python_code
stringlengths
0
780k
repo_name
stringlengths
7
38
file_path
stringlengths
5
103
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for evaluating shapes.""" from unittest import mock from haiku._src import base from haiku._src import basic from haiku._src import stateful import jax import jax.numpy as jnp def zeros_creator(next_creator, shape, dtype, init, context): del context init = jnp.zeros return next_creator(shape, dtype, init) def noop_dropout(rng, rate, x, broadcast_dims=()): del rng, rate, broadcast_dims return x def fast_eval_shape(fun, *args, **kwargs): """Equivalent to ``eval_shape`` in JAX. This utility is equivalent to ``eval_shape`` in JAX except that it avoids running Haiku functions whose shapes are trivially known. This can avoid some Python overheads in JAX which can accumulate for very large models. Optimizations: * All parameter/state initialisers replaced with zeros. * ``hk.dropout`` replaced with identity. * ``jax.random.fold_in`` replaced with identity. Args: fun: The function to trace. *args: Positional arguments to ``fun``. **kwargs: Keyword arguments to ``fun``. Returns: The shape produced by ``fun`` for the given args/kwargs. """ with base.custom_creator_unsafe(zeros_creator), \ mock.patch.object(basic, 'dropout_impl', noop_dropout), \ mock.patch.object(jax.random, 'fold_in', lambda key, data: key): if base.inside_transform(): return stateful.eval_shape(fun, *args, **kwargs) else: return jax.eval_shape(fun, *args, **kwargs)
dm-haiku-main
haiku/_src/eval_shape.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku._src.pool.""" import functools from absl.testing import absltest from haiku._src import pool from haiku._src import test_utils import jax import jax.numpy as jnp import numpy as np class MaxPoolTest(absltest.TestCase): def test_max_pool_basic(self): x = np.arange(6, dtype=jnp.float32).reshape([6, 1]) x = np.broadcast_to(x, (2, 10, 6, 2)) window_shape = [1, 2, 2, 1] result = pool.max_pool( x, window_shape=window_shape, strides=window_shape, padding="VALID") ground_truth = np.asarray([1., 3., 5.]).reshape([3, 1]) ground_truth = np.broadcast_to(ground_truth, (2, 5, 3, 2)) np.testing.assert_equal(result, ground_truth) def test_max_pool_unbatched(self): x = np.arange(6, dtype=jnp.float32).reshape([6, 1]) leading_dims = (2, 3) x = np.broadcast_to(x, leading_dims + (10, 6, 2)) window_shape = [2, 2, 1] result = pool.max_pool( x, window_shape=window_shape, strides=window_shape, padding="VALID") ground_truth = np.asarray([1., 3., 5.]).reshape([3, 1]) ground_truth = np.broadcast_to(ground_truth, leading_dims + (5, 3, 2)) np.testing.assert_equal(result, ground_truth) def test_max_pool_unbatched_vmapped(self): x = np.arange(6, dtype=jnp.float32).reshape([6, 1]) leading_dims = (2, 3) x = np.broadcast_to(x, leading_dims + (10, 6, 2)) window_shape = [2, 2, 1] max_pool_fn = functools.partial( pool.max_pool, window_shape=window_shape, strides=window_shape, padding="VALID") result = jax.vmap(jax.vmap(max_pool_fn))(x) ground_truth = np.asarray([1., 3., 5.]).reshape([3, 1]) ground_truth = np.broadcast_to(ground_truth, leading_dims + (5, 3, 2)) np.testing.assert_equal(result, ground_truth) def test_max_pool_batch_vs_vmap(self): key = jax.random.PRNGKey(42) batch = jax.random.normal(key, [8, 28, 28, 3]) p = functools.partial(pool.max_pool, window_shape=(4, 4, 1), strides=(2, 2, 1), padding="VALID") np.testing.assert_allclose(p(batch), jax.vmap(p)(batch)) def test_max_pool_overlapping_windows(self): x = np.arange(12, dtype=jnp.float32).reshape([6, 2]) x = np.broadcast_to(x, (2, 10, 6, 2)) window_shape = [1, 5, 3, 2] strides = [1, 1, 3, 2] result = pool.max_pool( x, window_shape=window_shape, strides=strides, padding="VALID") ground_truth = np.asarray([5., 11.,]).reshape([2, 1]) ground_truth = np.broadcast_to(ground_truth, (2, 6, 2, 1)) np.testing.assert_equal(result, ground_truth) def test_max_pool_same_padding(self): x = np.arange(6, dtype=jnp.float32) x = np.broadcast_to(x, (2, 3, 6)) window_shape = [1, 3, 3] strides = [1, 1, 1] result = pool.max_pool( x, window_shape=window_shape, strides=strides, padding="SAME") np.testing.assert_equal(result.shape, x.shape) @test_utils.transform_and_run def test_max_pool_same_padding_class(self): x = np.arange(6, dtype=jnp.float32) x = np.broadcast_to(x, (2, 3, 6)) window_shape = [1, 3, 3] strides = [1, 1, 1] max_pool = pool.MaxPool( window_shape=window_shape, strides=strides, padding="SAME") result = max_pool(x) np.testing.assert_equal(result.shape, x.shape) def test_max_pool_basic_with_inferred_shapes(self): x = np.arange(6, dtype=jnp.float32).reshape([6, 1]) x = np.broadcast_to(x, (2, 10, 6, 2)) result = pool.max_pool(x, 2, 2, padding="VALID") ground_truth = np.asarray([1., 3., 5.]).reshape([3, 1]) ground_truth = np.broadcast_to(ground_truth, (2, 5, 3, 2)) np.testing.assert_equal(result, ground_truth) def test_max_pool_same_padding_with_inferred_shapes(self): x = np.arange(6, dtype=jnp.float32) x = np.broadcast_to(x, (2, 3, 6)) result = pool.max_pool(x, 3, 1, padding="SAME", channel_axis=None) np.testing.assert_equal(result.shape, x.shape) @test_utils.transform_and_run def test_max_pool_same_padding_class_with_inferred_shapes(self): x = np.arange(6, dtype=jnp.float32) x = np.broadcast_to(x, (2, 3, 6)) max_pool = pool.MaxPool(3, 1, padding="SAME", channel_axis=None) result = max_pool(x) np.testing.assert_equal(result.shape, x.shape) class AvgPoolTest(absltest.TestCase): def test_avg_pool_basic(self): x = np.arange(6, dtype=jnp.float32).reshape([6, 1]) x = np.broadcast_to(x, (2, 10, 6, 2)) window_shape = [1, 2, 2, 1] result = pool.avg_pool( x, window_shape=window_shape, strides=window_shape, padding="VALID") ground_truth = np.asarray([0.5, 2.5, 4.5]).reshape([3, 1]) ground_truth = np.broadcast_to(ground_truth, (2, 5, 3, 2)) np.testing.assert_equal(result, ground_truth) def test_avg_pool_unbatched(self): x = np.arange(6, dtype=jnp.float32).reshape([6, 1]) leading_dims = (2, 3) x = np.broadcast_to(x, leading_dims + (10, 6, 2)) window_shape = [2, 2, 1] result = pool.avg_pool( x, window_shape=window_shape, strides=window_shape, padding="VALID") ground_truth = np.asarray([0.5, 2.5, 4.5]).reshape([3, 1]) ground_truth = np.broadcast_to(ground_truth, leading_dims + (5, 3, 2)) np.testing.assert_equal(result, ground_truth) def test_avg_pool_unbatched_vmapped(self): x = np.arange(6, dtype=jnp.float32).reshape([6, 1]) leading_dims = (2, 3) x = np.broadcast_to(x, leading_dims + (10, 6, 2)) window_shape = [2, 2, 1] avg_pool_fn = functools.partial( pool.avg_pool, window_shape=window_shape, strides=window_shape, padding="VALID") result = jax.vmap(jax.vmap(avg_pool_fn))(x) ground_truth = np.asarray([0.5, 2.5, 4.5]).reshape([3, 1]) ground_truth = np.broadcast_to(ground_truth, leading_dims + (5, 3, 2)) np.testing.assert_equal(result, ground_truth) def test_avg_pool_batch_vs_vmap(self): key = jax.random.PRNGKey(42) batch = jax.random.normal(key, [8, 28, 28, 3]) p = functools.partial(pool.avg_pool, window_shape=(4, 4, 1), strides=(2, 2, 1), padding="VALID") np.testing.assert_allclose(p(batch), jax.vmap(p)(batch)) def test_avg_pool_overlapping_windows(self): x = np.arange(12, dtype=jnp.float32).reshape([6, 2]) x = np.broadcast_to(x, (2, 10, 6, 2)) window_shape = [1, 5, 3, 2] strides = [1, 1, 3, 2] result = pool.avg_pool( x, window_shape=window_shape, strides=strides, padding="VALID") ground_truth = np.asarray([ 2.5, 8.5, ]).reshape([2, 1]) ground_truth = np.broadcast_to(ground_truth, (2, 6, 2, 1)) np.testing.assert_almost_equal(result, ground_truth, decimal=5) def test_avg_pool_same_padding(self): x = np.ones((2, 3, 6)) window_shape = [1, 3, 3] strides = [1, 1, 1] result = pool.avg_pool( x, window_shape=window_shape, strides=strides, padding="SAME") np.testing.assert_equal(result.shape, x.shape) # Since x is constant, its avg value should be itself. np.testing.assert_equal(result, x) @test_utils.transform_and_run def test_avg_pool_same_padding_class(self): x = np.ones((2, 3, 6)) window_shape = [1, 3, 3] strides = [1, 1, 1] avg_pool = pool.AvgPool( window_shape=window_shape, strides=strides, padding="SAME") result = avg_pool(x) np.testing.assert_equal(result.shape, x.shape) # Since x is constant, its avg value should be itself. np.testing.assert_equal(result, x) def test_avg_pool_basic_with_inferred_shapes(self): x = np.arange(6, dtype=jnp.float32).reshape([6, 1]) x = np.broadcast_to(x, (2, 10, 6, 2)) result = pool.avg_pool(x, 2, 2, padding="VALID") ground_truth = np.asarray([0.5, 2.5, 4.5]).reshape([3, 1]) ground_truth = np.broadcast_to(ground_truth, (2, 5, 3, 2)) np.testing.assert_equal(result, ground_truth) def test_avg_pool_same_padding_with_inferred_shapes(self): x = np.ones((2, 3, 6)) result = pool.avg_pool(x, 3, 1, padding="SAME", channel_axis=None) np.testing.assert_equal(result.shape, x.shape) # Since x is constant, its avg value should be itself. np.testing.assert_equal(result, x) @test_utils.transform_and_run def test_avg_pool_same_padding_class_with_inferred_shapes(self): x = np.ones((2, 3, 6)) result = pool.AvgPool(3, 1, padding="SAME", channel_axis=None)(x) np.testing.assert_equal(result.shape, x.shape) # Since x is constant, its avg value should be itself. np.testing.assert_equal(result, x) if __name__ == "__main__": absltest.main()
dm-haiku-main
haiku/_src/pool_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests Haiku modules in half precision.""" from absl.testing import absltest from haiku._src import test_utils from haiku._src.integration import common from haiku._src.integration import descriptors import jax.numpy as jnp ModuleFn = descriptors.ModuleFn class Bfloat16Test(common.DTypeTestCase): @test_utils.combined_named_parameters(descriptors.ALL_MODULES) def test_float16(self, module_fn: descriptors.ModuleFn, shape, dtype): self.assert_dtype(jnp.float16, module_fn, shape, dtype) @test_utils.combined_named_parameters(descriptors.ALL_MODULES) def test_bfloat16(self, module_fn: descriptors.ModuleFn, shape, dtype): self.assert_dtype(jnp.bfloat16, module_fn, shape, dtype) if __name__ == '__main__': absltest.main()
dm-haiku-main
haiku/_src/integration/half_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku transforms.""" import functools from absl.testing import absltest from absl.testing import parameterized import haiku as hk from haiku._src import stateful from haiku._src import test_utils from haiku._src.integration import descriptors import jax import jax.numpy as jnp import numpy as np ModuleFn = descriptors.ModuleFn DEFAULT_ATOL = 1e-5 CUSTOM_ATOL = {hk.nets.ResNet: 0.05, hk.nets.MobileNetV1: 0.05, hk.BatchNorm: 1e-4, hk.SeparableDepthwiseConv2D: 3e-3} class HaikuTransformsTest(parameterized.TestCase): @test_utils.combined_named_parameters(descriptors.ALL_MODULES, test_utils.named_bools('init')) def test_hk_jit(self, module_fn: ModuleFn, shape, dtype, init): rng = jax.random.PRNGKey(42) if jnp.issubdtype(dtype, jnp.integer): x = jax.random.randint(rng, shape, 0, np.prod(shape), dtype) else: x = jax.random.uniform(rng, shape, dtype) def g(x, jit=False): mod = module_fn() if jit: mod = stateful.jit(mod) return mod(x) f = hk.transform_with_state(g) assert_allclose = functools.partial(np.testing.assert_allclose, atol=1e-4) # NOTE: We shard init/apply tests since some modules are expensive to jit # (e.g. ResNet50 takes ~60s to compile and we compile it twice per test). if init: jax.tree_util.tree_map( assert_allclose, jax.jit(f.init)(rng, x), f.init(rng, x, jit=True)) else: params, state = f.init(rng, x) jax.tree_util.tree_map( assert_allclose, jax.jit(f.apply)(params, state, rng, x), f.apply(params, state, rng, x, jit=True)) @test_utils.combined_named_parameters(descriptors.ALL_MODULES, test_utils.named_bools('init')) def test_hk_scan(self, module_fn: descriptors.ModuleFn, shape, dtype, init): rng = jax.random.PRNGKey(42) if jnp.issubdtype(dtype, jnp.integer): x = jax.random.randint(rng, shape, 0, np.prod(shape), dtype) else: x = jax.random.uniform(rng, shape, dtype) def f(x): mod = module_fn() return mod(x) def u_f(xs): mod = module_fn() def s(carry, x): y = mod(x) return carry, y _, ys = hk.scan(s, (), xs) return ys u_f = hk.transform_with_state(u_f) f = hk.transform_with_state(f) assert_allclose = functools.partial(np.testing.assert_allclose, atol=1e-4) xs = jnp.broadcast_to(x, (8,) + x.shape) params, state = f.init(rng, x) if init: u_params, u_state = u_f.init(rng, xs) jax.tree_util.tree_map(assert_allclose, u_params, params) jax.tree_util.tree_map(assert_allclose, u_state, state) return def fun(state, x): y, state = f.apply(params, state, rng, x) return state, y s_state, s_ys = jax.lax.scan(fun, state, xs) u_ys, u_state = u_f.apply(params, state, rng, xs) jax.tree_util.tree_map(assert_allclose, u_ys, s_ys) jax.tree_util.tree_map(assert_allclose, u_state, s_state) @test_utils.combined_named_parameters( # TODO(tomhennigan) Enable once grad for _scan_transpose implemented. set(descriptors.ALL_MODULES) - set(descriptors.RECURRENT_MODULES)) def test_hk_remat(self, module_fn: ModuleFn, shape, dtype): rng = jax.random.PRNGKey(42) if jnp.issubdtype(dtype, jnp.integer): x = jax.random.randint(rng, shape, 0, np.prod(shape), dtype) else: x = jax.random.uniform(rng, shape, dtype) def g(x, remat=False): mod = module_fn() if remat: mod = hk.remat(mod) out = mod(x) if isinstance(out, dict): out = out['loss'] return jnp.mean(out) f = hk.transform_with_state(g) assert_allclose = functools.partial(np.testing.assert_allclose, atol=1e-5) grad_jax_remat = jax.grad(jax.remat(f.apply), has_aux=True) grad_hk_remat = jax.grad(functools.partial(f.apply, remat=True), has_aux=True) params, state = f.init(rng, x) jax.tree_util.tree_map( assert_allclose, grad_jax_remat(params, state, rng, x), grad_hk_remat(params, state, rng, x)) @test_utils.combined_named_parameters(descriptors.ALL_MODULES) def test_optimize_rng_use_under_jit(self, module_fn: ModuleFn, shape, dtype): rng = jax.random.PRNGKey(42) if jnp.issubdtype(dtype, jnp.integer): x = jax.random.randint(rng, shape, 0, np.prod(shape), dtype) else: x = jax.random.uniform(rng, shape, dtype) def g(x): return module_fn()(x) f = hk.transform_with_state(hk.experimental.optimize_rng_use(g)) module_type = descriptors.module_type(module_fn) atol = CUSTOM_ATOL.get(module_type, DEFAULT_ATOL) assert_allclose = functools.partial(np.testing.assert_allclose, atol=atol) params, state = jax.jit(f.init)(rng, x) jax.tree_util.tree_map(assert_allclose, (params, state), f.init(rng, x)) if module_type in (hk.nets.VectorQuantizer, hk.nets.VectorQuantizerEMA): # For stochastic modules just test apply runs. jax.device_get(jax.jit(f.apply)(params, state, rng, x)) else: jax.tree_util.tree_map( assert_allclose, jax.jit(f.apply)(params, state, rng, x), f.apply(params, state, rng, x)) @test_utils.combined_named_parameters(descriptors.OPTIONAL_BATCH_MODULES) def test_vmap(self, module_fn: ModuleFn, shape, dtype): rng = jax.random.PRNGKey(42) if jnp.issubdtype(dtype, jnp.integer): x = jax.random.randint(rng, shape, 0, np.prod(shape), dtype) else: x = jax.random.uniform(rng, shape, dtype) # Expand our input since we will map over it. x = jnp.broadcast_to(x, (2,) + x.shape) f = hk.transform_with_state(lambda x: module_fn()(x)) # pylint: disable=unnecessary-lambda f_mapped = hk.transform_with_state( lambda x: hk.vmap(lambda x: module_fn()(x), split_rng=False)(x)) # pylint: disable=unnecessary-lambda params, state = f_mapped.init(rng, x) # JAX vmap with explicitly unmapped params/state/rng. This should be # equivalent to `f_mapped.apply(..)` (since by default hk.vmap does not map # params/state/rng). v_apply = jax.vmap(f.apply, in_axes=(None, None, None, 0), out_axes=(0, None)) module_type = descriptors.module_type(module_fn) atol = CUSTOM_ATOL.get(module_type, DEFAULT_ATOL) assert_allclose = functools.partial(np.testing.assert_allclose, atol=atol) jax.tree_util.tree_map( assert_allclose, f_mapped.apply(params, state, rng, x), v_apply(params, state, rng, x)) @test_utils.combined_named_parameters(descriptors.ALL_MODULES) def test_fast_eval_shape(self, module_fn: ModuleFn, shape, dtype): rng = jax.random.PRNGKey(42) if jnp.issubdtype(dtype, jnp.integer): x = jax.random.randint(rng, shape, 0, np.prod(shape), dtype) else: x = jax.random.uniform(rng, shape, dtype) def g(x): return module_fn()(x) f = hk.transform_with_state(g) init_jax = jax.eval_shape(f.init, rng, x) init_hk = hk.experimental.fast_eval_shape(f.init, rng, x) self.assertEqual(init_jax, init_hk) apply_jax = jax.eval_shape(f.apply, *init_jax, rng, x) apply_hk = hk.experimental.fast_eval_shape(f.apply, *init_hk, rng, x) self.assertEqual(apply_jax, apply_hk) @test_utils.combined_named_parameters(descriptors.ALL_MODULES) @test_utils.transform_and_run(run_apply=False) def test_fast_eval_shape_inside_transform(self, module_fn: ModuleFn, shape, dtype): rng = jax.random.PRNGKey(42) if jnp.issubdtype(dtype, jnp.integer): x = jax.random.randint(rng, shape, 0, np.prod(shape), dtype) else: x = jax.random.uniform(rng, shape, dtype) m = module_fn() m_slow = hk.eval_shape(m, x) m_fast = hk.experimental.fast_eval_shape(m, x) self.assertEqual(m_slow, m_fast) if __name__ == '__main__': absltest.main()
dm-haiku-main
haiku/_src/integration/hk_transforms_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ensures that code samples in Haiku are accurate.""" import collections import contextlib import doctest import inspect import itertools import types import unittest from absl import logging from absl.testing import absltest from absl.testing import parameterized import chex import flax.linen as nn import haiku as hk from haiku._src import test_utils import jax import jax.numpy as jnp import jmp class DoctestTest(parameterized.TestCase): @parameterized.named_parameters(test_utils.find_internal_python_modules(hk)) def test_doctest(self, module): def run_test(): num_failed, num_attempted = doctest.testmod( module, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE, extraglobs={ "itertools": itertools, "chex": chex, "collections": collections, "contextlib": contextlib, "unittest": unittest, "hk": hk, "jnp": jnp, "jax": jax, "jmp": jmp, "nn": nn, }) tests_symbols = ", ".join(module.__test__.keys()) if num_attempted == 0: logging.info("No doctests in %s", tests_symbols) self.assertEqual(num_failed, 0, f"{num_failed} doctests failed") logging.info("%s tests passed in %s", num_attempted, tests_symbols) # `hk` et al import all dependencies from `src`, however doctest does not # test imported deps so we must manually set `__test__` such that imported # symbols are tested. # See: docs.python.org/3/library/doctest.html#which-docstrings-are-examined if not hasattr(module, "__test__") or not module.__test__: module.__test__ = {} # Many tests expect to be run as part of an `hk.transform`. We loop over all # exported symbols and run them in their own `hk.transform` so parameter and # module names don't clash. for name in module.__all__: test_names = [] value = getattr(module, name) if inspect.ismodule(value): continue # Skip type annotations in Python 3.7. if hasattr(value, "__origin__"): continue logging.info("Testing name: %r value: %r", name, value) if inspect.isclass(value) and not isinstance(value, types.GenericAlias): # Find unbound methods on classes, doctest doesn't seem to find them. test_names.append(name) module.__test__[name] = value for attr_name in dir(value): attr_value = getattr(value, attr_name) if inspect.isfunction(attr_value): test_name = name + "_" + attr_name test_names.append(test_name) module.__test__[test_name] = attr_value elif (isinstance(value, str) or inspect.isfunction(value) or inspect.ismethod(value) or inspect.isclass(value)): test_names.append(name) module.__test__[name] = value elif hasattr(value, "__doc__"): test_names.append(name) module.__test__[name] = value.__doc__ else: # This will probably fail, DocTestFinder.find: __test__ values must be # strings, functions, methods, classes, or modules test_names.append(name) module.__test__[name] = value init_fn, _ = hk.transform_with_state(run_test) rng = jax.random.PRNGKey(42) init_fn(rng) for test_name in test_names: del module.__test__[test_name] if __name__ == "__main__": absltest.main()
dm-haiku-main
haiku/_src/integration/doctest_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Haiku to dot functionality.""" from absl.testing import absltest from absl.testing import parameterized import haiku as hk from haiku._src import test_utils from haiku._src.integration import descriptors import jax import numpy as np ModuleFn = descriptors.ModuleFn class DotTest(parameterized.TestCase): @test_utils.combined_named_parameters(descriptors.ALL_MODULES) def test_abstract_to_dot(self, module_fn: ModuleFn, shape, dtype): f = hk.transform_with_state(lambda x: module_fn()(x)) # pylint: disable=unnecessary-lambda rng = jax.random.PRNGKey(42) x = np.ones(shape, dtype) params, state = jax.eval_shape(f.init, rng, x) self.assertIsNotNone( hk.experimental.abstract_to_dot(f.apply)(params, state, rng, x)) if __name__ == '__main__': absltest.main()
