factor sum_factor_XW = ( jnp.zeros(shape=self.X_shape).at[self.factor_children_indices].add(XW) ) # Clipping to avoid nan log_p_factors = -sum_factor_XW * (1 - X_sample) + X_sample * ( utils.log1mexp(sum_factor_XW) ) # X_mask removes the leak node, which is never the children of a factor log_p_factors *= self.X_mask log_joint_lik = log_p_factors.sum() return log_joint_lik log_joint_lik = jax.vmap(log_joint_lik_sample, in_axes=0)(X_samples) log_joint_lik = log_joint_lik.sum() avg_log_joint_lik = log_joint_lik / X_samples.shape[0] return avg_log_joint_lik, log_joint_lik @functools.partial(jax.jit, static_argnames=("self", "n_hidden_by_sample")) def compute_ELBO_from_samples( self, X_samples, log_potentials, n_hidden_by_sample ): """Compute the ELBO given the posteriors samples of a batch. Note: if we use multiple samples, we add the entropy of the posterior here, and observe that its gradient vanishes. """ if n_hidden_by_sample == 1: return self.log_joint_lik(X_samples, log_potentials) def compute_ELBO_from_samples_same_Xv(X_samples_same_Xv): """Compute the ELBO given multiple samples for the same posterior.""" unique_mask, _, counts = utils.get_unique_masks_locations_counts( X_samples_same_Xv ) probas = counts / jnp.sum(counts) probas = jnp.clip(probas, self.config.min_clip, None) entropy = -jnp.sum(unique_mask * probas * jnp.log(probas)) avg_log_joint_lik, _ = self.log_joint_lik( X_samples_same_Xv, log_potentials ) return avg_log_joint_lik + entropy # Group the posterior samples with same visible observation X_samples_reshaped = X_samples.reshape( (-1, n_hidden_by_sample) + X_samples.shape[1:] ) # Compute the Elbo for each observation elbo_samples = jax.vmap( compute_ELBO_from_samples_same_Xv, in_axes=0, out_axes=0 )(X_samples_reshaped) # Sum the Elbos sum_elbo = elbo_samples.sum() return sum_elbo / elbo_samples.shape[0], sum_elbo @functools.partial(jax.jit, static_argnames="self") def compute_gradients(self, X_samples, log_potentials): """Compute the gradients of the Elbo in closed-form.""" log_potentials_copied = log_potentials[self.factor_log_potentials_indices] def compute_gradients_sample(X_sample): """Compute the gradient for a sample.""" # Compute x_k * w_{k -> i} X_sample_parents = X_sample[self.factor_parents_indices] XW = X_sample_parents * log_potentials_copied # Sum for each factor sum_factor_XW = ( jnp.zeros(shape=self.X_shape).at[self.factor_children_indices].add(XW) ) # Children for each factor X_sample_children = X_sample[self.factor_children_indices] sum_factor_XW_children = sum_factor_XW[self.factor_children_indices] grad_sample_flat = ( X_sample_children * X_sample_parents * g(sum_factor_XW_children) - X_sample_parents ) # Unflatten the gradients grad_sample = ( jnp.zeros(shape=self.log_potentials_shape) .at[self.factor_log_potentials_indices] .add(grad_sample_flat) ) return grad_sample grad_samples = jax.vmap(compute_gradients_sample, in_axes=0)(X_samples) return jnp.mean(grad_samples, axis=0) def update_log_potentials( self, Xv_batch, log_potentials, opt_state, noise_temperature, n_hidden_by_sample, ): """Update the log potentials.""" # Sample from the posterior X_samples, self.rng = self.posterior_sample( Xv_batch, self.rng, log_potentials, noise_temperature, n_hidden_by_sample, ) # Get the loss and the gradients avg_elbo, _ = self.compute_ELBO_from_samples( X_samples, log_potentials, n_hidden_by_sample ) grad_log_potentials = self.compute_gradients(X_samples, log_potentials) chex.assert_equal_shape([log_potentials, grad_log_potentials]) # Update the log potentials updates, new_opt_state = self.opt.update(-grad_log_potentials, opt_state) new_log_potentials = optax.apply_updates(log_potentials, updates) new_log_potentials = jnp.clip( new_log_potentials, self.config.min_clip, None, ) # Do not update the fixed potentials if self.dont_update_potentials_mask is not None: new_log_potentials += self.dont_update_potentials_mask * ( log_potentials - new_log_potentials ) return new_log_potentials, new_opt_state, avg_elbo def eval_ELBOs_dataset( self, Xv, log_potentials, noise_temperature, n_hidden_by_sample, test_batch_size, ): """Compute the Elbo on an entire dataset.""" n_batches = (len(Xv) + test_batch_size - 1) // test_batch_size all_sum_elbo_samples = 0.0 all_X_samples = [] for batch_idx in range(n_batches): Xv_batch = Xv[ batch_idx * test_batch_size : (batch_idx + 1) * test_batch_size ] Xv_batch_dense = self.densify(Xv_batch) # Get the mode or a sample from the posterior X_samples, self.rng = self.posterior_sample( Xv_batch_dense, self.rng, log_potentials, noise_temperature, n_hidden_by_sample, ) all_X_samples.append(X_samples) # Compute the Elbo _, sum_elbo_samples = self.compute_ELBO_from_samples( X_samples, log_potentials, n_hidden_by_sample ) all_sum_elbo_samples += sum_elbo_samples X_samples = np.concatenate(all_X_samples, axis=0) return all_sum_elbo_samples / len(Xv), X_samples def train(self): """Train the noisy OR model.""" log_potentials = utils.init_log_potentials( self.log_potentials_shape, self.config.learning.proba_init, self.leak_potentials_mask, self.config.learning.leak_proba_init, self.dont_update_potentials_mask, self.config.learning.leak_proba_init_not_updated, self.config.learning.noise_temperature_init, self.config.min_clip, ) opt_state = self.opt.init(log_potentials) current_step = 0 train_noise_temperature = self.config.learning.noise_temperature train_n_hidden_by_sample = self.config.learning.n_hidden_by_sample test_noise_temperature = self.config.inference.noise_temperature test_n_hidden_by_sample = self.config.inference.n_hidden_by_sample test_batch_size = self.config.inference.test_batch_size n_steps = self.config.learning.num_iters train_batch_size = self.config.learning.train_batch_size n_batches = ( len(self.Xv_gt_train) + train_batch_size - 1 ) // train_batch_size all_update_times = [] all_train_avg_elbos = [] all_eval_times = [] all_test_avg_elbos_mode = [] # Training iterations print(f"Training for {n_steps} steps") pbar = tqdm.tqdm(range(n_steps + 1)) display = {} for it in pbar: batch_idx = it % n_batches Xv_batch = self.Xv_gt_train[ batch_idx * train_batch_size : (batch_idx + 1) * train_batch_size ] # Gradient step start_update = time.time() Xv_batch_dense = self.densify(Xv_batch) ( log_potentials, opt_state, train_avg_elbo, ) = self.update_log_potentials( Xv_batch_dense, log_potentials, opt_state, train_noise_temperature, train_n_hidden_by_sample, ) train_avg_elbo = float(jax.device_get(train_avg_elbo)) display["train_elbo"] = round(train_avg_elbo, 4) # First iteration compiles if current_step > 0: update_time = time.time() - start_update all_update_times.append(update_time) all_train_avg_elbos.append(train_avg_elbo) # Evaluation step if ( current_step % self.config.learning.eval_every == 0 or current_step == n_steps ): start_eval = time.time() test_avg_elbo_mode, test_X_samples = self.eval_ELBOs_dataset( self.Xv_gt_test[: self.config.inference.test_size_eval_and_store], log_potentials, test_noise_temperature, test_n_hidden_by_sample, test_batch_size, ) test_avg_elbo_mode = float(jax.device_get(test_avg_elbo_mode)) display["test_elbo"] = round(test_avg_elbo_mode, 4) eval_time = time.time() - start_eval if current_step > 0: all_eval_times.append(eval_time) all_test_avg_elbos_mode.append(test_avg_elbo_mode) # When we store_inference_results, evaluate on the training set in the end if ( current_step == n_steps and self.config.inference.store_inference_results ): last_train_avg_elbo_mode, last_train_X_samples = ( self.eval_ELBOs_dataset( self.Xv_gt_train[ : self.config.inference.test_size_eval_and_store ], log_potentials, test_noise_temperature, test_n_hidden_by_sample, test_batch_size, ) ) last_train_avg_elbo_mode = float( jax.device_get(last_train_avg_elbo_mode) ) pbar.set_postfix(display) current_step += 1 print("Training finished") results = { "config": self.config, "log_potentials": log_potentials, "all_train_avg_elbos": all_train_avg_elbos, "all_test_avg_elbos_mode": all_test_avg_elbos_mode, "all_update_times": all_update_times, "all_eval_times": all_eval_times, "test_X_samples": test_X_samples, } return results def g(x): """Stable implementation of g(x) = 1 / (1 - exp(-x)).""" stable_g = jnp.where( x >= 0, 1.0 / (1.0 - jnp.exp(-x)), jnp.exp(x) / (jnp.exp(x) - 1.0) ) return jnp.clip(stable_g, utils.CLIP_INF, None)
max_product_noisy_or-main
mp_noisy_or/noisy_or_bp.py
# Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils functions for computing the results.""" import jax from jax.lax import dynamic_slice from jax.lax import pad import jax.numpy as jnp import matplotlib.pyplot as plt import numpy as np import scipy def plot_images( images, display=True, nr=None, images_min=None, images_max=None, colorbar=False, ): """Useful function for visualizing several images.""" n_images, H, W = images.shape if images_min is not None: images_min = min(images_min, images.min()) else: images_min = images.min() images = images - images_min if images_max is not None: images_max = max(images_max, images.max()) else: images_max = images.max() images /= images_max + 1e-10 if nr is None: nr = nc = np.ceil(np.sqrt(n_images)).astype(int) else: nc = (n_images + nr - 1) // nr big_image = np.ones(((H + 1) * nr + 1, (W + 1) * nc + 1, 3)) big_image[..., :3] = 0 big_image[:: H + 1] = [0.5, 0, 0.5] im = 0 for r in range(nr): for c in range(nc): if im < n_images: big_image[ (H + 1) * r + 1 : (H + 1) * r + 1 + H, (W + 1) * c + 1 : (W + 1) * c + 1 + W, :, ] = images[im, :, :, None] im += 1 if display: plt.figure(figsize=(10, 10)) plt.imshow(big_image, interpolation="none") plt.axis("off") if colorbar: plt.colorbar() return big_image ################################# #### Binary deconvolution ####### ################################# def BMF_metrics( Xv_gt, X_samples, log_potentials, config, log_potentials_threshold ): """Process the BMF outputs and compute the reconstruction error.""" # Threshold the log potentials data_config = config.data.args V_bp = log_potentials[: data_config.rank, : data_config.n_cols] V_bp = (V_bp >= log_potentials_threshold).astype(float) # Extract the inferred hidden U_bp = X_samples[:, 0, : data_config.rank] # print("Avg hidden activations", U_bp.mean()) return BMF_reconstruction(Xv_gt, U_bp, V_bp) def BMF_reconstruction(Xv_gt, U_bp, V_bp): """Reconstruction error for BMF.""" # Reconstruct X X_bp = np.array(U_bp.dot(V_bp)) X_bp[X_bp >= 1] = 1 rec_ratio_X = np.abs(X_bp - Xv_gt).sum() / Xv_gt.size return rec_ratio_X ################################# #### OVERPARAMETRIZATION ######## ################################# # Params from the paper PRIOR_THRESHOLD = 0.02 MATCHING_THRESHOLD = 1 def count_gt_recovered(Xh_gt, log_potentials_BP): """Count the nujber of GT parameters recovered.""" n_latent = log_potentials_BP.shape[0] - 1 # print("prior", log_potentials_BP[-1, -1], log_potentials_BP[-1, :n_latent]) priors_BP = 1 - np.exp(-log_potentials_BP)[-1, :n_latent] keep = priors_BP > PRIOR_THRESHOLD log_potentials_BP_filtered = log_potentials_BP[:n_latent, :-1][keep] n_latent_filtered = log_potentials_BP_filtered.shape[0] n_gt = Xh_gt.shape[0] log_potentials_gt = -np.log(Xh_gt) matching_cost = np.zeros((n_gt, n_latent_filtered)) for idx_latent in range(n_latent_filtered): for idx_gt in