dm-haiku-main
haiku/_src/integration/to_dot_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Haiku shim imports.""" import importlib import types from absl.testing import absltest from absl.testing import parameterized import haiku as hk def named_internal_modules(): for module_name in ("haiku._src", "haiku._src.nets"): for name in dir(importlib.import_module(module_name)): if not name.startswith("_"): submodule_name = module_name + "." + name yield submodule_name, importlib.import_module(submodule_name) class ShimHkTest(parameterized.TestCase): @parameterized.named_parameters(*named_internal_modules()) def test_hk_shim(self, module): if not hasattr(module, "hk"): self.skipTest(f"No `hk` in {module}") shim_hk = module.hk for name in dir(shim_hk): if name.startswith("_"): continue shim_value = getattr(shim_hk, name) if not hasattr(hk, name): raise ValueError(f"`hk.{name}` is not part of the actual Haiku API") actual_value = getattr(hk, name) if isinstance(actual_value, types.ModuleType): # Most shimmed submodules are instance of types.ModuleType, but some # are nested classes, e.g. `hk.pad`. self.assertIsInstance(shim_value, (type, types.ModuleType)) else: self.assertEqual(actual_value, shim_value) if __name__ == "__main__": absltest.main()
dm-haiku-main
haiku/_src/integration/shim_hk_test.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Haiku modules running with leak checking.""" from absl.testing import absltest from absl.testing import parameterized import haiku as hk from haiku._src import test_utils from haiku._src.integration import descriptors import jax import jax.numpy as jnp ModuleFn = descriptors.ModuleFn def get_module_cls(module_fn: ModuleFn) -> type[hk.Module]: get_cls = lambda: type(descriptors.unwrap(module_fn())) return hk.testing.transform_and_run(get_cls)() class LeakCheckerTest(parameterized.TestCase): def setUp(self): super().setUp() jax.config.update('jax_check_tracer_leaks', True) def tearDown(self): super().tearDown() jax.config.update('jax_check_tracer_leaks', False) @test_utils.combined_named_parameters(descriptors.ALL_MODULES) def test_run(self, module_fn: ModuleFn, shape, dtype): def g(x): return module_fn()(x) f = hk.transform_with_state(g) def run(): rng = jax.random.PRNGKey(42) x = jnp.zeros(shape, dtype) params, state = f.init(rng, x) return f.apply(params, state, rng, x) jax.eval_shape(run) if __name__ == '__main__': absltest.main()
dm-haiku-main
haiku/_src/integration/check_tracer_leaks_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Running haiku._src.integration.common.DTypeTestCase with float64. This is put into a separate file since it requires enabling float64 right after loading jax. """ from absl.testing import absltest from haiku._src import test_utils from haiku._src.integration import common from haiku._src.integration import descriptors from jax.config import config import jax.numpy as jnp ModuleFn = descriptors.ModuleFn class Float64Test(common.DTypeTestCase): def setUp(self): super().setUp() config.update("jax_enable_x64", True) def tearDown(self): super().tearDown() config.update("jax_enable_x64", False) @test_utils.combined_named_parameters(descriptors.ALL_MODULES) def test_float32(self, module_fn: ModuleFn, shape, dtype): self.assertTrue(config.read("jax_enable_x64")) self.assert_dtype(jnp.float32, module_fn, shape, dtype) @test_utils.combined_named_parameters(descriptors.ALL_MODULES) def test_float64(self, module_fn: ModuleFn, shape, dtype): self.assertTrue(config.read("jax_enable_x64")) self.assert_dtype(jnp.float64, module_fn, shape, dtype) if __name__ == "__main__": absltest.main()
dm-haiku-main
haiku/_src/integration/float64_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests whether modules produce similar output given np.ndarray inputs.""" import functools import os from absl.testing import absltest from absl.testing import parameterized import haiku as hk from haiku._src import test_utils from haiku._src.integration import descriptors import jax import jax.numpy as jnp import numpy as np ModuleFn = descriptors.ModuleFn def tree_assert_allclose(a, b, *, atol=1e-6): jax.tree_util.tree_map( functools.partial(np.testing.assert_allclose, atol=atol), a, b) def get_module_cls(module_fn: ModuleFn) -> type[hk.Module]: get_cls = lambda: type(descriptors.unwrap(module_fn())) return hk.testing.transform_and_run(get_cls)() class NumpyInputsTest(parameterized.TestCase): @test_utils.combined_named_parameters( descriptors.ALL_MODULES, test_utils.named_bools('np_inputs'), test_utils.named_bools('np_params'), test_utils.named_bools('close_over_params')) def test_numpy_and_jax_results_close( self, module_fn: ModuleFn, shape: tuple[int, ...], dtype: jnp.dtype, np_params: bool, np_inputs: bool, close_over_params: bool, ): if not (np_params or np_inputs): self.skipTest('Pure JAX variants tested elsewhere') # TODO(b/257921991): Fix the timeouts here. if (close_over_params and 'UNITTEST_ON_FORGE' in os.environ): module_cls = get_module_cls(module_fn) if module_cls in (hk.nets.ResNet, hk.Conv2DTranspose, hk.LayerNorm, hk.Conv2DLSTM, hk.IdentityCore): self.skipTest('Close over tests for these modules take >5 minutes') f = hk.transform_with_state(lambda x: module_fn()(x)) # pylint: disable=unnecessary-lambda rng = jax.random.PRNGKey(42) x = jnp.ones(shape, dtype) params, state = f.init(rng, x) if close_over_params: apply_fn = functools.partial(f.apply, params, state) out, new_state = jax.jit(apply_fn)(rng, x) else: out, new_state = jax.jit(f.apply)(params, state, rng, x) if np_inputs: rng, x = jax.device_get((rng, x)) with self.subTest('init'): params2, state2 = f.init(rng, x) tree_assert_allclose(params, params2) tree_assert_allclose(state, state2) with self.subTest('apply'): if np_params: params, state = jax.device_get((params, state)) if close_over_params: apply_fn = functools.partial(f.apply, params, state) out2, new_state2 = jax.jit(apply_fn)(rng, x) else: out2, new_state2 = jax.jit(f.apply)(params, state, rng, x) tree_assert_allclose(out, out2) tree_assert_allclose(new_state, new_state2) if __name__ == '__main__': absltest.main()
dm-haiku-main
haiku/_src/integration/numpy_inputs_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================
dm-haiku-main
haiku/_src/integration/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Haiku checkpointing.""" import json import os from absl.testing import absltest from absl.testing import parameterized from haiku._src import test_utils from haiku._src.integration import checkpoint_utils from haiku._src.integration import descriptors ModuleFn = descriptors.ModuleFn HOW_TO_REGENERATE = """ You can regenerate checkpoints using the checkpoint_generate utility in this folder. Set the --base_path flag to the checkpoint folder. """ class CheckpointTest(parameterized.TestCase): @test_utils.combined_named_parameters( descriptors.with_name(descriptors.ALL_MODULES)) def test_checkpoint_format(self, name, module_fn: ModuleFn, shape, dtype): descriptor = descriptors.ModuleDescriptor(name, module_fn, shape, dtype) cls = descriptors.module_type(descriptor.create) expected = checkpoint_utils.summarize(descriptor) file_path = os.path.join( "haiku/_src/integration/checkpoints/", descriptors.to_file_name(descriptor) + ".json") if not os.path.exists(file_path): expected_json = json.dumps(expected, indent=2) raise ValueError(f"Missing checkpoint file: {file_path}\n\n" f"Expected:\n\n{expected_json}") with open(file_path) as fp: actual = json.load(fp) self.assertEqual(expected, actual, msg=HOW_TO_REGENERATE) if __name__ == "__main__": absltest.main()
dm-haiku-main
haiku/_src/integration/checkpoint_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku._src.conformance.descriptors.""" from absl.testing import absltest import haiku as hk from haiku._src import test_utils from haiku._src.integration import descriptors ALL_MODULES = descriptors.ALL_MODULES IGNORED_MODULES = descriptors.IGNORED_MODULES class DescriptorsTest(absltest.TestCase): @test_utils.transform_and_run def test_coverage(self): all_modules = frozenset(test_utils.find_subclasses(hk, hk.Module)) tested_modules = {type(descriptors.unwrap(d.create())) for d in ALL_MODULES} self.assertEmpty(all_modules - (tested_modules | IGNORED_MODULES)) if __name__ == '__main__': absltest.main()
dm-haiku-main
haiku/_src/integration/descriptors_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Haiku summarise functionality.""" from absl.testing import absltest from absl.testing import parameterized import haiku as hk from haiku._src import test_utils from haiku._src.integration import descriptors import jax.numpy as jnp ModuleFn = descriptors.ModuleFn class SummariseTest(parameterized.TestCase): @test_utils.combined_named_parameters(descriptors.ALL_MODULES) def test_eval_summary(self, module_fn: ModuleFn, shape, dtype): f = lambda x: module_fn()(x) # pylint: disable=unnecessary-lambda x = jnp.ones(shape, dtype) self.assertIsNotNone(hk.experimental.eval_summary(f)(x)) @test_utils.combined_named_parameters(descriptors.ALL_MODULES) def test_tabulate(self, module_fn: ModuleFn, shape, dtype): f = lambda x: module_fn()(x) # pylint: disable=unnecessary-lambda x = jnp.ones(shape, dtype) self.assertIsNotNone(hk.experimental.tabulate(f)(x)) if __name__ == '__main__': absltest.main()
dm-haiku-main
haiku/_src/integration/summarise_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku._src.conformance.descriptors.""" import functools from absl.testing import absltest from absl.testing import parameterized import haiku as hk from haiku._src import test_utils from haiku._src.integration import descriptors import jax import jax.numpy as jnp import numpy as np ModuleFn = descriptors.ModuleFn DEFAULT_ATOL = 1e-5 CUSTOM_ATOL = {hk.nets.ResNet: 0.05, hk.nets.MobileNetV1: 0.05, hk.nets.VectorQuantizer: 0.05, hk.nets.VectorQuantizerEMA: 0.05, hk.BatchNorm: 1e-4, hk.SeparableDepthwiseConv2D: 3e-3} class JaxTransformsTest(parameterized.TestCase): @test_utils.combined_named_parameters(descriptors.ALL_MODULES) def test_jit(self, module_fn: ModuleFn, shape, dtype): rng = jax.random.PRNGKey(42) if jnp.issubdtype(dtype, jnp.integer): x = jax.random.randint(rng, shape, 0, np.prod(shape), dtype) else: x = jax.random.uniform(rng, shape, dtype) def g(x): return module_fn()(x) f = hk.transform_with_state(g) atol = CUSTOM_ATOL.get(descriptors.module_type(module_fn), DEFAULT_ATOL) assert_allclose = functools.partial(np.testing.assert_allclose, atol=atol) # Ensure initialization under jit is the same. jax.tree_util.tree_map( assert_allclose, f.init(rng, x), jax.jit(f.init)(rng, x)) # Ensure application under jit is the same. params, state = f.init(rng, x) jax.tree_util.tree_map( assert_allclose, f.apply(params, state, rng, x), jax.jit(f.apply)(params, state, rng, x), ) @test_utils.combined_named_parameters(descriptors.OPTIONAL_BATCH_MODULES) def test_vmap(self, module_fn: ModuleFn, shape, dtype): batch_size, shape = shape[0], shape[1:] rng = jax.random.PRNGKey(42) if jnp.issubdtype(dtype, jnp.integer): sample = jax.random.randint(rng, shape, 0, np.prod(shape), dtype) else: sample = jax.random.uniform(rng, shape, dtype) batch = jnp.broadcast_to(sample, (batch_size,) + sample.shape) def g(x): return module_fn()(x) f = hk.transform_with_state(g) # Ensure application under vmap is the same. params, state = f.init(rng, sample) v_apply = jax.vmap(f.apply, in_axes=(None, None, None, 0)) jax.tree_util.tree_map( lambda a, b: np.testing.assert_allclose(a, b, atol=DEFAULT_ATOL), f.apply(params, state, rng, batch), v_apply(params, state, rng, batch)) if __name__ == '__main__': absltest.main()
dm-haiku-main
haiku/_src/integration/jax_transforms_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Module descriptors programatically describe how to use modules.""" from collections.abc import Sequence from typing import Any, Callable, NamedTuple import haiku as hk import jax import jax.numpy as jnp import numpy as np ModuleFn = Callable[[], Callable[[jax.Array], jax.Array]] class Wrapped(hk.Module): def __init__(self, wrapped): super().__init__() self.wrapped = wrapped class Training(Wrapped): def __call__(self, x: jax.Array): return self.wrapped(x, is_training=True) class MultiInput(Wrapped): def __init__(self, wrapped, num_inputs): super().__init__(wrapped) self.num_inputs = num_inputs def __call__(self, x: jax.Array): inputs = [x for _ in range(self.num_inputs)] return self.wrapped(*inputs) class Recurrent(Wrapped): """Unrolls a recurrent module.""" def __init__(self, module: hk.RNNCore, unroller=None): super().__init__(module) self.unroller = unroller def __call__(self, x: jax.Array): initial_state = jax.tree_util.tree_map( lambda v: v.astype(x.dtype), self.wrapped.initial_state(batch_size=x.shape[0])) x = jnp.expand_dims(x, axis=0) return self.unroller(self.wrapped, x, initial_state) def unwrap(module): while isinstance(module, Wrapped): module = module.wrapped return module class ModuleDescriptor(NamedTuple): name: Any create: ModuleFn shape: Sequence[int] dtype: Any = jnp.float32 BATCH_SIZE = 8 # pylint: disable=unnecessary-lambda # Modules that have equivalent behaviour with or without a batch dimension. OPTIONAL_BATCH_MODULES = ( ModuleDescriptor( name="Embed", create=lambda: hk.Embed(vocab_size=6, embed_dim=12), shape=(BATCH_SIZE,), dtype=jnp.int32), ModuleDescriptor( name="Linear", create=lambda: hk.Linear(10), shape=(BATCH_SIZE, 1)), ModuleDescriptor( name="Sequential", create=lambda: hk.Sequential([]), shape=(BATCH_SIZE, 2, 2)), ModuleDescriptor( name="nets.MLP", create=lambda: hk.nets.MLP([3, 4, 5]), shape=(BATCH_SIZE, 3)), ModuleDescriptor( name="ConvND", create=lambda: hk.ConvND(1, 3, 3), shape=(BATCH_SIZE, 2, 2)), ModuleDescriptor( name="ConvNDTranspose", create=lambda: hk.ConvNDTranspose(1, 3, 3), shape=(BATCH_SIZE, 2, 2)), ModuleDescriptor( name="Conv1D", create=lambda: hk.Conv1D(3, 3), shape=(BATCH_SIZE, 2, 2)), ModuleDescriptor( name="Conv1DTranspose", create=lambda: hk.Conv1DTranspose(3, 3), shape=(BATCH_SIZE, 2, 2)), ModuleDescriptor( name="Conv2D", create=lambda: hk.Conv2D(3, 3), shape=(BATCH_SIZE, 2, 2, 2)), ModuleDescriptor( name="Conv2DTranspose", create=lambda: hk.Conv2DTranspose(3, 3), shape=(BATCH_SIZE, 2, 2, 2)), ModuleDescriptor( name="Conv3D", create=lambda: hk.Conv3D(3, 3), shape=(BATCH_SIZE, 2, 2, 2, 2)), ModuleDescriptor( name="Conv3DTranspose", create=lambda: hk.Conv3DTranspose(3, 3), shape=(BATCH_SIZE, 2, 2, 2, 2)), ) # Modules that require input to have a batch dimension. BATCH_MODULES = ( ModuleDescriptor( name="BatchNorm", create=lambda: Training(hk.BatchNorm(True, True, 0.9)), shape=(BATCH_SIZE, 2, 2, 3)), ModuleDescriptor( name="Bias", create=lambda: hk.Bias(), shape=(BATCH_SIZE, 3, 3, 3)), ModuleDescriptor( name="Flatten", create=lambda: hk.Flatten(), shape=(BATCH_SIZE, 3, 3, 3)), ModuleDescriptor( name="InstanceNorm", create=lambda: hk.InstanceNorm(True, True), shape=(BATCH_SIZE, 3, 2)), ModuleDescriptor( name="GroupNorm", create=lambda: hk.GroupNorm(5), shape=(BATCH_SIZE, 4, 4, 10)), ModuleDescriptor( name="LayerNorm", create=lambda: hk.LayerNorm(1, True, True, param_axis=-1), shape=(BATCH_SIZE, 3, 2)), ModuleDescriptor( name="MultiHeadAttention", create=lambda: MultiInput( # pylint: disable=g-long-lambda hk.MultiHeadAttention(num_heads=8, key_size=64, w_init_scale=1.0), num_inputs=3), shape=(BATCH_SIZE, 3, 2)), ModuleDescriptor( name="RMSNorm", create=lambda: hk.RMSNorm(1), shape=(BATCH_SIZE, 3, 2)), ModuleDescriptor( name="SpectralNorm", create=lambda: hk.SpectralNorm(), shape=(BATCH_SIZE, 3, 2)), ModuleDescriptor( name="nets.ResNet", create=lambda: Training(hk.nets.ResNet((3, 4, 6, 3), 1000)), shape=(BATCH_SIZE, 3, 3, 2)), # pylint: disable=g-long-lambda ModuleDescriptor( name="nets.MobileNetV1", create=lambda: Training(hk.nets.MobileNetV1(num_classes=1000, strides=(1, 1, 1), channels=(16, 32, 64))), shape=(BATCH_SIZE, 64, 64, 2)), # pylint: enable=g-long-lambda ModuleDescriptor( name="nets.VectorQuantizer", create=lambda: Training(hk.nets.VectorQuantizer(64, 512, 0.25)), shape=(BATCH_SIZE, 64)), ModuleDescriptor( name="nets.VectorQuantizerEMA", create=lambda: Training(hk.nets.VectorQuantizerEMA(64, 512, 0.25, 0.9)), shape=(BATCH_SIZE, 64)), # TODO(tomhennigan) Make these modules support unbatched input. ModuleDescriptor( name="DepthwiseConv1D", create=lambda: hk.DepthwiseConv1D(1, 3), shape=(BATCH_SIZE, 2, 2)), ModuleDescriptor( name="DepthwiseConv2D", create=lambda: hk.DepthwiseConv2D(1, 3), shape=(BATCH_SIZE, 2, 2, 2)), ModuleDescriptor( name="DepthwiseConv3D", create=lambda: hk.DepthwiseConv3D(1, 3), shape=(BATCH_SIZE, 2, 2, 2, 2)), ModuleDescriptor( name="SeparableDepthwiseConv2D", create=lambda: hk.SeparableDepthwiseConv2D(1, 3), shape=(BATCH_SIZE, 2, 2, 2)), ) class DummyCore(hk.RNNCore): def initial_state(self, batch_size): if batch_size is not None: return jnp.ones([batch_size, 128, 1]) else: return jnp.ones([128, 1]) def __call__(self, inputs, state): return inputs, state class ResetCoreAdapter(Wrapped, hk.RNNCore): def initial_state(self, batch_size): return self.wrapped.initial_state(batch_size) def __call__(self, inputs, state): batch_size = inputs.shape[0] resets = np.broadcast_to(True, (batch_size,)) return self.wrapped((inputs, resets), state) # RNN cores. For shape, use the shape of a single example. RNN_CORES = ( ModuleDescriptor( name="ResetCore", create=lambda: ResetCoreAdapter(hk.ResetCore(DummyCore())), shape=(BATCH_SIZE, 128)), ModuleDescriptor( name="GRU", create=lambda: hk.GRU(1), shape=(BATCH_SIZE, 128)), ModuleDescriptor( name="IdentityCore", create=lambda: hk.IdentityCore(), shape=(BATCH_SIZE, 128)), ModuleDescriptor( name="LSTM", create=lambda: hk.LSTM(1), shape=(BATCH_SIZE, 128)), ModuleDescriptor( name="Conv1DLSTM", create=lambda: hk.Conv1DLSTM([2], 3, 3), shape=(BATCH_SIZE, 2, 2)), ModuleDescriptor( name="Conv2DLSTM", create=lambda: hk.Conv2DLSTM([2, 2], 3, 3), shape=(BATCH_SIZE, 2, 2, 2)), ModuleDescriptor( name="Conv3DLSTM", create=lambda: hk.Conv3DLSTM([2, 2, 2], 3, 3), shape=(BATCH_SIZE, 2, 2, 2, 2)), ModuleDescriptor( name="VanillaRNN", create=lambda: hk.VanillaRNN(8), shape=(BATCH_SIZE, 128)), ) def recurrent_factory( create_core: Callable[[], hk.RNNCore], unroller, ) -> Callable[[], Recurrent]: return lambda: Recurrent(create_core(), unroller) def unroll_descriptors(descriptors, unroller): """Returns `Recurrent` wrapped descriptors with the given unroller applied.""" out = [] for name, create, shape, dtype in descriptors: name = f"Recurrent({name}, {unroller.__name__})" out.append( ModuleDescriptor(name=name, create=recurrent_factory(create, unroller), shape=shape, dtype=dtype)) return tuple(out) def module_type(module_fn: ModuleFn) -> type[hk.Module]: f = hk.transform_with_state(lambda: type(unwrap(module_fn()))) return f.apply(*f.init(jax.random.PRNGKey(42)), None)[0] def with_name(descriptors: Sequence[ModuleDescriptor]): return [[n, n, c, s, d] for n, c, s, d in descriptors] def to_file_name(descriptor: ModuleDescriptor): n = descriptor.name return n.replace(" ", "-").replace("(", "-").replace(")", "").replace(",", "") # Modules that require time then batch input. RECURRENT_MODULES = ( unroll_descriptors(RNN_CORES, hk.dynamic_unroll) + unroll_descriptors(RNN_CORES, hk.static_unroll)) STATEFUL_MODULES = ( ModuleDescriptor( name="nets.VectorQuantizerEMA", create=lambda: Training(hk.nets.VectorQuantizerEMA(64, 512, 0.25, 0.9)), shape=(BATCH_SIZE, 64)), ModuleDescriptor( name="SpectralNorm", create=lambda: hk.SpectralNorm(), shape=(BATCH_SIZE, 3, 2)), ModuleDescriptor( name="BatchNorm", create=lambda: Training(hk.BatchNorm(True, True, 0.9)), shape=(BATCH_SIZE, 2, 2, 3)), ) ALL_MODULES = OPTIONAL_BATCH_MODULES + BATCH_MODULES + RECURRENT_MODULES # Modules that do not use get_parameter NO_PARAM_MODULES = ( ModuleDescriptor( name="Flatten", create=lambda: hk.Flatten(), shape=(BATCH_SIZE, 3, 3, 3)), ModuleDescriptor( name="SpectralNorm", create=lambda: hk.SpectralNorm(), shape=(BATCH_SIZE, 3, 2)), ModuleDescriptor( name="Sequential", create=lambda: hk.Sequential([]), shape=(BATCH_SIZE, 2, 2)), ) # Modules that do not use "hk.next_rng_key" NO_NEXT_RNG_KEY_MODULES = ( ModuleDescriptor( name="Sequential", create=lambda: hk.Sequential([]), shape=(BATCH_SIZE, 2, 2)), ModuleDescriptor( name="RMSNorm", create=lambda: hk.RMSNorm(1), shape=(BATCH_SIZE, 3, 2)), ModuleDescriptor( name="InstanceNorm", create=lambda: hk.InstanceNorm(True, True), shape=(BATCH_SIZE, 3, 2)), ModuleDescriptor( name="GroupNorm", create=lambda: hk.GroupNorm(5), shape=(BATCH_SIZE, 4, 4, 10)), ModuleDescriptor( name="LayerNorm", create=lambda: hk.LayerNorm(1, True, True, param_axis=-1), shape=(BATCH_SIZE, 3, 2)), ModuleDescriptor( name="BatchNorm", create=lambda: Training(hk.BatchNorm(True, True, 0.9)), shape=(BATCH_SIZE, 2, 2, 3)), ModuleDescriptor( name="Bias", create=lambda: hk.Bias(), shape=(BATCH_SIZE, 3, 3, 3)), ModuleDescriptor( name="Flatten", create=lambda: hk.Flatten(), shape=(BATCH_SIZE, 3, 3, 3)), ) + RECURRENT_MODULES NO_NEXT_RNG_KEY_NAMES = [d.name for d in NO_NEXT_RNG_KEY_MODULES] NEXT_RNG_KEY_MODULES = [ d for d in ALL_MODULES if d.name not in NO_NEXT_RNG_KEY_NAMES ] NOT_ONLY_PARAMS_MODULES = set(NO_PARAM_MODULES) | set(STATEFUL_MODULES) | set( RECURRENT_MODULES) NOT_ONLY_PARAMS_NAMES = [d.name for d in NOT_ONLY_PARAMS_MODULES] ONLY_PARAMS_MODULES = [ d for d in ALL_MODULES if d.name not in NOT_ONLY_PARAMS_NAMES ] IGNORED_MODULES = { # Stateless or abstract. hk.BatchApply, hk.Module, hk.Reshape, hk.AvgPool, hk.MaxPool, hk.lift, # Non-standard. hk.EMAParamsTree, hk.SNParamsTree, # Metrics. hk.ExponentialMovingAverage, # Recurrent. hk.DeepRNN, hk.RNNCore, # Tested transitively. hk.nets.ResNet18, hk.nets.ResNet34, hk.nets.ResNet50, hk.nets.ResNet101, hk.nets.ResNet152, hk.nets.ResNet200, }