range(n_gt): matching_cost[idx_gt, idx_latent] = np.max( np.abs( log_potentials_BP_filtered[idx_latent] - log_potentials_gt[idx_gt] ) ) rows_indices, cols_indices = scipy.optimize.linear_sum_assignment( matching_cost ) n_matched = sum( matching_cost[rows_indices, cols_indices] <= MATCHING_THRESHOLD ) return n_matched ################################# #### BLIND DECONVOLUTION ######## ################################# @jax.jit def or_layer_jax(S, W): """Jax convolution of S and W for 2D BD.""" _, n_feat, s_height, s_width = S.shape _, n_feat, feat_height, feat_width = W.shape im_height, im_width = s_height + feat_height - 1, s_width + feat_width - 1 # Revert the features to have the proper orientations Wrev = W[:, :, ::-1, ::-1] # Pad the feature locations Spad = pad( S, 0.0, ( (0, 0, 0), (0, 0, 0), (feat_height - 1, feat_height - 1, 0), (feat_width - 1, feat_width - 1, 0), ), ) # Convolve Spad and W def compute_sample(Spad1): def compute_pixel(r, c): X1 = ( 1 - dynamic_slice(Spad1, (0, r, c), (n_feat, feat_height, feat_width)) * Wrev ).prod((1, 2, 3)) return 1 - X1 compute_cols = jax.vmap(compute_pixel, in_axes=(None, 0), out_axes=1) compute_rows_cols = jax.vmap(compute_cols, in_axes=(0, None), out_axes=1) return compute_rows_cols(jnp.arange(im_height), jnp.arange(im_width)) return jax.vmap(compute_sample, in_axes=0, out_axes=0)(Spad) def BD_reconstruction(Xv_gt_test, test_X_samples, log_potentials_thre): """Reconstruction error for BD.""" if log_potentials_thre.ndim == 3: _, im_height, im_width = Xv_gt_test.shape n_feat, feat_height, feat_width = log_potentials_thre.shape s_height = im_height - feat_height + 1 s_width = im_width - feat_width + 1 feats_activations = test_X_samples[:, :n_feat, :s_height, :s_width].astype( float ) rec_X_test = or_layer_jax(feats_activations, log_potentials_thre[None])[ :, 0 ] elif log_potentials_thre.ndim == 4: _, _, im_height, im_width = Xv_gt_test.shape _, n_feat, feat_height, feat_width = log_potentials_thre.shape s_height = im_height - feat_height + 1 s_width = im_width - feat_width + 1 feats_activations = test_X_samples[:, :n_feat, :s_height, :s_width].astype( float ) rec_X_test = or_layer_jax(feats_activations, log_potentials_thre) rec_ratio = np.abs(Xv_gt_test != rec_X_test).sum() / rec_X_test.size return feats_activations, rec_X_test, rec_ratio def iou(a, b): return np.logical_and(a, b).sum() / np.logical_or(a, b).sum() def features_iou(W_gt, log_potentials_thre): """Compute the features IOU.""" assert log_potentials_thre.shape == (5, 6, 6) n_gt = W_gt.shape[0] n_log_potentials = log_potentials_thre.shape[0] matching_costs = np.zeros((n_gt, n_log_potentials)) for idx_latent in range(n_log_potentials): for idx_gt in range(n_gt): # List all the options matching_cost_options = [] for offset_r in range(2): for offset_c in range(2): matching_cost_options.append( iou( log_potentials_thre[ idx_latent, offset_r : offset_r + 5, offset_c : offset_c + 5, ], W_gt[idx_gt], ) ) matching_costs[idx_gt, idx_latent] = np.max(matching_cost_options) # Hungarian matching rows_indices, cols_indices = scipy.optimize.linear_sum_assignment( -matching_costs ) # print(matching_costs[rows_indices, cols_indices]) return np.mean(matching_costs[rows_indices, cols_indices]) def visualize_cuts(feats): """Visualize cuts.""" assert feats.ndim == 4 n_samples, _, img_width, img_height = feats.shape vup, vdown, hup, hdown = feats[:, 0], feats[:, 1], feats[:, 2], feats[:, 3] images = np.zeros((n_samples, 2 * img_width, 2 * img_height), float) # image[1::2, ::2] = 0.5 + np.where(vup > vdown, vup * 0.5, vdown * -0.5) # image[::2, 1::2] = 0.5 + np.where(hup > hdown, hup * 0.5, hdown * -0.5) images[:, 1::2, ::2] += vup + 2 * vdown images[:, ::2, 1::2] -= hup + 2 * hdown return images
max_product_noisy_or-main
mp_noisy_or/results_utils.py