dm-haiku-main
haiku/_src/integration/descriptors.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Integration tests for Haiku typing.""" from absl.testing import absltest from absl.testing import parameterized import haiku as hk from haiku._src import test_utils from haiku._src.integration import descriptors ModuleFn = descriptors.ModuleFn class TypingTest(parameterized.TestCase): @test_utils.combined_named_parameters(descriptors.ALL_MODULES) @test_utils.transform_and_run def test_protocols(self, module_fn: ModuleFn, shape, dtype): del shape, dtype module = descriptors.unwrap(module_fn()) self.assertIsInstance(module, hk.ModuleProtocol) # NOTE: All current Haiku builtin modules are callable. self.assertIsInstance(module, hk.SupportsCall) if __name__ == '__main__': absltest.main()
dm-haiku-main
haiku/_src/integration/typing_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Common utilities.""" from absl.testing import parameterized import haiku as hk from haiku._src.integration import descriptors import jax import jax.numpy as jnp import numpy as np import tree ModuleFn = descriptors.ModuleFn class DTypeTestCase(parameterized.TestCase): """Common base class for dtype tests.""" def assert_dtype(self, test_dtype, module_fn: ModuleFn, shape, input_dtype): """Checks that modules accepting float32 input_dtype output test_dtype.""" if input_dtype != jnp.float32: self.skipTest('Skipping module with non-f32 input') def ones_creator(next_creator, shape, dtype, init, context): if context.full_name == 'vector_quantizer/embeddings': # NOTE: vector_quantizer/embeddings is created using a ctor argument # so dtype is not expected to follow input to __call__. dtype = test_dtype else: self.assertEqual(dtype, test_dtype, msg=context.full_name) # NOTE: We need to do this since some initializers (e.g. random.uniform) # do not support <32bit dtypes. This also makes the test run a bit faster. init = jnp.ones return next_creator(shape, dtype, init) def g(x): with hk.custom_creator(ones_creator): mod = module_fn() return mod(x) g = hk.transform_with_state(g) # No custom creator for state so we need to do this manually. def cast_if_floating(x): if jnp.issubdtype(x.dtype, jnp.floating): x = x.astype(test_dtype) return x def init_fn(rng, x): params, state = g.init(rng, x) state = jax.tree_util.tree_map(cast_if_floating, state) return params, state x = np.ones(shape, test_dtype) rng = jax.random.PRNGKey(42) params, state = jax.eval_shape(init_fn, rng, x) for _ in range(2): y, state = jax.eval_shape(g.apply, params, state, rng, x) def assert_dtype(path, v): if jnp.issubdtype(v.dtype, jnp.floating): self.assertEqual(v.dtype, test_dtype, msg=path) tree.map_structure_with_path(assert_dtype, y) tree.map_structure_with_path(assert_dtype, state)
dm-haiku-main
haiku/_src/integration/common.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests to ensure all modules work with jax_numpy_rank_promotion == 'raise'.""" from absl.testing import absltest from absl.testing import parameterized import haiku as hk from haiku._src import test_utils from haiku._src.integration import descriptors import jax import jax.numpy as jnp import numpy as np ModuleFn = descriptors.ModuleFn class RankPromotionTest(parameterized.TestCase): def setUp(self): super().setUp() jax.config.update('jax_numpy_rank_promotion', 'raise') def tearDown(self): super().tearDown() jax.config.update('jax_numpy_rank_promotion', 'warn') @test_utils.combined_named_parameters(descriptors.ALL_MODULES) def test_strict_promotion(self, module_fn: ModuleFn, shape, dtype): f = hk.transform_with_state(lambda x: module_fn()(x)) # pylint: disable=unnecessary-lambda rng = jax.random.PRNGKey(42) x = np.ones(shape, dtype) params, state = jax.eval_shape(f.init, rng, x) self.assertIsNotNone(jax.eval_shape(f.apply, params, state, rng, x)) def test_rank_promotion_exception(self): with self.assertRaises(ValueError) as cm: _ = jnp.zeros((8, 1)) * jnp.zeros((8,)) self.assertIn('could not be broadcast together', str(cm.exception)) if __name__ == '__main__': absltest.main()
dm-haiku-main
haiku/_src/integration/rank_promotion_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for checkpoints.""" from collections.abc import Mapping from typing import Any import haiku as hk from haiku._src import utils from haiku._src.integration import descriptors import jax import jax.numpy as jnp def format_tensor(tensor: jax.Array) -> str: shape = list(tensor.shape) dtype = utils.simple_dtype(tensor.dtype) return f"{dtype}{shape}" def module_name(d: descriptors.ModuleDescriptor): name = hk.testing.transform_and_run( lambda: str(descriptors.unwrap(d.create())))() return name.split("\n") def summarize(d: descriptors.ModuleDescriptor) -> Mapping[str, Any]: """Generates a summary of the given descriptor.""" f = hk.transform_with_state(lambda x: d.create()(x)) # pylint: disable=unnecessary-lambda x = jnp.ones(d.shape, d.dtype) rng = jax.random.PRNGKey(42) params, state = map(hk.data_structures.to_mutable_dict, jax.eval_shape(f.init, rng, x)) out = {"module": module_name(d), "input": format_tensor(x)} if params: out["param_size"] = int(hk.data_structures.tree_size(params)) out["param_bytes"] = int(hk.data_structures.tree_bytes(params)) out["params"] = jax.tree_util.tree_map(format_tensor, params) if state: out["state_size"] = int(hk.data_structures.tree_size(state)) out["state_bytes"] = int(hk.data_structures.tree_bytes(state)) out["state"] = jax.tree_util.tree_map(format_tensor, state) return out
dm-haiku-main
haiku/_src/integration/checkpoint_utils.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku._src.conformance.descriptors.""" import functools from absl.testing import absltest from absl.testing import parameterized import haiku as hk from haiku._src import test_utils from haiku._src.integration import descriptors import jax from jax.experimental import jax2tf import jax.numpy as jnp import numpy as np import tensorflow as tf ModuleFn = descriptors.ModuleFn DEFAULT_ATOL = 1e-2 CUSTOM_ATOL = {hk.nets.ResNet: 0.1} # TODO(tomhennigan): Test with experimental_compile=True. TF_TRANSFORM = (("identity", lambda f: f), ("tf.function", tf.function)) JAX_TRANSFORM = (("identity", lambda f: f), ("jax.jit", jax.jit)) class JaxToTfTest(parameterized.TestCase): @test_utils.combined_named_parameters(descriptors.ALL_MODULES, test_utils.named_bools("init"), TF_TRANSFORM, JAX_TRANSFORM) def test_convert( self, module_fn: ModuleFn, shape, dtype, init: bool, tf_transform, jax_transform, ): rng = jax.random.PRNGKey(42) if jnp.issubdtype(dtype, jnp.integer): x = jax.random.randint(rng, shape, 0, np.prod(shape), dtype) else: x = jax.random.uniform(rng, shape, dtype) def g(x): return module_fn()(x) f = hk.transform_with_state(g) atol = CUSTOM_ATOL.get(descriptors.module_type(module_fn), DEFAULT_ATOL) assert_allclose = functools.partial(np.testing.assert_allclose, atol=atol) get = lambda t: jax.tree_util.tree_map(lambda x: x.numpy(), t) if init: init_jax = jax_transform(f.init) init_tf = tf_transform(jax2tf.convert(f.init)) jax.tree_util.tree_map( assert_allclose, init_jax(rng, x), get(init_tf(rng, x))) else: params, state = f.init(rng, x) apply_jax = jax_transform(f.apply) apply_tf = tf_transform(jax2tf.convert(f.apply)) jax.tree_util.tree_map( assert_allclose, apply_jax(params, state, rng, x), get(apply_tf(params, state, rng, x)), ) if __name__ == "__main__": absltest.main()
dm-haiku-main
haiku/_src/integration/jax2tf_test.py
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests to ensure all modules work with jaxpr_info.""" from absl.testing import absltest from absl.testing import parameterized import haiku as hk from haiku._src import test_utils from haiku._src.integration import descriptors import jax import jax.numpy as jnp ModuleFn = descriptors.ModuleFn jaxpr_info = hk.experimental.jaxpr_info class JaxprInfoTest(parameterized.TestCase): @test_utils.combined_named_parameters(descriptors.ALL_MODULES) def test_info_and_html(self, module_fn: ModuleFn, shape, dtype): x = jnp.ones(shape, dtype) f = hk.transform_with_state(lambda: module_fn()(x)) rng = jax.random.PRNGKey(42) params, state = f.init(rng) info = jaxpr_info.make_model_info(f.apply)(params, state, rng) if descriptors.module_type(module_fn).__name__ != 'Sequential': self.assertNotEmpty(info.expressions) self.assertIsNotNone(jaxpr_info.as_html_page(info)) if __name__ == '__main__': absltest.main()
dm-haiku-main
haiku/_src/integration/jaxpr_info_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Generates checkpoint json files.""" import json import os from absl import app from absl import flags from haiku._src.integration import checkpoint_utils from haiku._src.integration import descriptors flags.DEFINE_string("base_dir", None, help="Base directory.") FLAGS = flags.FLAGS def main(argv): if len(argv) > 1: raise app.UsageError("Too many command-line arguments.") for descriptor in descriptors.ALL_MODULES: cls = descriptors.module_type(descriptor.create) file_name = descriptors.to_file_name(descriptor) + ".json" summary = checkpoint_utils.summarize(descriptor) with open(os.path.join(FLAGS.base_dir, file_name), "w") as fp: fp.write(json.dumps(summary, indent=2)) fp.write("\n") if __name__ == "__main__": flags.mark_flag_as_required("base_dir") app.run(main)
dm-haiku-main
haiku/_src/integration/checkpoint_generate.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku._src.nets.vqvae.""" import functools from absl.testing import absltest from absl.testing import parameterized from haiku._src import stateful from haiku._src import test_utils from haiku._src import transform from haiku._src.nets import vqvae import jax import jax.numpy as jnp import numpy as np class VqvaeTest(parameterized.TestCase): @parameterized.parameters((vqvae.VectorQuantizer, { 'embedding_dim': 4, 'num_embeddings': 8, 'commitment_cost': 0.25 }), (vqvae.VectorQuantizerEMA, { 'embedding_dim': 6, 'num_embeddings': 13, 'commitment_cost': 0.5, 'decay': 0.1 })) @test_utils.transform_and_run def testConstruct(self, constructor, kwargs): vqvae_module = constructor(**kwargs) # Batch of input vectors to quantize inputs_np = np.random.randn(100, kwargs['embedding_dim']).astype(np.float32) inputs = jnp.array(inputs_np) # Set is_training to False, otherwise for the EMA case just evaluating the # forward pass will change the embeddings, meaning that some of our computed # closest embeddings will be incorrect. vq_output = vqvae_module(inputs, is_training=False) # Output shape is correct self.assertEqual(vq_output['quantize'].shape, inputs.shape) vq_output_np = jax.tree_util.tree_map(lambda t: t, vq_output) embeddings_np = vqvae_module.embeddings self.assertEqual(embeddings_np.shape, (kwargs['embedding_dim'], kwargs['num_embeddings'])) # Check that each input was assigned to the embedding it is closest to. distances = (jnp.square(inputs_np).sum(axis=1, keepdims=True) - 2 * np.dot(inputs_np, embeddings_np) + jnp.square(embeddings_np).sum(axis=0, keepdims=True)) closest_index = np.argmax(-distances, axis=1) # On TPU, distances can be different by ~1% due to precision. This can cause # the distanc to the closest embedding to flip, leading to a difference # in the encoding indices tensor. First we check that the continuous # distances are reasonably close, and then we only allow N differences in # the encodings. For batch of 100, N == 3 seems okay (passed 1000x tests). np.testing.assert_allclose(distances, vq_output_np['distances'], atol=5e-2) num_differences_in_encodings = (closest_index != vq_output_np['encoding_indices']).sum() num_differences_allowed = 3 self.assertLessEqual(num_differences_in_encodings, num_differences_allowed) @parameterized.parameters((vqvae.VectorQuantizer, { 'embedding_dim': 4, 'num_embeddings': 8, 'commitment_cost': 0.25 }), (vqvae.VectorQuantizerEMA, { 'embedding_dim': 6, 'num_embeddings': 13, 'commitment_cost': 0.5, 'decay': 0.1 })) @test_utils.transform_and_run def testShapeChecking(self, constructor, kwargs): vqvae_module = constructor(**kwargs) wrong_shape_input = np.random.randn(100, kwargs['embedding_dim'] * 2) with self.assertRaisesRegex(TypeError, 'total size must be unchanged'): vqvae_module( jnp.array(wrong_shape_input.astype(np.float32)), is_training=False) @parameterized.parameters((vqvae.VectorQuantizer, { 'embedding_dim': 4, 'num_embeddings': 8, 'commitment_cost': 0.25 }), (vqvae.VectorQuantizerEMA, { 'embedding_dim': 6, 'num_embeddings': 13, 'commitment_cost': 0.5, 'decay': 0.1 })) @test_utils.transform_and_run def testNoneBatch(self, constructor, kwargs): """Check that vqvae can be built on input with a None batch dimension.""" vqvae_module = constructor(**kwargs) inputs = jnp.zeros([0, 5, 5, kwargs['embedding_dim']]) vqvae_module(inputs, is_training=False) @parameterized.parameters({'use_jit': True, 'dtype': jnp.float32}, {'use_jit': True, 'dtype': jnp.float64}, {'use_jit': False, 'dtype': jnp.float32}, {'use_jit': False, 'dtype': jnp.float64}) @test_utils.transform_and_run def testEmaUpdating(self, use_jit, dtype): if jax.local_devices()[0].platform == 'tpu' and dtype == jnp.float64: self.skipTest('F64 not supported by TPU') embedding_dim = 6 np_dtype = np.float64 if dtype is jnp.float64 else np.float32 decay = np.array(0.1, dtype=np_dtype) vqvae_module = vqvae.VectorQuantizerEMA( embedding_dim=embedding_dim, num_embeddings=7, commitment_cost=0.5, decay=decay, dtype=dtype) if use_jit: vqvae_f = stateful.jit(vqvae_module, static_argnums=1) else: vqvae_f = vqvae_module batch_size = 16 prev_embeddings = vqvae_module.embeddings # Embeddings should change with every forwards pass if is_training == True. for _ in range(10): inputs = np.random.rand(batch_size, embedding_dim).astype(dtype) vqvae_f(inputs, True) current_embeddings = vqvae_module.embeddings self.assertFalse((prev_embeddings == current_embeddings).all()) prev_embeddings = current_embeddings # Forward passes with is_training == False don't change anything for _ in range(10): inputs = np.random.rand(batch_size, embedding_dim).astype(dtype) vqvae_f(inputs, False) current_embeddings = vqvae_module.embeddings self.assertTrue((current_embeddings == prev_embeddings).all()) def testEmaCrossReplica(self): embedding_dim = 6 batch_size = 16 inputs = np.random.rand(jax.local_device_count(), batch_size, embedding_dim) embeddings = {} perplexities = {} for axis_name in [None, 'i']: def my_function(x, axis_name): decay = np.array(0.9, dtype=np.float32) vqvae_module = vqvae.VectorQuantizerEMA( embedding_dim=embedding_dim, num_embeddings=7, commitment_cost=0.5, decay=decay, cross_replica_axis=axis_name, dtype=jnp.float32) outputs = vqvae_module(x, is_training=True) return vqvae_module.embeddings, outputs['perplexity'] vqvae_f = transform.transform_with_state( functools.partial(my_function, axis_name=axis_name)) rng = jax.random.PRNGKey(42) rng = jnp.broadcast_to(rng, (jax.local_device_count(), *rng.shape)) params, state = jax.pmap( vqvae_f.init, axis_name='i')(rng, inputs) update_fn = jax.pmap(vqvae_f.apply, axis_name='i') for _ in range(10): outputs, state = update_fn(params, state, None, inputs) embeddings[axis_name], perplexities[axis_name] = outputs # In the single-device case, specifying a cross_replica_axis should have # no effect. Otherwise, it should! if jax.device_count() == 1: # Have to use assert_allclose here rather than checking exact matches to # make the test pass on GPU, presumably because of nondeterministic # reductions. np.testing.assert_allclose( embeddings[None], embeddings['i'], rtol=1e-6, atol=1e-6) np.testing.assert_allclose( perplexities[None], perplexities['i'], rtol=1e-6, atol=1e-6) else: self.assertFalse((embeddings[None] == embeddings['i']).all()) self.assertFalse((perplexities[None] == perplexities['i']).all()) if __name__ == '__main__': absltest.main()
dm-haiku-main
haiku/_src/nets/vqvae_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku._src.nets.mobilenetv1.""" from absl.testing import absltest from absl.testing import parameterized from haiku._src import test_utils from haiku._src.nets import mobilenetv1 import jax.numpy as jnp class MobileNetV1Test(parameterized.TestCase): @parameterized.parameters(True, False) @test_utils.transform_and_run def test_simple(self, use_bn): image = jnp.ones([2, 224, 224, 3]) model = mobilenetv1.MobileNetV1( (1, 2, 2, 2, 2), (16, 32, 64, 128, 256), 100, use_bn=use_bn ) logits = model(image, is_training=True) self.assertIsNotNone(logits) self.assertEqual(logits.shape, (2, 100)) @test_utils.transform_and_run def test_error_incorrect_args_stride_list(self): stride_list = (1, 2, 2, 2, 1, 2) channel_list = (64, 128, 128, 256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024) with self.assertRaisesRegex( ValueError, "`strides` and `channels` must have the same length."): mobilenetv1.MobileNetV1(stride_list, channel_list, 1000, True) if __name__ == "__main__": absltest.main()
dm-haiku-main
haiku/_src/nets/mobilenetv1_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================
dm-haiku-main
haiku/_src/nets/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """MobileNet V1, from https://arxiv.org/abs/1704.04861. Achieves ~71% top-1 performance on ImageNet. Depending on the input size, may want to adjust strides from their default configuration. With a 32x32 input, last block output should be (N, 1, 1, 1024), before average pooling. With 224x224 input, will be (N, 7, 7, 1024). The average pooling is currently done via a mean, and returns (N, 1, 1, 1024). If something different is desired, replace with AvgPool. """ from collections.abc import Sequence from typing import Optional from haiku._src import basic from haiku._src import batch_norm from haiku._src import conv from haiku._src import depthwise_conv from haiku._src import module from haiku._src import reshape import jax import jax.numpy as jnp # If you are forking replace this with `import haiku as hk`. # pylint: disable=invalid-name class hk: Module = module.Module BatchNorm = batch_norm.BatchNorm Conv2D = conv.Conv2D DepthwiseConv2D = depthwise_conv.DepthwiseConv2D Flatten = reshape.Flatten Linear = basic.Linear # pylint: enable=invalid-name del basic, batch_norm, conv, depthwise_conv, module, reshape class MobileNetV1Block(hk.Module): """Block for MobileNetV1.""" def __init__( self, channels: int, stride: int, use_bn: bool = True, name: Optional[str] = None, ): super().__init__(name=name) self.channels = channels self.stride = stride self.use_bn = use_bn self.with_bias = not use_bn def __call__(self, inputs: jax.Array, is_training: bool) -> jax.Array: depthwise = hk.DepthwiseConv2D( channel_multiplier=1, kernel_shape=3, stride=self.stride, padding=((1, 1), (1, 1)), with_bias=self.with_bias, name="depthwise_conv") pointwise = hk.Conv2D( output_channels=self.channels, kernel_shape=(1, 1), stride=1, padding="VALID", with_bias=self.with_bias, name="pointwise_conv") out = depthwise(inputs) if self.use_bn: bn1 = hk.BatchNorm(create_scale=True, create_offset=True, decay_rate=0.999) out = bn1(out, is_training) out = jax.nn.relu(out) out = pointwise(out) if self.use_bn: bn2 = hk.BatchNorm(create_scale=True, create_offset=True, decay_rate=0.999) out = bn2(out, is_training) out = jax.nn.relu(out) return out class MobileNetV1(hk.Module): """MobileNetV1 model.""" # TODO(jordanhoffmann) add width multiplier def __init__( self, strides: Sequence[int] = (1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1), channels: Sequence[int] = (64, 128, 128, 256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024), num_classes: int = 1000, use_bn: bool = True, name: Optional[str] = None, ): """Constructs a MobileNetV1 model. Args: strides: The stride to use the in depthwise convolution in each mobilenet block. channels: Number of output channels from the pointwise convolution to use in each block. num_classes: Number of classes. use_bn: Whether or not to use batch normalization. Defaults to True. When true, biases are not used. When false, biases are used. name: Name of the module. """ super().__init__(name=name) if len(strides) != len(channels): raise ValueError("`strides` and `channels` must have the same length.") self.strides = strides self.channels = channels self.use_bn = use_bn self.with_bias = not use_bn self.num_classes = num_classes def __call__(self, inputs: jax.Array, is_training: bool) -> jax.Array: initial_conv = hk.Conv2D( output_channels=32, kernel_shape=(3, 3), stride=2, padding="VALID", with_bias=self.with_bias) out = initial_conv(inputs) if self.use_bn: bn = hk.BatchNorm(create_scale=True, create_offset=True, decay_rate=0.999) out = bn(out, is_training) out = jax.nn.relu(out) for i in range(len(self.strides)): block = MobileNetV1Block(self.channels[i], self.strides[i], self.use_bn) out = block(out, is_training) out = jnp.mean(out, axis=(1, 2)) out = hk.Flatten()(out) out = hk.Linear(self.num_classes, name="logits")(out) return out
dm-haiku-main
haiku/_src/nets/mobilenetv1.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A minimal interface mlp module.""" from collections.abc import Iterable from typing import Callable, Optional from haiku._src import base from haiku._src import basic from haiku._src import initializers from haiku._src import module import jax # If you are forking replace this with `import haiku as hk`. # pylint: disable=invalid-name class hk: Module = module.Module initializers = initializers get_parameter = base.get_parameter PRNGSequence = base.PRNGSequence Linear = basic.Linear dropout = basic.dropout # pylint: enable=invalid-name del base, basic, module class MLP(hk.Module): """A multi-layer perceptron module.""" def __init__( self, output_sizes: Iterable[int], w_init: Optional[hk.initializers.Initializer] = None, b_init: Optional[hk.initializers.Initializer] = None, with_bias: bool = True, activation: Callable[[jax.Array], jax.Array] = jax.nn.relu, activate_final: bool = False, name: Optional[str] = None, ): """Constructs an MLP. Args: output_sizes: Sequence of layer sizes. w_init: Initializer for :class:`~haiku.Linear` weights. b_init: Initializer for :class:`~haiku.Linear` bias. Must be ``None`` if ``with_bias=False``. with_bias: Whether or not to apply a bias in each layer. activation: Activation function to apply between :class:`~haiku.Linear` layers. Defaults to ReLU. activate_final: Whether or not to activate the final layer of the MLP. name: Optional name for this module. Raises: ValueError: If ``with_bias`` is ``False`` and ``b_init`` is not ``None``. """ if not with_bias and b_init is not None: raise ValueError("When with_bias=False b_init must not be set.") super().__init__(name=name) self.with_bias = with_bias self.w_init = w_init self.b_init = b_init self.activation = activation self.activate_final = activate_final layers = [] output_sizes = tuple(output_sizes) for index, output_size in enumerate(output_sizes): layers.append(hk.Linear(output_size=output_size, w_init=w_init, b_init=b_init, with_bias=with_bias, name="linear_%d" % index)) self.layers = tuple(layers) self.output_size = output_sizes[-1] if output_sizes else None def __call__( self, inputs: jax.Array, dropout_rate: Optional[float] = None, rng=None, ) -> jax.Array: """Connects the module to some inputs. Args: inputs: A Tensor of shape ``[batch_size, input_size]``. dropout_rate: Optional dropout rate. rng: Optional RNG key. Require when using dropout. Returns: The output of the model of size ``[batch_size, output_size]``. """ if dropout_rate is not None and rng is None: raise ValueError("When using dropout an rng key must be passed.") elif dropout_rate is None and rng is not None: raise ValueError("RNG should only be passed when using dropout.") rng = hk.PRNGSequence(rng) if rng is not None else None num_layers = len(self.layers) out = inputs for i, layer in enumerate(self.layers): out = layer(out) if i < (num_layers - 1) or self.activate_final: # Only perform dropout if we are activating the output. if dropout_rate is not None: out = hk.dropout(next(rng), dropout_rate, out) out = self.activation(out) return out def reverse( self, activate_final: Optional[bool] = None, name: Optional[str] = None, ) -> "MLP": """Returns a new MLP which is the layer-wise reverse of this MLP. NOTE: Since computing the reverse of an MLP requires knowing the input size of each linear layer this method will fail if the module has not been called at least once. The contract of reverse is that the reversed module will accept the output of the parent module as input and produce an output which is the input size of the parent. >>> mlp = hk.nets.MLP([1, 2, 3]) >>> mlp_in = jnp.ones([1, 2]) >>> y = mlp(mlp_in) >>> rev = mlp.reverse() >>> rev_mlp_out = rev(y) >>> mlp_in.shape == rev_mlp_out.shape True Args: activate_final: Whether the final layer of the MLP should be activated. name: Optional name for the new module. The default name will be the name of the current module prefixed with ``"reversed_"``. Returns: An MLP instance which is the reverse of the current instance. Note these instances do not share weights and, apart from being symmetric to each other, are not coupled in any way. """ if activate_final is None: activate_final = self.activate_final if name is None: name = self.name + "_reversed" output_sizes = tuple( layer.input_size for layer in reversed(self.layers) if layer.input_size is not None ) if len(output_sizes) != len(self.layers): raise ValueError("You cannot reverse an MLP until it has been called.") return MLP( output_sizes=output_sizes, w_init=self.w_init, b_init=self.b_init, with_bias=self.with_bias, activation=self.activation, activate_final=activate_final, name=name, )
dm-haiku-main
haiku/_src/nets/mlp.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Resnet.""" from collections.abc import Mapping, Sequence from typing import Any, Optional, Union from haiku._src import basic from haiku._src import batch_norm from haiku._src import conv from haiku._src import module from haiku._src import pool import jax import jax.numpy as jnp # If you are forking replace this with `import haiku as hk`. # pylint: disable=invalid-name class hk: Module = module.Module BatchNorm = batch_norm.BatchNorm Conv2D = conv.Conv2D Linear = basic.Linear max_pool = pool.max_pool # pylint: enable=invalid-name del basic, batch_norm, conv, module, pool FloatStrOrBool = Union[str, float, bool] class BlockV1(hk.Module): """ResNet V1 block with optional bottleneck.""" def __init__( self, channels: int, stride: Union[int, Sequence[int]], use_projection: bool, bn_config: Mapping[str, FloatStrOrBool], bottleneck: bool, name: Optional[str] = None, ): super().__init__(name=name) self.use_projection = use_projection bn_config = dict(bn_config) bn_config.setdefault("create_scale", True) bn_config.setdefault("create_offset", True) bn_config.setdefault("decay_rate", 0.999) if self.use_projection: self.proj_conv = hk.Conv2D( output_channels=channels, kernel_shape=1, stride=stride, with_bias=False, padding="SAME", name="shortcut_conv") self.proj_batchnorm = hk.BatchNorm(name="shortcut_batchnorm", **bn_config) channel_div = 4 if bottleneck else 1 conv_0 = hk.Conv2D( output_channels=channels // channel_div, kernel_shape=1 if bottleneck else 3, stride=1 if bottleneck else stride, with_bias=False, padding="SAME", name="conv_0") bn_0 = hk.BatchNorm(name="batchnorm_0", **bn_config) conv_1 = hk.Conv2D( output_channels=channels // channel_div, kernel_shape=3, stride=stride if bottleneck else 1, with_bias=False, padding="SAME", name="conv_1") bn_1 = hk.BatchNorm(name="batchnorm_1", **bn_config) layers = ((conv_0, bn_0), (conv_1, bn_1)) if bottleneck: conv_2 = hk.Conv2D( output_channels=channels, kernel_shape=1, stride=1, with_bias=False, padding="SAME", name="conv_2") bn_2 = hk.BatchNorm(name="batchnorm_2", scale_init=jnp.zeros, **bn_config) layers = layers + ((conv_2, bn_2),) self.layers = layers def __call__(self, inputs, is_training, test_local_stats): out = shortcut = inputs if self.use_projection: shortcut = self.proj_conv(shortcut) shortcut = self.proj_batchnorm(shortcut, is_training, test_local_stats) for i, (conv_i, bn_i) in enumerate(self.layers): out = conv_i(out) out = bn_i(out, is_training, test_local_stats) if i < len(self.layers) - 1: # Don't apply relu on last layer out = jax.nn.relu(out) return jax.nn.relu(out + shortcut) class BlockV2(hk.Module): """ResNet V2 block with optional bottleneck.""" def __init__( self, channels: int, stride: Union[int, Sequence[int]], use_projection: bool, bn_config: Mapping[str, FloatStrOrBool], bottleneck: bool, name: Optional[str] = None, ): super().__init__(name=name) self.use_projection = use_projection bn_config = dict(bn_config) bn_config.setdefault("create_scale", True) bn_config.setdefault("create_offset", True) if self.use_projection: self.proj_conv = hk.Conv2D( output_channels=channels, kernel_shape=1, stride=stride, with_bias=False, padding="SAME", name="shortcut_conv") channel_div = 4 if bottleneck else 1 conv_0 = hk.Conv2D( output_channels=channels // channel_div, kernel_shape=1 if bottleneck else 3, stride=1 if bottleneck else stride, with_bias=False, padding="SAME", name="conv_0") bn_0 = hk.BatchNorm(name="batchnorm_0", **bn_config) conv_1 = hk.Conv2D( output_channels=channels // channel_div, kernel_shape=3, stride=stride if bottleneck else 1, with_bias=False, padding="SAME", name="conv_1") bn_1 = hk.BatchNorm(name="batchnorm_1", **bn_config) layers = ((conv_0, bn_0), (conv_1, bn_1)) if bottleneck: conv_2 = hk.Conv2D( output_channels=channels, kernel_shape=1, stride=1, with_bias=False, padding="SAME", name="conv_2") # NOTE: Some implementations of ResNet50 v2 suggest initializing # gamma/scale here to zeros. bn_2 = hk.BatchNorm(name="batchnorm_2", **bn_config) layers = layers + ((conv_2, bn_2),) self.layers = layers def __call__(self, inputs, is_training, test_local_stats): x = shortcut = inputs for i, (conv_i, bn_i) in enumerate(self.layers): x = bn_i(x, is_training, test_local_stats) x = jax.nn.relu(x) if i == 0 and self.use_projection: shortcut = self.proj_conv(x) x = conv_i(x) return x + shortcut class BlockGroup(hk.Module): """Higher level block for ResNet implementation.""" def __init__( self, channels: int, num_blocks: int, stride: Union[int, Sequence[int]], bn_config: Mapping[str, FloatStrOrBool], resnet_v2: bool, bottleneck: bool, use_projection: bool, name: Optional[str] = None, ): super().__init__(name=name) block_cls = BlockV2 if resnet_v2 else BlockV1 self.blocks = [] for i in range(num_blocks): self.blocks.append( block_cls(channels=channels, stride=(1 if i else stride), use_projection=(i == 0 and use_projection), bottleneck=bottleneck, bn_config=bn_config, name="block_%d" % (i))) def __call__(self, inputs, is_training, test_local_stats): out = inputs for block in self.blocks: out = block(out, is_training, test_local_stats) return out def check_length(length, value, name): if len(value) != length: raise ValueError(f"`{name}` must be of length 4 not {len(value)}") class ResNet(hk.Module): """ResNet model.""" CONFIGS = { 18: { "blocks_per_group": (2, 2, 2, 2), "bottleneck": False, "channels_per_group": (64, 128, 256, 512), "use_projection": (False, True, True, True), }, 34: { "blocks_per_group": (3, 4, 6, 3), "bottleneck": False, "channels_per_group": (64, 128, 256, 512), "use_projection": (False, True, True, True), }, 50: { "blocks_per_group": (3, 4, 6, 3), "bottleneck": True, "channels_per_group": (256, 512, 1024, 2048), "use_projection": (True, True, True, True), }, 101: { "blocks_per_group": (3, 4, 23, 3), "bottleneck": True, "channels_per_group": (256, 512, 1024, 2048), "use_projection": (True, True, True, True), }, 152: { "blocks_per_group": (3, 8, 36, 3), "bottleneck": True, "channels_per_group": (256, 512, 1024, 2048), "use_projection": (True, True, True, True), }, 200: { "blocks_per_group": (3, 24, 36, 3), "bottleneck": True, "channels_per_group": (256, 512, 1024, 2048), "use_projection": (True, True, True, True), }, } BlockGroup = BlockGroup # pylint: disable=invalid-name BlockV1 = BlockV1 # pylint: disable=invalid-name BlockV2 = BlockV2 # pylint: disable=invalid-name def __init__( self, blocks_per_group: Sequence[int], num_classes: int, bn_config: Optional[Mapping[str, FloatStrOrBool]] = None, resnet_v2: bool = False, bottleneck: bool = True, channels_per_group: Sequence[int] = (256, 512, 1024, 2048), use_projection: Sequence[bool] = (True, True, True, True), logits_config: Optional[Mapping[str, Any]] = None, name: Optional[str] = None, initial_conv_config: Optional[Mapping[str, FloatStrOrBool]] = None, strides: Sequence[int] = (1, 2, 2, 2), ): """Constructs a ResNet model. Args: blocks_per_group: A sequence of length 4 that indicates the number of blocks created in each group. num_classes: The number of classes to classify the inputs into. bn_config: A dictionary of two elements, ``decay_rate`` and ``eps`` to be passed on to the :class:`~haiku.BatchNorm` layers. By default the ``decay_rate`` is ``0.9`` and ``eps`` is ``1e-5``. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to ``False``. bottleneck: Whether the block should bottleneck or not. Defaults to ``True``. channels_per_group: A sequence of length 4 that indicates the number of channels used for each block in each group. use_projection: A sequence of length 4 that indicates whether each residual block should use projection. logits_config: A dictionary of keyword arguments for the logits layer. name: Name of the module. initial_conv_config: Keyword arguments passed to the constructor of the initial :class:`~haiku.Conv2D` module. strides: A sequence of length 4 that indicates the size of stride of convolutions for each block in each group. """ super().__init__(name=name) self.resnet_v2 = resnet_v2 bn_config = dict(bn_config or {}) bn_config.setdefault("decay_rate", 0.9) bn_config.setdefault("eps", 1e-5) bn_config.setdefault("create_scale", True) bn_config.setdefault("create_offset", True) logits_config = dict(logits_config or {}) logits_config.setdefault("w_init", jnp.zeros) logits_config.setdefault("name", "logits") # Number of blocks in each group for ResNet. check_length(4, blocks_per_group, "blocks_per_group") check_length(4, channels_per_group, "channels_per_group") check_length(4, strides, "strides") initial_conv_config = dict(initial_conv_config or {}) initial_conv_config.setdefault("output_channels", 64) initial_conv_config.setdefault("kernel_shape", 7) initial_conv_config.setdefault("stride", 2) initial_conv_config.setdefault("with_bias", False) initial_conv_config.setdefault("padding", "SAME") initial_conv_config.setdefault("name", "initial_conv") self.initial_conv = hk.Conv2D(**initial_conv_config) if not self.resnet_v2: self.initial_batchnorm = hk.BatchNorm(name="initial_batchnorm", **bn_config) self.block_groups = [] for i, stride in enumerate(strides): self.block_groups.append( BlockGroup(channels=channels_per_group[i], num_blocks=blocks_per_group[i], stride=stride, bn_config=bn_config, resnet_v2=resnet_v2, bottleneck=bottleneck, use_projection=use_projection[i], name="block_group_%d" % (i))) if self.resnet_v2: self.final_batchnorm = hk.BatchNorm(name="final_batchnorm", **bn_config) self.logits = hk.Linear(num_classes, **logits_config) def __call__(self, inputs, is_training, test_local_stats=False): out = inputs out = self.initial_conv(out) if not self.resnet_v2: out = self.initial_batchnorm(out, is_training, test_local_stats) out = jax.nn.relu(out) out = hk.max_pool(out, window_shape=(1, 3, 3, 1), strides=(1, 2, 2, 1), padding="SAME") for block_group in self.block_groups: out = block_group(out, is_training, test_local_stats) if self.resnet_v2: out = self.final_batchnorm(out, is_training, test_local_stats) out = jax.nn.relu(out) out = jnp.mean(out, axis=(1, 2)) return self.logits(out) class ResNet18(ResNet): """ResNet18.""" def __init__( self, num_classes: int, bn_config: Optional[Mapping[str, FloatStrOrBool]] = None, resnet_v2: bool = False, logits_config: Optional[Mapping[str, Any]] = None, name: Optional[str] = None, initial_conv_config: Optional[Mapping[str, FloatStrOrBool]] = None, strides: Sequence[int] = (1, 2, 2, 2), ): """Constructs a ResNet model. Args: num_classes: The number of classes to classify the inputs into. bn_config: A dictionary of two elements, ``decay_rate`` and ``eps`` to be passed on to the :class:`~haiku.BatchNorm` layers. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to ``False``. logits_config: A dictionary of keyword arguments for the logits layer. name: Name of the module. initial_conv_config: Keyword arguments passed to the constructor of the initial :class:`~haiku.Conv2D` module. strides: A sequence of length 4 that indicates the size of stride of convolutions for each block in each group. """ super().__init__(num_classes=num_classes, bn_config=bn_config, initial_conv_config=initial_conv_config, resnet_v2=resnet_v2, strides=strides, logits_config=logits_config, name=name, **ResNet.CONFIGS[18]) class ResNet34(ResNet): """ResNet34.""" def __init__( self, num_classes: int, bn_config: Optional[Mapping[str, FloatStrOrBool]] = None, resnet_v2: bool = False, logits_config: Optional[Mapping[str, Any]] = None, name: Optional[str] = None, initial_conv_config: Optional[Mapping[str, FloatStrOrBool]] = None, strides: Sequence[int] = (1, 2, 2, 2), ): """Constructs a ResNet model. Args: num_classes: The number of classes to classify the inputs into. bn_config: A dictionary of two elements, ``decay_rate`` and ``eps`` to be passed on to the :class:`~haiku.BatchNorm` layers. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to ``False``. logits_config: A dictionary of keyword arguments for the logits layer. name: Name of the module. initial_conv_config: Keyword arguments passed to the constructor of the initial :class:`~haiku.Conv2D` module. strides: A sequence of length 4 that indicates the size of stride of convolutions for each block in each group. """ super().__init__(num_classes=num_classes, bn_config=bn_config, initial_conv_config=initial_conv_config, resnet_v2=resnet_v2, strides=strides, logits_config=logits_config, name=name, **ResNet.CONFIGS[34]) class ResNet50(ResNet): """ResNet50.""" def __init__( self, num_classes: int, bn_config: Optional[Mapping[str, FloatStrOrBool]] = None, resnet_v2: bool = False, logits_config: Optional[Mapping[str, Any]] = None, name: Optional[str] = None, initial_conv_config: Optional[Mapping[str, FloatStrOrBool]] = None, strides: Sequence[int] = (1, 2, 2, 2), ): """Constructs a ResNet model. Args: num_classes: The number of classes to classify the inputs into. bn_config: A dictionary of two elements, ``decay_rate`` and ``eps`` to be passed on to the :class:`~haiku.BatchNorm` layers. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to ``False``. logits_config: A dictionary of keyword arguments for the logits layer. name: Name of the module. initial_conv_config: Keyword arguments passed to the constructor of the initial :class:`~haiku.Conv2D` module. strides: A sequence of length 4 that indicates the size of stride of convolutions for each block in each group. """ super().__init__(num_classes=num_classes, bn_config=bn_config, initial_conv_config=initial_conv_config, resnet_v2=resnet_v2, strides=strides, logits_config=logits_config, name=name, **ResNet.CONFIGS[50]) class ResNet101(ResNet): """ResNet101.""" def __init__( self, num_classes: int, bn_config: Optional[Mapping[str, FloatStrOrBool]] = None, resnet_v2: bool = False, logits_config: Optional[Mapping[str, Any]] = None, name: Optional[str] = None, initial_conv_config: Optional[Mapping[str, FloatStrOrBool]] = None, strides: Sequence[int] = (1, 2, 2, 2), ): """Constructs a ResNet model. Args: num_classes: The number of classes to classify the inputs into. bn_config: A dictionary of two elements, ``decay_rate`` and ``eps`` to be passed on to the :class:`~haiku.BatchNorm` layers. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to ``False``. logits_config: A dictionary of keyword arguments for the logits layer. name: Name of the module. initial_conv_config: Keyword arguments passed to the constructor of the initial :class:`~haiku.Conv2D` module. strides: A sequence of length 4 that indicates the size of stride of convolutions for each block in each group. """ super().__init__(num_classes=num_classes, bn_config=bn_config, initial_conv_config=initial_conv_config, resnet_v2=resnet_v2, strides=strides, logits_config=logits_config, name=name, **ResNet.CONFIGS[101]) class ResNet152(ResNet): """ResNet152.""" def __init__( self, num_classes: int, bn_config: Optional[Mapping[str, FloatStrOrBool]] = None, resnet_v2: bool = False, logits_config: Optional[Mapping[str, Any]] = None, name: Optional[str] = None, initial_conv_config: Optional[Mapping[str, FloatStrOrBool]] = None, strides: Sequence[int] = (1, 2, 2, 2), ): """Constructs a ResNet model. Args: num_classes: The number of classes to classify the inputs into. bn_config: A dictionary of two elements, ``decay_rate`` and ``eps`` to be passed on to the :class:`~haiku.BatchNorm` layers. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to ``False``. logits_config: A dictionary of keyword arguments for the logits layer. name: Name of the module. initial_conv_config: Keyword arguments passed to the constructor of the initial :class:`~haiku.Conv2D` module. strides: A sequence of length 4 that indicates the size of stride of convolutions for each block in each group. """ super().__init__(num_classes=num_classes, bn_config=bn_config, initial_conv_config=initial_conv_config, resnet_v2=resnet_v2, strides=strides, logits_config=logits_config, name=name, **ResNet.CONFIGS[152]) class ResNet200(ResNet): """ResNet200.""" def __init__( self, num_classes: int, bn_config: Optional[Mapping[str, FloatStrOrBool]] = None, resnet_v2: bool = False, logits_config: Optional[Mapping[str, Any]] = None, name: Optional[str] = None, initial_conv_config: Optional[Mapping[str, FloatStrOrBool]] = None, strides: Sequence[int] = (1, 2, 2, 2), ): """Constructs a ResNet model. Args: num_classes: The number of classes to classify the inputs into. bn_config: A dictionary of two elements, ``decay_rate`` and ``eps`` to be passed on to the :class:`~haiku.BatchNorm` layers. resnet_v2: Whether to use the v1 or v2 ResNet implementation. Defaults to ``False``. logits_config: A dictionary of keyword arguments for the logits layer. name: Name of the module. initial_conv_config: Keyword arguments passed to the constructor of the initial :class:`~haiku.Conv2D` module. strides: A sequence of length 4 that indicates the size of stride of convolutions for each block in each group. """ super().__init__(num_classes=num_classes, bn_config=bn_config, initial_conv_config=initial_conv_config, resnet_v2=resnet_v2, strides=strides, logits_config=logits_config, name=name, **ResNet.CONFIGS[200])
dm-haiku-main
haiku/_src/nets/resnet.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Haiku implementation of VQ-VAE https://arxiv.org/abs/1711.00937.""" from typing import Any, Optional from haiku._src import base from haiku._src import initializers from haiku._src import module from haiku._src import moving_averages import jax import jax.numpy as jnp # If you are forking replace this with `import haiku as hk`. # pylint: disable=invalid-name class hk: get_parameter = base.get_parameter get_state = base.get_state set_state = base.set_state initializers = initializers ExponentialMovingAverage = moving_averages.ExponentialMovingAverage Module = module.Module # pylint: enable=invalid-name del base, initializers, module, moving_averages class VectorQuantizer(hk.Module): """Haiku module representing the VQ-VAE layer. Implements the algorithm presented in "Neural Discrete Representation Learning" by van den Oord et al. https://arxiv.org/abs/1711.00937 Input any tensor to be quantized. Last dimension will be used as space in which to quantize. All other dimensions will be flattened and will be seen as different examples to quantize. The output tensor will have the same shape as the input. For example a tensor with shape ``[16, 32, 32, 64]`` will be reshaped into ``[16384, 64]`` and all ``16384`` vectors (each of ``64`` dimensions) will be quantized independently. Attributes: embedding_dim: integer representing the dimensionality of the tensors in the quantized space. Inputs to the modules must be in this format as well. num_embeddings: integer, the number of vectors in the quantized space. commitment_cost: scalar which controls the weighting of the loss terms (see equation 4 in the paper - this variable is Beta). """ def __init__( self, embedding_dim: int, num_embeddings: int, commitment_cost: float, dtype: Any = jnp.float32, name: Optional[str] = None, cross_replica_axis: Optional[str] = None, ): """Initializes a VQ-VAE module. Args: embedding_dim: dimensionality of the tensors in the quantized space. Inputs to the modules must be in this format as well. num_embeddings: number of vectors in the quantized space. commitment_cost: scalar which controls the weighting of the loss terms (see equation 4 in the paper - this variable is Beta). dtype: dtype for the embeddings variable, defaults to ``float32``. name: name of the module. cross_replica_axis: If not ``None``, it should be a string representing the axis name over which this module is being run within a :func:`jax.pmap`. Supplying this argument means that perplexity is calculated across all replicas on that axis. """ super().__init__(name=name) self.embedding_dim = embedding_dim self.num_embeddings = num_embeddings self.commitment_cost = commitment_cost self.cross_replica_axis = cross_replica_axis self._embedding_shape = [embedding_dim, num_embeddings] self._embedding_dtype = dtype @property def embeddings(self): initializer = hk.initializers.VarianceScaling(distribution="uniform") return hk.get_parameter( "embeddings", self._embedding_shape, self._embedding_dtype, init=initializer) def __call__(self, inputs, is_training): """Connects the module to some inputs. Args: inputs: Tensor, final dimension must be equal to ``embedding_dim``. All other leading dimensions will be flattened and treated as a large batch. is_training: boolean, whether this connection is to training data. Returns: dict: Dictionary containing the following keys and values: * ``quantize``: Tensor containing the quantized version of the input. * ``loss``: Tensor containing the loss to optimize. * ``perplexity``: Tensor containing the perplexity of the encodings. * ``encodings``: Tensor containing the discrete encodings, ie which element of the quantized space each input element was mapped to. * ``encoding_indices``: Tensor containing the discrete encoding indices, ie which element of the quantized space each input element was mapped to. """ flat_inputs = jnp.reshape(inputs, [-1, self.embedding_dim]) distances = ( jnp.sum(jnp.square(flat_inputs), 1, keepdims=True) - 2 * jnp.matmul(flat_inputs, self.embeddings) + jnp.sum(jnp.square(self.embeddings), 0, keepdims=True)) encoding_indices = jnp.argmax(-distances, 1) encodings = jax.nn.one_hot(encoding_indices, self.num_embeddings, dtype=distances.dtype) # NB: if your code crashes with a reshape error on the line below about a # Tensor containing the wrong number of values, then the most likely cause # is that the input passed in does not have a final dimension equal to # self.embedding_dim. Ideally we would catch this with an Assert but that # creates various other problems related to device placement / TPUs. encoding_indices = jnp.reshape(encoding_indices, inputs.shape[:-1]) quantized = self.quantize(encoding_indices) e_latent_loss = jnp.mean( jnp.square(jax.lax.stop_gradient(quantized) - inputs)) q_latent_loss = jnp.mean( jnp.square(quantized - jax.lax.stop_gradient(inputs))) loss = q_latent_loss + self.commitment_cost * e_latent_loss # Straight Through Estimator quantized = inputs + jax.lax.stop_gradient(quantized - inputs) avg_probs = jnp.mean(encodings, 0) if self.cross_replica_axis: avg_probs = jax.lax.pmean(avg_probs, axis_name=self.cross_replica_axis) perplexity = jnp.exp(-jnp.sum(avg_probs * jnp.log(avg_probs + 1e-10))) return { "quantize": quantized, "loss": loss, "perplexity": perplexity, "encodings": encodings, "encoding_indices": encoding_indices, "distances": distances, } def quantize(self, encoding_indices): """Returns embedding tensor for a batch of indices.""" w = self.embeddings.swapaxes(1, 0) w = jax.device_put(w) # Required when embeddings is a NumPy array. return w[(encoding_indices,)] class VectorQuantizerEMA(hk.Module): r"""Haiku module representing the VQ-VAE layer. Implements a slightly modified version of the algorithm presented in "Neural Discrete Representation Learning" by van den Oord et al. https://arxiv.org/abs/1711.00937 The difference between :class:`VectorQuantizerEMA` and :class:`VectorQuantizer` is that this module uses :class:`~haiku.ExponentialMovingAverage`\ s to update the embedding vectors instead of an auxiliary loss. This has the advantage that the embedding updates are independent of the choice of optimizer (SGD, RMSProp, Adam, K-Fac, ...) used for the encoder, decoder and other parts of the architecture. For most experiments the EMA version trains faster than the non-EMA version. Input any tensor to be quantized. Last dimension will be used as space in which to quantize. All other dimensions will be flattened and will be seen as different examples to quantize. The output tensor will have the same shape as the input. For example a tensor with shape ``[16, 32, 32, 64]`` will be reshaped into ``[16384, 64]`` and all ``16384`` vectors (each of 64 dimensions) will be quantized independently. Attributes: embedding_dim: integer representing the dimensionality of the tensors in the quantized space. Inputs to the modules must be in this format as well. num_embeddings: integer, the number of vectors in the quantized space. commitment_cost: scalar which controls the weighting of the loss terms (see equation 4 in the paper). decay: float, decay for the moving averages. epsilon: small float constant to avoid numerical instability. """ def __init__( self, embedding_dim, num_embeddings, commitment_cost, decay, epsilon: float = 1e-5, dtype: Any = jnp.float32, cross_replica_axis: Optional[str] = None, name: Optional[str] = None, ): """Initializes a VQ-VAE EMA module. Args: embedding_dim: integer representing the dimensionality of the tensors in the quantized space. Inputs to the modules must be in this format as well. num_embeddings: integer, the number of vectors in the quantized space. commitment_cost: scalar which controls the weighting of the loss terms (see equation 4 in the paper - this variable is Beta). decay: float between 0 and 1, controls the speed of the Exponential Moving Averages. epsilon: small constant to aid numerical stability, default ``1e-5``. dtype: dtype for the embeddings variable, defaults to ``float32``. cross_replica_axis: If not ``None``, it should be a string representing the axis name over which this module is being run within a :func:`jax.pmap`. Supplying this argument means that cluster statistics and the perplexity are calculated across all replicas on that axis. name: name of the module. """ super().__init__(name=name) if not 0 <= decay <= 1: raise ValueError("decay must be in range [0, 1]") self.embedding_dim = embedding_dim self.num_embeddings = num_embeddings self.decay = decay self.commitment_cost = commitment_cost self.epsilon = epsilon self.cross_replica_axis = cross_replica_axis self._embedding_shape = [embedding_dim, num_embeddings] self._dtype = dtype self._ema_cluster_size = hk.ExponentialMovingAverage( decay=self.decay, name="ema_cluster_size") self._ema_dw = hk.ExponentialMovingAverage(decay=self.decay, name="ema_dw") @property def embeddings(self): initializer = hk.initializers.VarianceScaling(distribution="uniform") return hk.get_state( "embeddings", self._embedding_shape, self._dtype, init=initializer) @property def ema_cluster_size(self): self._ema_cluster_size.initialize([self.num_embeddings], self._dtype) return self._ema_cluster_size @property def ema_dw(self): self._ema_dw.initialize(self._embedding_shape, self._dtype) return self._ema_dw def __call__(self, inputs, is_training): """Connects the module to some inputs. Args: inputs: Tensor, final dimension must be equal to ``embedding_dim``. All other leading dimensions will be flattened and treated as a large batch. is_training: boolean, whether this connection is to training data. When this is set to ``False``, the internal moving average statistics will not be updated. Returns: dict: Dictionary containing the following keys and values: * ``quantize``: Tensor containing the quantized version of the input. * ``loss``: Tensor containing the loss to optimize. * ``perplexity``: Tensor containing the perplexity of the encodings. * ``encodings``: Tensor containing the discrete encodings, ie which element of the quantized space each input element was mapped to. * ``encoding_indices``: Tensor containing the discrete encoding indices, ie which element of the quantized space each input element was mapped to. """ flat_inputs = jnp.reshape(inputs, [-1, self.embedding_dim]) embeddings = self.embeddings distances = ( jnp.sum(jnp.square(flat_inputs), 1, keepdims=True) - 2 * jnp.matmul(flat_inputs, embeddings) + jnp.sum(jnp.square(embeddings), 0, keepdims=True)) encoding_indices = jnp.argmax(-distances, 1) encodings = jax.nn.one_hot(encoding_indices, self.num_embeddings, dtype=distances.dtype) # NB: if your code crashes with a reshape error on the line below about a # Tensor containing the wrong number of values, then the most likely cause # is that the input passed in does not have a final dimension equal to # self.embedding_dim. Ideally we would catch this with an Assert but that # creates various other problems related to device placement / TPUs. encoding_indices = jnp.reshape(encoding_indices, inputs.shape[:-1]) quantized = self.quantize(encoding_indices) e_latent_loss = jnp.mean( jnp.square(jax.lax.stop_gradient(quantized) - inputs)) if is_training: cluster_size = jnp.sum(encodings, axis=0) if self.cross_replica_axis: cluster_size = jax.lax.psum( cluster_size, axis_name=self.cross_replica_axis) updated_ema_cluster_size = self.ema_cluster_size(cluster_size) dw = jnp.matmul(flat_inputs.T, encodings) if self.cross_replica_axis: dw = jax.lax.psum(dw, axis_name=self.cross_replica_axis) updated_ema_dw = self.ema_dw(dw) n = jnp.sum(updated_ema_cluster_size) updated_ema_cluster_size = ((updated_ema_cluster_size + self.epsilon) / (n + self.num_embeddings * self.epsilon) * n) normalised_updated_ema_w = ( updated_ema_dw / jnp.reshape(updated_ema_cluster_size, [1, -1])) hk.set_state("embeddings", normalised_updated_ema_w) loss = self.commitment_cost * e_latent_loss else: loss = self.commitment_cost * e_latent_loss # Straight Through Estimator quantized = inputs + jax.lax.stop_gradient(quantized - inputs) avg_probs = jnp.mean(encodings, 0) if self.cross_replica_axis: avg_probs = jax.lax.pmean(avg_probs, axis_name=self.cross_replica_axis) perplexity = jnp.exp(-jnp.sum(avg_probs * jnp.log(avg_probs + 1e-10))) return { "quantize": quantized, "loss": loss, "perplexity": perplexity, "encodings": encodings, "encoding_indices": encoding_indices, "distances": distances, } def quantize(self, encoding_indices): """Returns embedding tensor for a batch of indices.""" w = self.embeddings.swapaxes(1, 0) w = jax.device_put(w) # Required when embeddings is a NumPy array. return w[(encoding_indices,)]
dm-haiku-main
haiku/_src/nets/vqvae.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku._src.nets.mlp.""" from absl.testing import absltest from absl.testing import parameterized from haiku._src import test_utils from haiku._src.nets import mlp import jax import jax.numpy as jnp class MLPTest(parameterized.TestCase): @test_utils.transform_and_run def test_b_init_when_with_bias_false(self): with self.assertRaisesRegex(ValueError, "b_init must not be set"): mlp.MLP([1], with_bias=False, b_init=lambda *_: _) @parameterized.parameters(1, 2, 3) @test_utils.transform_and_run def test_layers(self, num_layers): mod = mlp.MLP([1] * num_layers) self.assertLen(mod.layers, num_layers) @parameterized.parameters(1, 2, 3) @test_utils.transform_and_run def test_applies_activation(self, num_layers): activation = CountingActivation() mod = mlp.MLP([1] * num_layers, activation=activation) mod(jnp.ones([1, 1])) self.assertEqual(activation.count, num_layers - 1) @parameterized.parameters(1, 2, 3) @test_utils.transform_and_run def test_activate_final(self, num_layers): activation = CountingActivation() mod = mlp.MLP([1] * num_layers, activate_final=True, activation=activation) mod(jnp.ones([1, 1])) self.assertEqual(activation.count, num_layers) @parameterized.parameters(1, 2, 3) @test_utils.transform_and_run def test_adds_index_to_layer_names(self, num_layers): mod = mlp.MLP([1] * num_layers) for index, linear in enumerate(mod.layers): self.assertEqual(linear.name, "linear_%d" % index) @parameterized.parameters(False, True) @test_utils.transform_and_run def test_passes_with_bias_to_layers(self, with_bias): mod = mlp.MLP([1, 1, 1], with_bias=with_bias) for linear in mod.layers: self.assertEqual(linear.with_bias, with_bias) @test_utils.transform_and_run(run_apply=False) def test_repeat_initializer(self): w_init = CountingInitializer() b_init = CountingInitializer() mod = mlp.MLP([1, 1, 1], w_init=w_init, b_init=b_init) mod(jnp.ones([1, 1])) self.assertEqual(w_init.count, 3) self.assertEqual(b_init.count, 3) @test_utils.transform_and_run def test_default_name(self): mod = mlp.MLP([1]) self.assertEqual(mod.name, "mlp") @test_utils.transform_and_run def test_custom_name(self): mod = mlp.MLP([1], name="foobar") self.assertEqual(mod.name, "foobar") @test_utils.transform_and_run def test_reverse_default_name(self): mod = reversed_mlp() self.assertEqual(mod.name, "mlp_reversed") @test_utils.transform_and_run def test_reverse_custom_name(self): mod = reversed_mlp(name="foobar") self.assertEqual(mod.name, "foobar_reversed") @test_utils.transform_and_run def test_reverse_override_name(self): mod = mlp.MLP([2, 3, 4]) mod(jnp.ones([1, 1])) rev = mod.reverse(name="foobar") self.assertEqual(rev.name, "foobar") @test_utils.transform_and_run def test_reverse(self): mod = reversed_mlp() self.assertEqual([l.output_size for l in mod.layers], [3, 2, 1]) @parameterized.parameters(True, False) @test_utils.transform_and_run def test_reverse_passed_with_bias(self, with_bias): mod = reversed_mlp(with_bias=with_bias) for linear in mod.layers: self.assertEqual(linear.with_bias, with_bias) @test_utils.transform_and_run def test_reverse_w_init(self): w_init = CountingInitializer() mod = reversed_mlp(w_init=w_init) for linear in mod.layers: self.assertIs(linear.w_init, w_init) @test_utils.transform_and_run def test_reverse_b_init(self): b_init = CountingInitializer() mod = reversed_mlp(b_init=b_init) for linear in mod.layers: self.assertIs(linear.b_init, b_init) @test_utils.transform_and_run def test_reverse_activation(self): activation = CountingActivation() mod = reversed_mlp(activation=activation) activation.count = 0 mod(jnp.ones([1, 1])) self.assertEqual(activation.count, 2) @test_utils.transform_and_run def test_dropout_requires_key(self): mod = mlp.MLP([1, 1]) with self.assertRaisesRegex(ValueError, "rng key must be passed"): mod(jnp.ones([1, 1]), dropout_rate=0.5) @test_utils.transform_and_run def test_no_dropout_rejects_rng(self): mod = mlp.MLP([1, 1]) with self.assertRaisesRegex(ValueError, "only.*when using dropout"): mod(jnp.ones([1, 1]), rng=jax.random.PRNGKey(42)) @parameterized.parameters(False, True) @test_utils.transform_and_run def test_reverse_activate_final(self, activate_final): activation = CountingActivation() mod = reversed_mlp(activation=activation, activate_final=activate_final) activation.count = 0 mod(jnp.ones([1, 1])) self.assertEqual(activation.count, 3 if activate_final else 2) @parameterized.parameters(False, True) @test_utils.transform_and_run def test_applies_activation_with_dropout(self, use_dropout): if use_dropout: dropout_rate = 0.5 rng = jax.random.PRNGKey(42) else: dropout_rate = rng = None activation = CountingActivation() mod = mlp.MLP([1, 1, 1], activation=activation) mod(jnp.ones([1, 1]), dropout_rate, rng) self.assertEqual(activation.count, 2) @test_utils.transform_and_run def test_repr(self): mod = mlp.MLP([1, 2, 3]) for index, linear in enumerate(mod.layers): self.assertEqual( repr(linear), f"Linear(output_size={index + 1}, name='linear_{index}')", ) @parameterized.parameters(([30, 15],), ([8],), ([],)) @test_utils.transform_and_run def test_output_size(self, output_sizes): mod = mlp.MLP(output_sizes) expected_output_size = output_sizes[-1] if output_sizes else None self.assertEqual(mod.output_size, expected_output_size) def reversed_mlp(**kwargs): mod = mlp.MLP([2, 3, 4], **kwargs) mod(jnp.ones([1, 1])) return mod.reverse() class CountingActivation: def __init__(self): self.count = 0 def __call__(self, x): self.count += 1 return x class CountingInitializer: def __init__(self): self.count = 0 def __call__(self, shape, dtype=jnp.float32): self.count += 1 return jnp.ones(shape, dtype=dtype) if __name__ == "__main__": absltest.main()
dm-haiku-main
haiku/_src/nets/mlp_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku._src.nets.resnet.""" from absl.testing import absltest from absl.testing import parameterized import haiku as hk from haiku._src import test_utils from haiku._src import transform from haiku._src.nets import resnet import jax import jax.numpy as jnp import numpy as np _RESNETS = [f"ResNet{i}" for i in (18, 34, 50, 101, 152, 200)] _RESNET_NUM_PARAMS = [int(i * 1e6) for i in (11.7, 21.8, 25.6, 44.5, 60.2, 64.7)] _RESNET_HAS_PROJECTION = [False, False, True, True, True, True] class ResnetTest(parameterized.TestCase): @test_utils.combined_named_parameters(test_utils.named_bools("resnet_v2"), test_utils.named_bools("bottleneck")) @test_utils.transform_and_run def test_simple(self, resnet_v2, bottleneck): image = jnp.ones([2, 64, 64, 3]) model = resnet.ResNet([1, 1, 1, 1], 10, resnet_v2=resnet_v2, bottleneck=bottleneck) for is_training in (True, False): logits = model(image, is_training=is_training) self.assertEqual(logits.shape, (2, 10)) @test_utils.combined_named_parameters(test_utils.named_bools("resnet_v2"), test_utils.named_bools("bottleneck")) def test_local_stats(self, resnet_v2, bottleneck): def forward_fn(image): model = resnet.ResNet([1, 1, 1, 1], 10, resnet_v2=resnet_v2, bottleneck=bottleneck) return model(image, is_training=False, test_local_stats=True) forward = transform.transform(forward_fn) rng = jax.random.PRNGKey(42) image = jnp.ones([2, 64, 64, 3]) params = forward.init(rng, image) logits = forward.apply(params, None, image) self.assertEqual(logits.shape, (2, 10)) @parameterized.parameters(3, 5) @test_utils.transform_and_run def test_error_incorrect_args_block_list(self, list_length): block_list = [i for i in range(list_length)] with self.assertRaisesRegex( ValueError, "blocks_per_group` must be of length 4 not {}".format( list_length)): resnet.ResNet(block_list, 10, {"decay_rate": 0.9, "eps": 1e-5}) @parameterized.parameters(3, 5) @test_utils.transform_and_run def test_error_incorrect_args_channel_list(self, list_length): channel_list = [i for i in range(list_length)] with self.assertRaisesRegex( ValueError, "channels_per_group` must be of length 4 not {}".format( list_length)): resnet.ResNet([1, 1, 1, 1], 10, {"decay_rate": 0.9, "eps": 1e-5}, channels_per_group=channel_list) @test_utils.combined_named_parameters( [(i, (getattr(resnet, i), n)) for i, n in zip(_RESNETS, _RESNET_NUM_PARAMS)], test_utils.named_bools("resnet_v2"), ) def test_num_params(self, resnet_class_and_num_params, resnet_v2): resnet_class, expected_num_params = resnet_class_and_num_params def model_func(img): model = resnet_class(1000, resnet_v2=resnet_v2) return model(img, is_training=True) model = hk.transform_with_state(model_func) image = jnp.ones([2, 64, 64, 3]) rng = jax.random.PRNGKey(0) params, _ = model.init(rng, image) num_params = sum( np.prod(p.shape).item() for p in jax.tree_util.tree_leaves(params)) self.assertGreater(num_params, int(0.998 * expected_num_params)) self.assertLess(num_params, int(1.002 * expected_num_params)) @test_utils.combined_named_parameters( [(i, (getattr(resnet, i), p)) for i, p in zip(_RESNETS, _RESNET_HAS_PROJECTION)], test_utils.named_bools("resnet_v2"), ) @test_utils.transform_and_run def test_has_projection(self, resnet_class_and_has_projection, resnet_v2): resnet_class, has_projection = resnet_class_and_has_projection model = resnet_class(1000, resnet_v2=resnet_v2) for i, block_group in enumerate(model.block_groups): if i == 0: self.assertEqual(hasattr(block_group.blocks[0], "proj_conv"), has_projection) else: self.assertTrue(hasattr(block_group.blocks[0], "proj_conv")) for block in block_group.blocks[1:]: self.assertFalse(hasattr(block, "proj_conv")) @test_utils.combined_named_parameters( [(i, getattr(resnet, i)) for i in _RESNETS], test_utils.named_bools("resnet_v2"), ) def test_logits_config(self, resnet_class, resnet_v2): def model_func_logits_config_default(img): model = resnet_class(1000, resnet_v2=resnet_v2) return model(img, is_training=True) def model_func_logits_config_modified(img): model = resnet_class(1000, resnet_v2=resnet_v2, logits_config=dict(w_init=jnp.ones)) return model(img, is_training=True) image = jnp.ones([2, 64, 64, 3]) rng = jax.random.PRNGKey(0) model = hk.transform_with_state(model_func_logits_config_default) params, _ = model.init(rng, image) logits_keys = [k for k in params.keys() if "/logits" in k] self.assertLen(logits_keys, 1) # Check logits params are zeros w_logits = params[logits_keys[0]]["w"] np.testing.assert_allclose(jnp.zeros_like(w_logits), w_logits) model = hk.transform_with_state(model_func_logits_config_modified) params, _ = model.init(rng, image) # Check logits params are ones w_logits = params[logits_keys[0]]["w"] np.testing.assert_allclose(jnp.ones_like(w_logits), w_logits) @test_utils.combined_named_parameters( [(i, getattr(resnet, i)) for i in _RESNETS], ) @test_utils.transform_and_run def test_initial_conv_config(self, resnet_cls): config = dict(name="custom_name", output_channels=32, kernel_shape=(3, 3), stride=(1, 1), padding="VALID", with_bias=True) net = resnet_cls(1000, initial_conv_config=config) for key, value in config.items(): self.assertEqual(getattr(net.initial_conv, key), value) if __name__ == "__main__": absltest.main()
dm-haiku-main
haiku/_src/nets/resnet_test.py
# Copyright 2023 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku._src.flax.utils.""" from absl.testing import absltest from absl.testing import parameterized from haiku._src.flax import utils class UtilsTest(parameterized.TestCase): def test_flatten_flax_to_haiku(self): variables = {'params': {'mod1': {'mod2': {'w': 0}}, '~': {'w': 1}}} hk_params = utils.flatten_flax_to_haiku(variables['params']) self.assertEqual(hk_params, {'mod1/mod2': {'w': 0}, '~': {'w': 1}}) def test_flatten_flax_to_haiku_toplevel(self): variables = {'params': {'w': 0}} hk_params = utils.flatten_flax_to_haiku(variables['params']) self.assertEqual(hk_params, {'~': {'w': 0}}) if __name__ == '__main__': absltest.main()
dm-haiku-main
haiku/_src/flax/utils_test.py
# Copyright 2023 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku._src.flax.transform_flax.""" from absl.testing import absltest from absl.testing import parameterized import flax.errors import flax.linen as nn from haiku._src import base from haiku._src import module from haiku._src import transform from haiku._src.flax import transform_flax import jax import jax.numpy as jnp class Child(nn.Module): @nn.compact def __call__(self): if self.is_initializing(): zeros = jnp.zeros([]) self.put_variable('params', 'w', zeros + 0) self.put_variable('flim_state', 's', zeros + 1) self.put_variable('flam_state', 's', zeros + 2) w = self.get_variable('params', 'w') flim = self.get_variable('flim_state', 's') flam = self.get_variable('flam_state', 's') return w, flim, flam class Parent(nn.Module): @nn.compact def __call__(self): Child()() class Outer(nn.Module): @nn.compact def __call__(self): Parent()() class Empty(nn.Module): def __call__(self): pass class OuterHk(module.Module): def __call__(self): mod = transform_flax.lift(Outer(), name='outer') mod() class ParamsRNG(nn.Module): @nn.compact def __call__(self): return self.make_rng('params') class UsesRNG(nn.Module): @nn.compact def __call__(self): self.make_rng('foo') self.param('w', nn.initializers.normal(), [], jnp.float32) class Counter(nn.Module): @nn.compact def __call__(self): if self.is_initializing(): c = jnp.zeros([]) self.put_variable('state', 'count', c) return c else: c = self.get_variable('state', 'count') self.put_variable('state', 'count', c + 1) return c class TransformFlaxTest(parameterized.TestCase): def test_lift_empty(self): def f(): mod = transform_flax.lift(Empty(), name='foo') mod() f = transform.transform_with_state(f) params, state = f.init(jax.random.PRNGKey(42)) self.assertEmpty(params) self.assertEmpty(state) def test_lift_toplevel(self): def f(): mod = transform_flax.lift(Child(), name='foo') mod() f = transform.transform_with_state(f) params, state = f.init(jax.random.PRNGKey(42)) self.assertEqual(params, {'foo/~': {'w': 0}}) self.assertEqual(state, {'foo/flim_state/~': {'s': 1}, 'foo/flam_state/~': {'s': 2}}) def test_lift(self): def f(): mod = transform_flax.lift(Outer(), name='foo') mod() f = transform.transform_with_state(f) rng = jax.random.PRNGKey(42) params, state = f.init(rng) self.assertEqual(params, {'foo/Parent_0/Child_0': {'w': 0}}) self.assertEqual( state, { 'foo/flim_state/Parent_0/Child_0': {'s': 1}, 'foo/flam_state/Parent_0/Child_0': {'s': 2}, }, ) def test_lift_used_inside_module(self): def f(): mod = OuterHk() mod() f = transform.transform_with_state(f) rng = jax.random.PRNGKey(42) params, state = f.init(rng) self.assertEqual(params, {'outer_hk/outer/Parent_0/Child_0': {'w': 0}}) self.assertEqual( state, { 'outer_hk/outer/flim_state/Parent_0/Child_0': {'s': 1}, 'outer_hk/outer/flam_state/Parent_0/Child_0': {'s': 2}, }, ) def test_lift_module_called_repeatedly(self): def f(): mod = transform_flax.lift(Outer(), name='foo') mod() f = transform.transform_with_state(f) rng = jax.random.PRNGKey(42) params, state = f.init(rng) self.assertEqual(params, {'foo/Parent_0/Child_0': {'w': 0}}) self.assertEqual( state, { 'foo/flim_state/Parent_0/Child_0': {'s': 1}, 'foo/flam_state/Parent_0/Child_0': {'s': 2}, }, ) def test_stateful_equivalence(self): def f(): mod = transform_flax.lift(counter, name='foo') return mod() counter = Counter() f = transform.transform_with_state(f) rng = jax.random.PRNGKey(42) _, state = f.init(rng) variables = counter.init(rng) self.assertEqual(state, {'foo/state/~': {'count': 0}}) self.assertEqual(variables, {'state': {'count': 0}}) for i in range(10): out_hk, state = f.apply({}, state, None) out_flax, variables = counter.apply(variables, mutable=['state']) self.assertEqual(out_hk, out_flax) self.assertEqual(state, {'foo/state/~': {'count': i + 1}}) self.assertEqual(variables, {'state': {'count': i + 1}}) def test_uses_updated_params(self): def f(): mod = transform_flax.lift(Child(), name='foo') return mod() f = transform.transform_with_state(f) rng = jax.random.PRNGKey(42) params, state = f.init(rng) # Modify the parameters from their initial value. params, state = jax.tree_map(lambda x: x + 1, (params, state)) (w_out, flim_out, flam_out), _ = f.apply(params, state, None) w = params['foo/~']['w'] flim = state['foo/flim_state/~']['s'] flam = state['foo/flam_state/~']['s'] # We want to assert that the params/state passed in are literally what is # returned, this ensures that initialisers did not re-run. self.assertIs(w, w_out) self.assertIs(flim, flim_out) self.assertIs(flam, flam_out) def test_with_explicit_rngs(self): def f(): mod = transform_flax.lift(ParamsRNG(), name='foo') return mod(rngs={'params': jax.random.PRNGKey(42)}) f = transform.transform(f) params = f.init(None) self.assertIsNotNone(f.apply(params, None)) @parameterized.parameters(True, False) def test_with_keys_dict(self, with_params_rng: bool): def f(): mod = transform_flax.lift(UsesRNG(), name='foo') if with_params_rng: rngs = {'params': base.next_rng_key(), 'foo': base.next_rng_key()} else: rngs = {'foo': base.next_rng_key()} return mod(rngs=rngs) f = transform.transform(f) rng = jax.random.PRNGKey(42) init_rng, apply_rng = jax.random.split(rng) params = f.init(init_rng) f.apply(params, apply_rng) # Does not fail. def test_non_mapping_rngs(self): def f(): mod = transform_flax.lift(ParamsRNG(), name='foo') return mod(rngs=jax.random.PRNGKey(42)) f = transform.transform(f) with self.assertRaisesRegex( flax.errors.InvalidRngError, 'should be a dictionary' ): f.init(None) def test_lift_multiple_uses(self): def f(x): mod = transform_flax.lift(nn.Dense(1), name='mod') x = mod(x) x = mod(x) return x f = transform.transform(f) rng = jax.random.PRNGKey(42) x = jnp.ones([1, 1]) params = f.init(rng, x) params = jax.tree_map(lambda x: (x.shape, x.dtype), params) self.assertEqual( params, { 'mod/~': { 'bias': ((1,), jnp.float32), 'kernel': ((1, 1), jnp.float32), } }, ) if __name__ == '__main__': absltest.main()
dm-haiku-main
haiku/_src/flax/transform_flax_test.py
# Copyright 2023 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility functions for working with Haiku and Flax code.""" from collections.abc import Mapping, MutableMapping, Sequence from typing import Any, Union from haiku._src import typing # If you are forking replace this with `import haiku as hk`. # pylint: disable=invalid-name class hk: Params = typing.Params State = typing.State # pylint: enable=invalid-name del typing FlaxCollection = Mapping[str, Any] MutableFlaxCollection = MutableMapping[str, Any] FlaxVariables = Mapping[str, FlaxCollection] MutableFlaxVariables = MutableMapping[str, MutableFlaxCollection] HaikuParamsOrState = Union[hk.Params, hk.State] MutableHaikuParamsOrState = MutableMapping[str, MutableMapping[str, Any]] def flatten_flax_to_haiku(collection: FlaxCollection) -> HaikuParamsOrState: """Flattens a Flax variable collection (e.g. params) to a Haiku dict.""" out = {} for name, value in collection.items(): if not isinstance(value, Mapping): if '~' not in out: out['~'] = {} out['~'][name] = value else: _flatten_flax_to_haiku_inner(value, out, (name,)) return out def _flatten_flax_to_haiku_inner( collection: FlaxCollection, out: MutableHaikuParamsOrState, prefix: Sequence[str], ) -> HaikuParamsOrState: """Recursive inner loop of `flatten_flax_to_haiku`.""" for name, value in collection.items(): if isinstance(value, Mapping): _flatten_flax_to_haiku_inner(value, out=out, prefix=(*prefix, name)) else: assert prefix mod_name = '/'.join(prefix) if mod_name not in out: out[mod_name] = {} out[mod_name][name] = value return out
dm-haiku-main
haiku/_src/flax/utils.py
# Copyright 2023 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for converting Flax modules to use with Haiku.""" from collections.abc import Mapping from typing import Any, Callable import flax.errors import flax.linen as nn from haiku._src import base from haiku._src import filtering from haiku._src import lift as lift_lib from haiku._src import transform from haiku._src import typing from haiku._src.flax import utils # pylint: disable=invalid-name # If you are forking replace this with `import haiku as hk`. class hk: lift_with_state = lift_lib.lift_with_state maybe_next_rng_key = base.maybe_next_rng_key Params = typing.Params running_init = transform.running_init State = typing.State TransformedWithState = transform.TransformedWithState # If you are forking replace this with `import haiku.data_structures as hkds`. class hkds: traverse = filtering.traverse # pylint: enable=invalid-name del typing, filtering, lift_lib FlaxCollection = utils.FlaxCollection FlaxVariables = utils.FlaxVariables MutableFlaxVariables = utils.MutableFlaxVariables def _from_haiku_params(params: hk.Params) -> FlaxCollection: """Converts Haiku parameters to a nested Flax collection.""" collection = {} for mod_name, name, value in hkds.traverse(params): if mod_name == '~': collection[name] = value else: nested_collection = collection for part in mod_name.split('/'): if part not in nested_collection: nested_collection[part] = {} nested_collection = nested_collection[part] nested_collection[name] = value return collection def _to_haiku_state(variables: FlaxVariables) -> hk.State: """Converts a nested Flax collection to a Haiku state dict.""" state = {} for collection_name, collection in variables.items(): flat_collection = utils.flatten_flax_to_haiku(collection) for mod_name, name, value in hkds.traverse(flat_collection): mod_name = f'{collection_name}/{mod_name}' if mod_name not in state: state[mod_name] = {} state[mod_name][name] = value return state def _from_haiku_state(state: hk.State) -> MutableFlaxVariables: """Converts a Haiku state dict to a nested Flax collection.""" variables = {} for name, module_state in state.items(): collection_name, *mod_name, name = name.split('/') if collection_name not in variables: variables[collection_name] = {} if not mod_name and name == '~': variables[collection_name].update(module_state) else: nested_collection = variables[collection_name] for part in mod_name: if part not in nested_collection: nested_collection[part] = {} nested_collection = nested_collection[part] nested_collection[name] = dict(module_state) return variables def _flax_transform_with_state(mod: nn.Module) -> hk.TransformedWithState: """Transforms a Flax ``nn.Module`` into a Haiku transformed function. Example usage: >>> mod = nn.Dense(10) >>> f = _flax_transform_with_state(mod) >>> rng = jax.random.PRNGKey(42) >>> x = jnp.ones([1, 1]) >>> params, state = f.init(rng, x) >>> out, state = f.apply(params, state, rng, x) Args: mod: Any Flax ``nn.Module`` instance. Returns: A :class:`~haiku.TransformedWithState` instance (equivalent to the result of calling :func:`transform_with_state`). See also: lift: Use a Flax module as part of an outer :func:`~haiku.transform` or :func:`~haiku.transform_with_state`. """ def init_fn(rng, *args, **kwargs): assert 'rngs' not in kwargs # Handled in `lift`. variables = dict(mod.init(rng, *args, **kwargs)) params = utils.flatten_flax_to_haiku(variables.pop('params', {})) state = _to_haiku_state(variables) return params, state def apply_fn(params, state, rng, *args, **kwargs): if rng is not None: raise ValueError( 'RNGs passed in apply must be passed in the rngs keyword argument' ) variables = _from_haiku_state(state) mutable = set(variables) variables['params'] = _from_haiku_params(params) out, variables = mod.apply(variables, *args, **kwargs, mutable=mutable) state = _to_haiku_state(variables) return out, state return hk.TransformedWithState(init_fn, apply_fn) def lift( mod: nn.Module, *, name: str, ) -> Callable[..., Any]: """Lifts a flax nn.Module into a Haiku transformed function. For a Flax Module (e.g. ``mod = nn.Dense(10)``), ``mod = lift(mod)`` allows you to run the call method of the module as if the module was a regular Haiku module. Parameters and state from the Flax module are registered with Haiku and become part of the params/state dictionaries (as returned from ``init``/``apply``). >>> def f(x): ... # Create and "lift" a Flax module. ... mod = hk.experimental.flax.lift(nn.Dense(300), name='dense') ... x = mod(x) # Any params/state will be registered ... # with Haiku when applying the module. ... x = jax.nn.relu(x) ... x = hk.nets.MLP([100, 10]) # You can of course mix Haiku modules in. ... return x >>> f = hk.transform(f) >>> rng = jax.random.PRNGKey(42) >>> x = jnp.ones([1, 1]) >>> params = f.init(rng, x) >>> out = f.apply(params, None, x) Args: mod: Any Flax ``nn.Module`` instance. name: Name scope to prefix entries in the outer params/state dict. Returns: A function that when applied calls the call method of the given Flax module and returns its output. As a side effect of calling the module any module parameters and state variables are registered with Haiku. """ mod = _flax_transform_with_state(mod) init_fn, updater = hk.lift_with_state(mod.init, name=name, allow_reuse=True) def wrapped(*args, **kwargs): init_kwargs = dict(kwargs) if hk.running_init(): if 'rngs' not in init_kwargs: init_rng = hk.maybe_next_rng_key() elif isinstance(init_kwargs['rngs'], Mapping): init_rng = dict(init_kwargs.pop('rngs')) if 'params' not in init_rng: rng = hk.maybe_next_rng_key() if rng is not None: init_rng['params'] = rng else: raise flax.errors.InvalidRngError( 'rngs should be a dictionary mapping strings to `jax.PRNGKey`.' ) else: init_rng = None params, state = init_fn(init_rng, *args, **init_kwargs) out, state = mod.apply(params, state, None, *args, **kwargs) updater._used = False # pylint: disable=protected-access updater.update(state) return out return wrapped
dm-haiku-main
haiku/_src/flax/transform_flax.py
# Copyright 2023 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for converting Haiku modules to Flax modules.""" from typing import TypeVar, Union import flax.core import flax.linen as nn from haiku._src import filtering from haiku._src import transform as transform_lib from haiku._src import typing from haiku._src.flax import utils # pylint: disable=invalid-name # If you are forking replace this with `import haiku as hk`. class hk: Params = typing.Params State = typing.State SupportsCall = typing.SupportsCall transform = transform_lib.transform transform_with_state = transform_lib.transform_with_state Transformed = transform_lib.Transformed TransformedWithState = transform_lib.TransformedWithState with_empty_state = transform_lib.with_empty_state # If you are forking replace this with `import haiku.data_structures as hkds`. class hkds: traverse = filtering.traverse # pylint: enable=invalid-name del filtering, transform_lib, typing T = TypeVar('T') FlaxCollection = utils.FlaxCollection FlaxVariables = utils.FlaxVariables HaikuParamsOrState = utils.HaikuParamsOrState MutableHaikuParamsOrState = utils.MutableHaikuParamsOrState def store_haiku_collections( scope: flax.core.Scope, **collections: HaikuParamsOrState, ): """Stores the given Haiku params/state in nested collections under scope.""" for collection_name, collection in collections.items(): for mod_name, name, value in hkds.traverse(collection): subscope = scope for part in mod_name.split('/'): subscope = subscope.push(part, reuse=True) subscope.put_variable(collection_name, name, value) def only_changed_state(old_state: hk.State, new_state: hk.State) -> hk.State: """Returns the subset of new_state that has changed from old_state.""" updated_state = {} for mod_name, name, value in hkds.traverse(new_state): if mod_name in old_state and name in old_state[mod_name]: if old_state[mod_name][name] is not value: if mod_name not in updated_state: updated_state[mod_name] = {} updated_state[mod_name][name] = value return updated_state class Module(nn.Module): """A Flax ``nn.Module`` that runs a Haiku transformed function. This type is designed to make it easy to take a Haiku transformed function and/or a Haiku module and use it inside a program that otherwise uses Flax. Given a Haiku transformed function >>> def f(x): ... return hk.Linear(1)(x) >>> f = hk.transform(f) You can convert it into a Flax module using: >>> mod = hk.experimental.flax.Module(f) Calling this module is the same as calling any regular Flax module: >>> rng = jax.random.PRNGKey(42) >>> x = jnp.ones([1, 1]) >>> variables = mod.init(rng, x) >>> out = mod.apply(variables, x) If you just want to convert a Haiku module class such that it can be used with Flax you can use the ``create`` class method: >>> mod = hk.experimental.flax.Module.create(hk.Linear, 1) >>> variables = mod.init(rng, x) >>> out = mod.apply(variables, x) """ transformed: Union[hk.Transformed, hk.TransformedWithState] def __post_init__(self): super().__post_init__() if isinstance(self.transformed, hk.Transformed): self.transformed = hk.with_empty_state(self.transformed) @classmethod def create( cls, hk_cls: type[hk.SupportsCall], *init_args, **init_kwargs ) -> 'Module': """Converts a given Haiku module into a Flax ``nn.Module``. TODO(tomhennigan): Support multiple forward methods. Example usage: >>> mod = hk.experimental.flax.Module.create(hk.Linear, 1) # hk.Linear(1) >>> rng = jax.random.PRNGKey(42) >>> x = jnp.ones([1, 1]) >>> variables = mod.init(rng, x) >>> out = mod.apply(variables, x) For a stateful module like resnet, you need to also handle output state: >>> mod = hk.experimental.flax.Module.create(hk.nets.ResNet50, 10) >>> rng = jax.random.PRNGKey(42) >>> x = jnp.ones([1, 224, 224, 3]) >>> variables = mod.init(rng, x, is_training=True) >>> out, state_out = mod.apply(variables, x, is_training=True, ... mutable=['state']) Args: hk_cls: A Haiku module type (e.g. ``hk.Linear``). *init_args: Positional arguments for the constructor. **init_kwargs: Keyword arguments for the constructor. Returns: A Flax ``nn.Module`` wrapping the given class. """ def fn(*args, **kwargs): mod = hk_cls(*init_args, **init_kwargs) return mod(*args, **kwargs) fn = hk.transform_with_state(fn) return Module(fn) @nn.compact def __call__(self, *args, **kwargs): if self.is_initializing(): rng = self.make_rng('params') params, state = self.transformed.init(rng, *args, **kwargs) store_haiku_collections(self.scope, params=params, state=state) else: params = utils.flatten_flax_to_haiku(self.variables.get('params', {})) state = utils.flatten_flax_to_haiku(self.variables.get('state', {})) rng = self.make_rng('apply') if self.has_rng('apply') else None out, state_out = self.transformed.apply(params, state, rng, *args, **kwargs) if not self.is_initializing(): updated_state = only_changed_state(state, state_out) store_haiku_collections(self.scope, state=updated_state) return out
dm-haiku-main
haiku/_src/flax/flax_module.py
# Copyright 2023 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku._src.flax.flax_module.""" from absl.testing import absltest from absl.testing import parameterized import flax.linen as nn from haiku._src import base from haiku._src import filtering from haiku._src import module from haiku._src import transform from haiku._src.flax import flax_module from haiku._src.flax import utils from haiku._src.nets import resnet import jax import jax.numpy as jnp import numpy as np class Counter(module.Module): def __call__(self): c = base.get_state('c', [], init=jnp.zeros) base.set_state('c', c + 1) return c class FlaxModuleTest(parameterized.TestCase): def test_transform(self): def f(): w1 = base.get_parameter('w1', [], init=jnp.zeros) w2 = base.get_parameter('w2', [], init=jnp.ones) return w1, w2 f = transform.transform(f) m = flax_module.Module(f) rng = jax.random.PRNGKey(42) variables = m.init(rng) self.assertEqual(variables, {'params': {'~': {'w1': 0, 'w2': 1}}}) w1, w2 = m.apply(variables) self.assertIs(w1, variables['params']['~']['w1']) self.assertIs(w2, variables['params']['~']['w2']) def test_transform_with_state(self): def f(): s1 = base.get_state('s1', [], init=jnp.zeros) s2 = base.get_state('s2', [], init=jnp.ones) base.set_state('s1', s1 + 1) base.set_state('s2', s2 + 1) return s1, s2 f = transform.transform_with_state(f) m = flax_module.Module(f) rng = jax.random.PRNGKey(42) variables = m.init(rng) self.assertEqual(dict(variables), {'state': {'~': {'s1': 0, 's2': 1}}}) for i in range(5): (s1, s2), variables = m.apply(variables, mutable=['state']) self.assertEqual(s1, i) self.assertEqual(variables['state']['~']['s1'], i + 1) self.assertEqual(s2, i + 1) self.assertEqual(variables['state']['~']['s2'], i + 2) def test_transform_with_state_not_mutating_state_after_ini(self): def f(): s1 = base.get_state('s1', [], init=jnp.zeros) s2 = base.get_state('s2', [], init=jnp.ones) return s1, s2 f = transform.transform_with_state(f) m = flax_module.Module(f) rng = jax.random.PRNGKey(42) variables = m.init(rng) self.assertEqual(variables, {'state': {'~': {'s1': 0, 's2': 1}}}) # NOTE: Intentionally not making state collection mutable. s1, s2 = m.apply(variables) self.assertIs(s1, variables['state']['~']['s1']) self.assertIs(s2, variables['state']['~']['s2']) def test_stateful_module(self): c = flax_module.Module.create(Counter) rng = jax.random.PRNGKey(42) variables = c.init(rng) self.assertEqual(variables, {'state': {'counter': {'c': 0}}}) for i in range(10): out, variables = c.apply(variables, mutable=['state']) self.assertEqual(out, i) self.assertEqual(variables, {'state': {'counter': {'c': i + 1}}}) def test_resnet_50_init_equivalence_to_flax(self): mod = flax_module.Module.create(resnet.ResNet50, 10) rng = jax.random.PRNGKey(42) x = jnp.ones([1, 224, 224, 3]) f_haiku = transform.transform_with_state( lambda x: resnet.ResNet50(10)(x, is_training=True) ) # We check that init is equivalent when passed the RNG used by Flax. There # is no mechanism currently to test the inverse (init the Flax module to # match Haiku init) because of how Flax and Haiku disagree on RNG key # splitting. hk_params, hk_state = f_haiku.init(flax_init_rng(rng), x) variables = dict(mod.init(rng, x, is_training=True)) assert_matches(variables['params'], hk_params) assert_matches(variables['state'], hk_state) def test_resnet_50_apply_equivalence(self): mod = flax_module.Module.create(resnet.ResNet50, 10) rng = jax.random.PRNGKey(42) x = jnp.ones([1, 224, 224, 3]) f_haiku = transform.transform_with_state( lambda x: resnet.ResNet50(10)(x, is_training=True) ) variables = dict(mod.init(rng, x, is_training=True)) # Haiku and Flax have very different RNG key implementations, so parameter # initialisation does not match when using `flax_module`. There is no # mechanism to make Flax initialization match Haiku initialisation. hk_params = utils.flatten_flax_to_haiku(variables['params']) hk_state = utils.flatten_flax_to_haiku(variables['state']) for _ in range(5): out_flax, state = mod.apply( variables, x, is_training=True, mutable=['state'] ) out_hk, hk_state = f_haiku.apply(hk_params, hk_state, None, x) np.testing.assert_array_equal(out_flax, out_hk) variables = {**variables, **state} assert_matches(variables['state'], hk_state) def assert_matches(flax_collection, haiku_collection): flax_collection = utils.flatten_flax_to_haiku(flax_collection) for mod_name, name, value in filtering.traverse(haiku_collection): # We expect equality (not close) because we are running the same # operations in the same order on the same data in both cases. np.testing.assert_array_equal( flax_collection[mod_name][name], value, err_msg=f'{mod_name}/{name}', ) class ParamsRngModule(nn.Module): """Module used to exfiltrate a key from the "params" collection.""" def __call__(self): return self.make_rng('params') def flax_init_rng(rng: jax.Array) -> jax.Array: """Returns the rng key that Flax will pass to the Haiku init function.""" return ParamsRngModule().apply({}, rngs={'params': rng}) if __name__ == '__main__': absltest.main()
dm-haiku-main
haiku/_src/flax/flax_module_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Benchmark trace/compile/run timings of init functions.""" import google_benchmark import haiku as hk import jax import jax.numpy as jnp def init_benchmark(model): """Compile/Trace/Run init.""" input_shape = [100, 100, 100, 100] init, _ = hk.transform_with_state(model) @google_benchmark.register(name=f'trace_{model.__name__}') def trace_bench(state): """Benchmark Jax trace of hk.init_fn of model.""" x = jnp.ones(input_shape).block_until_ready() k = jax.random.PRNGKey(42) while state: jax.jit(init).lower(k, x).compiler_ir(dialect='hlo') @google_benchmark.register(name=f'compile_{model.__name__}') def compile_bench(state): """Benchmark Jax compile of hk.init_fn of model.""" x = jnp.ones(input_shape).block_until_ready() k = jax.random.PRNGKey(42) c = jax.jit(init).lower(k, x) while state: c.compile() @google_benchmark.register(name=f'run_{model.__name__}') def run_bench(state): """Benchmark runtime of compiled hk.init_fn of model.""" x = jnp.ones(input_shape).block_until_ready() k = jax.random.PRNGKey(42) jitted_init = jax.jit(init) # run jit once to compile jitted_init(k, x) while state: params, _ = jitted_init(k, x) # block on computation to finish jax.tree_util.tree_map(lambda x: x.block_until_ready(), params) return trace_bench, compile_bench, run_bench # Models to be benchmarked @init_benchmark def mlp(x): return hk.nets.MLP([300, 100, 10])(x) @init_benchmark def resnet_50(x): return hk.nets.ResNet50(num_classes=10)(x, is_training=True, test_local_stats=True) if __name__ == '__main__': google_benchmark.main()
dm-haiku-main
haiku/benchmarks/init.py
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Benchmark eval_shape for Haiku models.""" import google_benchmark import haiku as hk import jax import jax.numpy as jnp def init_benchmark(model): """Compile/Trace/Run init.""" input_shape = [100, 100, 100, 100] init, _ = hk.transform_with_state(model) @google_benchmark.register(name=f'{model.__name__}_init') def init_slow_bench(state): """Benchmark Jax trace of hk.init_fn of model.""" x = jnp.ones(input_shape) k = jax.random.PRNGKey(42).block_until_ready() while state: jax.eval_shape(init, k, x) @google_benchmark.register(name=f'{model.__name__}_init_fast') def init_fast_bench(state): """Benchmark runtime of compiled hk.init_fn of model.""" x = jnp.ones(input_shape) k = jax.random.PRNGKey(42).block_until_ready() while state: hk.experimental.fast_eval_shape(init, k, x) return init_slow_bench, init_fast_bench # Models to be benchmarked @init_benchmark def mlp(x): return hk.nets.MLP([300, 100, 10])(x) @init_benchmark def resnet_50(x): return hk.nets.ResNet50(num_classes=10)(x, is_training=True, test_local_stats=True) if __name__ == '__main__': google_benchmark.main()
dm-haiku-main
haiku/benchmarks/eval_shape.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Configuration file for the Sphinx documentation builder.""" # This file only contains a selection of the most common options. For a full # list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # pylint: disable=g-bad-import-order # pylint: disable=g-import-not-at-top import doctest import inspect import os import sys import typing def _add_annotations_import(path): """Appends a future annotations import to the file at the given path.""" with open(path) as f: contents = f.read() if contents.startswith('from __future__ import annotations'): # If we run sphinx multiple times then we will append the future import # multiple times too. return assert contents.startswith('#'), (path, contents.split('\n')[0]) with open(path, 'w') as f: # NOTE: This is subtle and not unit tested, we're prefixing the first line # in each Python file with this future import. It is important to prefix # not insert a newline such that source code locations are accurate (we link # to GitHub). The assertion above ensures that the first line in the file is # a comment so it is safe to prefix it. f.write('from __future__ import annotations ') f.write(contents) def _recursive_add_annotations_import(): for path, _, files in os.walk('../haiku/'): for file in files: if file.endswith('.py'): _add_annotations_import(os.path.abspath(os.path.join(path, file))) if 'READTHEDOCS' in os.environ: _recursive_add_annotations_import() typing.get_type_hints = lambda obj, *unused: obj.__annotations__ sys.path.insert(0, os.path.abspath('../')) sys.path.append(os.path.abspath('ext')) import haiku as hk import sphinxcontrib.katex as katex # -- Project information ----------------------------------------------------- project = 'Haiku' copyright = '2019, DeepMind' # pylint: disable=redefined-builtin author = 'Haiku Contributors' # -- General configuration --------------------------------------------------- master_doc = 'index' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.inheritance_diagram', 'sphinx.ext.linkcode', 'sphinx.ext.napoleon', 'sphinxcontrib.bibtex', 'sphinxcontrib.katex', 'sphinx_autodoc_typehints', 'sphinx_book_theme', 'coverage_check', 'nbsphinx', 'IPython.sphinxext.ipython_console_highlighting', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for autodoc ----------------------------------------------------- autodoc_default_options = { 'member-order': 'bysource', 'special-members': True, 'exclude-members': '__repr__, __str__, __weakref__', } # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_book_theme' html_theme_options = { 'repository_url': 'https://github.com/deepmind/dm-haiku', 'use_repository_button': True, } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # html_favicon = '_static/favicon.ico' # -- Options for doctest ----------------------------------------------------- doctest_test_doctest_blocks = 'true' doctest_global_setup = """ import collections import itertools import unittest import chex import flax.linen as nn import haiku as hk import jax import jax.numpy as jnp import jmp # Equivalent to wrapping the whole files doctests in `hk.transform_with_state`. from haiku._src import base base.new_context(rng=jax.random.PRNGKey(42)).__enter__() """ doctest_default_flags = ( doctest.ELLIPSIS | doctest.IGNORE_EXCEPTION_DETAIL | doctest.DONT_ACCEPT_TRUE_FOR_1 | doctest.NORMALIZE_WHITESPACE) # -- Options for katex ------------------------------------------------------ # See: https://sphinxcontrib-katex.readthedocs.io/en/0.4.1/macros.html latex_macros = r""" \def \d #1{\operatorname{#1}} """ # Translate LaTeX macros to KaTeX and add to options for HTML builder katex_macros = katex.latex_defs_to_katex_macros(latex_macros) katex_options = 'macros: {' + katex_macros + '}' # Add LaTeX macros for LATEX builder latex_elements = {'preamble': latex_macros} # -- Source code links ------------------------------------------------------- def linkcode_resolve(domain, info): """Resolve a GitHub URL corresponding to Python object.""" if domain != 'py': return None try: mod = sys.modules[info['module']] except ImportError: return None obj = mod try: for attr in info['fullname'].split('.'): obj = getattr(obj, attr) except AttributeError: return None else: obj = inspect.unwrap(obj) try: filename = inspect.getsourcefile(obj) except TypeError: return None try: source, lineno = inspect.getsourcelines(obj) except OSError: return None # TODO(slebedev): support tags after we release an initial version. return 'https://github.com/deepmind/dm-haiku/blob/master/haiku/%s#L%d#L%d' % ( os.path.relpath(filename, start=os.path.dirname( hk.__file__)), lineno, lineno + len(source) - 1) # -- nbsphinx configuration -------------------------------------------------- # TODO(tomhennigan): Consider auto/always here. nbsphinx_execute = 'never' nbsphinx_codecell_lexer = 'ipython' nbsphinx_kernel_name = 'python' nbsphinx_timeout = 180 nbsphinx_prolog = r""" {% set docname = 'docs/' + env.doc2path(env.docname, base=None) %} .. only:: html .. role:: raw-html(raw) :format: html .. nbinfo:: Interactive online version: :raw-html:`<a href="https://colab.research.google.com/github/deepmind/dm-haiku/blob/master/{{ docname }}"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg" style="vertical-align:text-bottom"></a>` __ https://github.com/deepmind/dm-haiku/blob/ {{ env.config.release }}/{{ docname }} """ # -- bibtex configuration --------------------------------------------------- bibtex_bibfiles = ['references.bib']
dm-haiku-main
docs/conf.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Asserts all public symbols are covered in the docs.""" from collections.abc import Mapping from typing import Any import haiku as hk from haiku._src import test_utils from sphinx import application from sphinx import builders from sphinx import errors HIDDEN_SYMBOLS = ("haiku.experimental.GetterContext", "haiku.experimental.MethodContext", "haiku.experimental.ParamContext", "haiku.experimental.custom_creator", "haiku.experimental.custom_getter", "haiku.experimental.intercept_methods", "haiku.experimental.lift") def haiku_public_symbols(): names = set() for module_name, module in test_utils.find_internal_python_modules(hk): for name in module.__all__: symbol_name = f"{module_name}.{name}" if symbol_name not in HIDDEN_SYMBOLS: names.add(symbol_name) return names class HaikuCoverageCheck(builders.Builder): """Builder that checks all public symbols are included.""" name = "coverage_check" def get_outdated_docs(self) -> str: return "coverage_check" def write(self, *ignored: Any) -> None: pass def finish(self) -> None: documented_objects = frozenset(self.env.domaindata["py"]["objects"]) undocumented_objects = haiku_public_symbols() - documented_objects if undocumented_objects: # Remove symbols that appear to have moved out of experimental. for obj in tuple(undocumented_objects): if obj.replace("haiku.experimental", "haiku") in documented_objects: undocumented_objects.remove(obj) if undocumented_objects: undocumented_objects = tuple(sorted(undocumented_objects)) raise errors.SphinxError( "All public symbols must be included in our documentation, did you " "forget to add an entry to `api.rst`?\n" f"Undocumented symbols: {undocumented_objects}") def setup(app: application.Sphinx) -> Mapping[str, Any]: app.add_builder(HaikuCoverageCheck) return dict(version="0.0.1", parallel_read_safe=True)
dm-haiku-main
docs/ext/coverage_check.py
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================
dm-haiku-main
examples/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku.examples.impala_lite.""" from absl.testing import absltest from examples import impala_lite class ImpalaLiteTest(absltest.TestCase): def test_impala_integration(self): impala_lite.run(trajectories_per_actor=2, num_actors=2, unroll_len=20) if __name__ == '__main__': absltest.main()
dm-haiku-main
examples/impala_lite_test.py
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A simple, single-process IMPALA in JAX with Haiku. This implementation is a simple, minimal implementation of IMPALA. For a more full-fledged implementation, see examples/impala/README.md. See: https://arxiv.org/abs/1802.01561 """ import functools import queue import threading from typing import Any, Callable, NamedTuple from absl import app from absl import logging from bsuite.environments import catch import dm_env import haiku as hk import jax import jax.numpy as jnp import numpy as np import optax import rlax class Transition(NamedTuple): timestep: dm_env.TimeStep action: int agent_out: Any class SimpleNet(hk.Module): """A simple network.""" def __init__(self, num_actions: int): super().__init__() self._num_actions = num_actions def __call__( self, timestep: dm_env.TimeStep, ) -> tuple[jax.Array, jax.Array]: """Process a batch of observations.""" torso = hk.Sequential([hk.Flatten(), hk.Linear(128), jax.nn.relu, hk.Linear(64), jax.nn.relu]) hidden = torso(timestep.observation) policy_logits = hk.Linear(self._num_actions)(hidden) baseline = hk.Linear(1)(hidden) baseline = jnp.squeeze(baseline, axis=-1) return policy_logits, baseline class Agent: """A simple, feed-forward agent.""" def __init__(self, net_apply): self._net = net_apply self._discount = 0.99 @functools.partial(jax.jit, static_argnums=0) def step( self, params: hk.Params, rng: jax.Array, timestep: dm_env.TimeStep, ) -> tuple[jax.Array, jax.Array]: """Steps on a single observation.""" timestep = jax.tree_util.tree_map(lambda t: jnp.expand_dims(t, 0), timestep) logits, _ = self._net(params, timestep) logits = jnp.squeeze(logits, axis=0) action = hk.multinomial(rng, logits, num_samples=1) action = jnp.squeeze(action, axis=-1) return action, logits def loss(self, params: hk.Params, trajs: Transition) -> jax.Array: """Computes a loss of trajs wrt params.""" # Re-run the agent over the trajectories. # Due to https://github.com/google/jax/issues/1459, we use hk.BatchApply # instead of vmap. # BatchApply turns the input tensors from [T, B, ...] into [T*B, ...]. # We `functools.partial` params in so it does not get transformed. net_curried = hk.BatchApply(functools.partial(self._net, params)) learner_logits, baseline_with_bootstrap = net_curried(trajs.timestep) # Separate the bootstrap from the value estimates. baseline = baseline_with_bootstrap[:-1] baseline_tp1 = baseline_with_bootstrap[1:] # Remove bootstrap timestep from non-observations. _, actions, behavior_logits = jax.tree_util.tree_map( lambda t: t[:-1], trajs) learner_logits = learner_logits[:-1] # Shift step_type/reward/discount back by one, so that actions match the # timesteps caused by the action. timestep = jax.tree_util.tree_map(lambda t: t[1:], trajs.timestep) discount = timestep.discount * self._discount # The step is uninteresting if we transitioned LAST -> FIRST. mask = jnp.not_equal(timestep.step_type, int(dm_env.StepType.FIRST)) mask = mask.astype(jnp.float32) # Compute v-trace returns. vtrace_td_error_and_advantage = jax.vmap( rlax.vtrace_td_error_and_advantage, in_axes=1, out_axes=1) rhos = rlax.categorical_importance_sampling_ratios(learner_logits, behavior_logits, actions) vtrace_returns = vtrace_td_error_and_advantage(baseline, baseline_tp1, timestep.reward, discount, rhos) # Note that we use mean here, rather than sum as in canonical IMPALA. # Compute policy gradient loss. pg_advantage = jax.lax.stop_gradient(vtrace_returns.pg_advantage) tb_pg_loss_fn = jax.vmap(rlax.policy_gradient_loss, in_axes=1, out_axes=0) pg_loss = tb_pg_loss_fn(learner_logits, actions, pg_advantage, mask) pg_loss = jnp.mean(pg_loss) # Baseline loss. bl_loss = 0.5 * jnp.mean(jnp.square(vtrace_returns.errors) * mask) # Entropy regularization. ent_loss_fn = jax.vmap(rlax.entropy_loss, in_axes=1, out_axes=0) ent_loss = ent_loss_fn(learner_logits, mask) ent_loss = jnp.mean(ent_loss) total_loss = pg_loss + 0.5 * bl_loss + 0.01 * ent_loss return total_loss def preprocess_step(ts: dm_env.TimeStep) -> dm_env.TimeStep: # reward: None -> 0, discount: None -> 1, # scalar -> np.array(), and StepType -> int. if ts.reward is None: ts = ts._replace(reward=0.) if ts.discount is None: ts = ts._replace(discount=1.) return jax.tree_util.tree_map(np.asarray, ts) def run_actor( agent: Agent, rng_key: jax.Array, get_params: Callable[[], hk.Params], enqueue_traj: Callable[[Transition], None], unroll_len: int, num_trajectories: int, ): """Runs an actor to produce num_trajectories trajectories.""" env = catch.Catch() state = env.reset() traj = [] for i in range(num_trajectories): params = get_params() # The first rollout is one step longer. for _ in range(unroll_len + int(i == 0)): rng_key, step_key = jax.random.split(rng_key) state = preprocess_step(state) action, logits = agent.step(params, step_key, state) transition = Transition(state, action, logits) traj.append(transition) state = env.step(action) if state.step_type == dm_env.StepType.LAST: logging.log_every_n(logging.INFO, 'Episode ended with reward: %s', 5, state.reward) # Stack and send the trajectory. stacked_traj = jax.tree_util.tree_map(lambda *ts: np.stack(ts), *traj) enqueue_traj(stacked_traj) # Reset the trajectory, keeping the last timestep. traj = traj[-1:] class Learner: """Slim wrapper around an agent/optimizer pair.""" def __init__(self, agent: Agent, opt_update): self._agent = agent self._opt_update = opt_update @functools.partial(jax.jit, static_argnums=0) def update( self, params: hk.Params, opt_state: optax.OptState, trajs: Transition, ) -> tuple[hk.Params, optax.OptState]: g = jax.grad(self._agent.loss)(params, trajs) updates, new_opt_state = self._opt_update(g, opt_state) return optax.apply_updates(params, updates), new_opt_state def run(*, trajectories_per_actor, num_actors, unroll_len): """Runs the example.""" # Construct the agent network. We need a sample environment for its spec. env = catch.Catch() num_actions = env.action_spec().num_values net = hk.without_apply_rng( hk.transform(lambda ts: SimpleNet(num_actions)(ts))) # pylint: disable=unnecessary-lambda # Construct the agent and learner. agent = Agent(net.apply) opt = optax.rmsprop(5e-3, decay=0.99, eps=1e-7) learner = Learner(agent, opt.update) # Initialize the optimizer state. sample_ts = env.reset() sample_ts = preprocess_step(sample_ts) ts_with_batch = jax.tree_util.tree_map( lambda t: np.expand_dims(t, 0), sample_ts) params = jax.jit(net.init)(jax.random.PRNGKey(428), ts_with_batch) opt_state = opt.init(params) # Create accessor and queueing functions. current_params = lambda: params batch_size = 2 q = queue.Queue(maxsize=batch_size) def dequeue(): batch = [] for _ in range(batch_size): batch.append(q.get()) batch = jax.tree_util.tree_map(lambda *ts: np.stack(ts, axis=1), *batch) return jax.device_put(batch) # Start the actors. for i in range(num_actors): key = jax.random.PRNGKey(i) args = (agent, key, current_params, q.put, unroll_len, trajectories_per_actor) threading.Thread(target=run_actor, args=args).start() # Run the learner. num_steps = num_actors * trajectories_per_actor // batch_size for i in range(num_steps): traj = dequeue() params, opt_state = learner.update(params, opt_state, traj) def main(_): run(trajectories_per_actor=500, num_actors=2, unroll_len=20) if __name__ == '__main__': app.run(main)
dm-haiku-main
examples/impala_lite.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """MNIST classifier with pruning as in https://arxiv.org/abs/1710.01878 .""" from collections.abc import Iterator, Mapping, Sequence import functools from typing import Callable from absl import app import haiku as hk import jax import jax.numpy as jnp import numpy as np import optax import tensorflow_datasets as tfds Batch = Mapping[str, np.ndarray] Predicate = Callable[[str, str, jax.Array], bool] PredicateMap = Mapping[Predicate, jax.Array] ModuleSparsity = Sequence[tuple[Predicate, jax.Array]] def topk_mask(value: jax.Array, density_fraction: float) -> jax.Array: """Return a mask with 1s marking the top fraction of value. Note: This routine takes care to make sure that ties are handled without bias toward smaller indices. This can be a problem when pruning large embedding matrices, or global pruning where all parameters in the model are concatenated together and pruned at once. Args: value: An array. Must contain sortable values (i.e. not complex). density_fraction: A float. What fraction of value should be kept. Returns: A mask containing 1s where the topk elements of value are. k is determined based on density_fraction and the size of value. """ def topk_mask_internal(value): assert value.ndim == 1 indices = jnp.argsort(value) k = jnp.round(density_fraction * jnp.size(value)).astype(jnp.int32) mask = jnp.greater_equal(np.arange(value.size), value.size - k) mask = jnp.zeros_like(mask).at[indices].set(mask) return mask.astype(np.int32) # shuffle value so that identical values aren't always pruned # with a bias to lower indices orig_shape = value.shape value = jnp.reshape(value, -1) shuffled_indices = jax.random.shuffle( jax.random.PRNGKey(42), jnp.arange(0, jnp.size(value), dtype=jnp.int32)) shuffled_mask = topk_mask_internal(value[shuffled_indices]) mask = jnp.zeros_like(shuffled_mask).at[shuffled_indices].set(shuffled_mask) mask = jnp.reshape(mask, orig_shape) return mask def zhugupta_func(progress: float) -> float: """From 'To Prune or Not To Prune' :cite:`zhu2017prune`.""" return 1. - (1. - progress)**3 def _create_partitions( module_sparsity: ModuleSparsity, params: hk.Params ) -> tuple[Sequence[hk.Params], Sequence[jax.Array], hk.Params]: """Partition params based on sparsity_predicate_map. Args: module_sparsity: A Sequence of (Predicate, float) pairs. Predicate functions take module_name, name, value as arguments. The floats are the sparsity level to apply to leaves matching Predicate. params: A Haiku param. Returns: A tuple containing: - A list of len(module_sparsity), where each element is a disjoint subset of the `params` to be pruned. - A list of len(module_sparsity) where each element is the sparsity level. - The remaining elements of `params` not being pruned such that the union of the first list and this element contains the elements of `params`. """ list_of_trees = [] sparsity_list = [] tail = params # Greedily match so that no parameter can be matched more than once for predicate, sparsity in module_sparsity: head, tail = hk.data_structures.partition(predicate, tail) list_of_trees.append(head) sparsity_list.append(sparsity) return list_of_trees, sparsity_list, tail def sparsity_ignore(m: str, n: str, v: jax.Array) -> bool: """Any parameter matching these conditions should generally not be pruned.""" # n == 'b' when param is a bias return n == "b" or v.ndim == 1 or "batchnorm" in m or "batch_norm" in m @functools.partial(jax.jit, static_argnums=2) def apply_mask(params: hk.Params, masks: Sequence[hk.Params], module_sparsity: ModuleSparsity) -> hk.Params: """Apply existing masks to params based on sparsity_predicate_map. Some of params may not be masked depending on the content of module_sparsity. masks must have the same structure as implied by module_sparsity. Args: params: Tree to mask, can be a superset of masks. masks: Tree of masks to apply to params. This must match the result of applying module_sparsity to params. module_sparsity: A dictionary mapping predicates to sparsity levels. Any leaf matching a predicate key will be pruned to the resulting sparsity level. Returns: A tree of masked params. """ params_to_prune, _, params_no_prune = _create_partitions( module_sparsity, params) pruned_params = [] for value, mask in zip(params_to_prune, masks): pruned_params.append( jax.tree_util.tree_map(lambda x, y: x * y, value, mask)) params = hk.data_structures.merge(*pruned_params, params_no_prune) return params @functools.partial(jax.jit, static_argnums=2) def update_mask(params: hk.Params, sparsity_fraction: float, module_sparsity: ModuleSparsity) -> Sequence[hk.Params]: """Generate masks based on module_sparsity and sparsity_fraction.""" params_to_prune, sparsities, _ = _create_partitions(module_sparsity, params) masks = [] def map_fn(x: jax.Array, sparsity: float) -> jax.Array: return topk_mask(jnp.abs(x), 1. - sparsity * sparsity_fraction) for tree, sparsity in zip(params_to_prune, sparsities): map_fn_sparsity = functools.partial(map_fn, sparsity=sparsity) mask = jax.tree_util.tree_map(map_fn_sparsity, tree) masks.append(mask) return masks @jax.jit def get_sparsity(params: hk.Params): """Calculate the total sparsity and tensor-wise sparsity of params.""" total_params = sum(jnp.size(x) for x in jax.tree_util.tree_leaves(params)) total_nnz = sum(jnp.sum(x != 0.) for x in jax.tree_util.tree_leaves(params)) leaf_sparsity = jax.tree_util.tree_map( lambda x: jnp.sum(x == 0) / jnp.size(x), params) return total_params, total_nnz, leaf_sparsity def net_fn(batch: Batch) -> jax.Array: """Standard LeNet-300-100 MLP network.""" x = batch["image"].astype(jnp.float32) / 255. mlp = hk.Sequential([ hk.Flatten(), hk.Linear(300), jax.nn.relu, hk.Linear(100), jax.nn.relu, hk.Linear(10), ]) return mlp(x) def load_dataset( split: str, *, shuffle: bool, batch_size: int, ) -> Iterator[Batch]: """Loads the dataset as a generator of batches.""" ds, ds_info = tfds.load("mnist:3.*.*", split=split, with_info=True) ds.cache() if shuffle: ds = ds.shuffle(ds_info.splits[split].num_examples, seed=0) ds = ds.repeat() ds = ds.batch(batch_size) return iter(tfds.as_numpy(ds)) def main(_): # Make the network and optimiser. net = hk.without_apply_rng(hk.transform(net_fn)) opt = optax.adam(1e-3) # Define layerwise sparsities def module_matching(s): def match_func(m, n, k): return m.endswith(s) and not sparsity_ignore(m, n, k) return match_func module_sparsity = ((module_matching("linear"), 0.98), (module_matching("linear_1"), 0.9)) # Training loss (cross-entropy). @jax.jit def loss(params: hk.Params, batch: Batch) -> jax.Array: """Compute the loss of the network, including L2.""" logits = net.apply(params, batch) labels = jax.nn.one_hot(batch["label"], 10) l2_loss = 0.5 * sum( jnp.sum(jnp.square(p)) for p in jax.tree_util.tree_leaves(params)) softmax_xent = -jnp.sum(labels * jax.nn.log_softmax(logits)) softmax_xent /= labels.shape[0] return softmax_xent + 1e-4 * l2_loss # Evaluation metric (classification accuracy). @jax.jit def accuracy(params: hk.Params, batch: Batch) -> jax.Array: predictions = net.apply(params, batch) return jnp.mean(jnp.argmax(predictions, axis=-1) == batch["label"]) @jax.jit def get_updates( params: hk.Params, opt_state: optax.OptState, batch: Batch, ) -> tuple[hk.Params, optax.OptState]: """Learning rule (stochastic gradient descent).""" grads = jax.grad(loss)(params, batch) updates, opt_state = opt.update(grads, opt_state) return updates, opt_state # We maintain avg_params, the exponential moving average of the "live" params. # avg_params is used only for evaluation (cf. https://doi.org/10.1137/0330046) @jax.jit def ema_update(params, avg_params): return optax.incremental_update(params, avg_params, step_size=0.001) # Make datasets. train = load_dataset("train", shuffle=True, batch_size=1000) train_eval = load_dataset("train", shuffle=False, batch_size=10000) test_eval = load_dataset("test", shuffle=False, batch_size=10000) # Implemenation note: It is possible to avoid pruned_params and just use # a single params which progressively gets pruned. The updates also don't # need to masked in such an implementation. The current implementation # attempts to mimic the way the current TF implementation which allows for # previously inactivated connections to become active again if active values # drop below their value. # Initialize network and optimiser; note we draw an input to get shapes. pruned_params = params = avg_params = net.init( jax.random.PRNGKey(42), next(train)) masks = update_mask(params, 0., module_sparsity) opt_state = opt.init(params) # Train/eval loop. for step in range(10001): if step % 1000 == 0: # Periodically evaluate classification accuracy on train & test sets. avg_params = apply_mask(avg_params, masks, module_sparsity) train_accuracy = accuracy(avg_params, next(train_eval)) test_accuracy = accuracy(avg_params, next(test_eval)) total_params, total_nnz, per_layer_sparsities = get_sparsity(avg_params) train_accuracy, test_accuracy, total_nnz, per_layer_sparsities = ( jax.device_get( (train_accuracy, test_accuracy, total_nnz, per_layer_sparsities))) print(f"[Step {step}] Train / Test accuracy: " f"{train_accuracy:.3f} / {test_accuracy:.3f}.") print(f"Non-zero params / Total: {total_nnz} / {total_params}; " f"Total Sparsity: {1. - total_nnz / total_params:.3f}") # Do SGD on a batch of training examples. pruned_params = apply_mask(params, masks, module_sparsity) updates, opt_state = get_updates(pruned_params, opt_state, next(train)) # applying a straight-through estimator here (that is not masking # the updates) leads to much worse performance. updates = apply_mask(updates, masks, module_sparsity) params = optax.apply_updates(params, updates) # we start pruning at iteration 1000 and end at iteration 8000 progress = min(max((step - 1000.) / 8000., 0.), 1.) if step % 200 == 0: sparsity_fraction = zhugupta_func(progress) masks = update_mask(params, sparsity_fraction, module_sparsity) avg_params = ema_update(params, avg_params) print(per_layer_sparsities) if __name__ == "__main__": app.run(main)
dm-haiku-main
examples/mnist_pruning.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Variational Autoencoder example on binarized MNIST dataset. See "Auto-encoding variational Bayes" (Kingma & Welling, 2014) [0]. [0]https://arxiv.org/abs/1312.6114 """ from collections.abc import Iterator, Sequence import dataclasses from typing import NamedTuple from absl import app from absl import flags from absl import logging import haiku as hk import jax import jax.numpy as jnp import numpy as np import optax import tensorflow_datasets as tfds @dataclasses.dataclass class Config: batch_size: int = 128 learning_rate: float = 1e-3 training_steps: int = 5000 eval_every: int = 100 seed: int = 0 class Batch(NamedTuple): image: jax.Array # [B, H, W, C] def load_dataset(split: str, batch_size: int, seed: int) -> Iterator[Batch]: ds = ( tfds.load("binarized_mnist", split=split) .shuffle(buffer_size=10 * batch_size, seed=seed) .batch(batch_size) .prefetch(buffer_size=5) .repeat() .as_numpy_iterator() ) return map(lambda x: Batch(x["image"]), ds) @dataclasses.dataclass class Encoder(hk.Module): """Encoder model.""" latent_size: int hidden_size: int = 512 def __call__(self, x: jax.Array) -> tuple[jax.Array, jax.Array]: """Encodes an image as an isotropic Guassian latent code.""" x = hk.Flatten()(x) x = hk.Linear(self.hidden_size)(x) x = jax.nn.relu(x) mean = hk.Linear(self.latent_size)(x) log_stddev = hk.Linear(self.latent_size)(x) stddev = jnp.exp(log_stddev) return mean, stddev @dataclasses.dataclass class Decoder(hk.Module): """Decoder model.""" output_shape: Sequence[int] hidden_size: int = 512 def __call__(self, z: jax.Array) -> jax.Array: """Decodes a latent code into Bernoulli log-odds over an output image.""" z = hk.Linear(self.hidden_size)(z) z = jax.nn.relu(z) logits = hk.Linear(np.prod(self.output_shape))(z) logits = jnp.reshape(logits, (-1, *self.output_shape)) return logits class VAEOutput(NamedTuple): image: jax.Array mean: jax.Array variance: jax.Array logits: jax.Array @dataclasses.dataclass class VariationalAutoEncoder(hk.Module): """Main VAE model class.""" encoder: Encoder decoder: Decoder def __call__(self, x: jax.Array) -> VAEOutput: """Forward pass of the variational autoencoder.""" x = x.astype(jnp.float32) mean, stddev = self.encoder(x) z = mean + stddev * jax.random.normal(hk.next_rng_key(), mean.shape) logits = self.decoder(z) p = jax.nn.sigmoid(logits) image = jax.random.bernoulli(hk.next_rng_key(), p) return VAEOutput(image, mean, jnp.square(stddev), logits) class TrainingState(NamedTuple): params: hk.Params opt_state: optax.OptState rng_key: jax.Array def main(_): flags.FLAGS.alsologtostderr = True config = Config() @hk.transform def model(x): vae = VariationalAutoEncoder( encoder=Encoder(latent_size=10), decoder=Decoder(output_shape=x.shape[1:]), ) return vae(x) @jax.jit def loss_fn(params, rng_key, batch: Batch) -> jax.Array: """ELBO loss: E_p[log(x)] - KL(d||q), where p ~ Be(0.5) and q ~ N(0,1).""" # Run the model on the inputs. _, mean, var, logits = model.apply(params, rng_key, batch.image) # Bernoulli log-likelihood (assumes `image` is binarised). log_likelihood = jnp.einsum( "b...->b", batch.image * logits - jnp.logaddexp(0., logits)) # KL divergence between Gaussians N(mean, std) and N(0, 1). kl = 0.5 * jnp.sum(-jnp.log(var) - 1. + var + jnp.square(mean), axis=-1) # Loss is the negative evidence lower-bound. return -jnp.mean(log_likelihood - kl) optimizer = optax.adam(config.learning_rate) @jax.jit def update(state: TrainingState, batch: Batch) -> TrainingState: """Performs a single SGD step.""" rng_key, next_rng_key = jax.random.split(state.rng_key) gradients = jax.grad(loss_fn)(state.params, rng_key, batch) updates, new_opt_state = optimizer.update(gradients, state.opt_state) new_params = optax.apply_updates(state.params, updates) return TrainingState(new_params, new_opt_state, next_rng_key) # Load datasets. train_dataset = load_dataset("train", config.batch_size, config.seed) eval_datasets = { "train": load_dataset("train", config.batch_size, config.seed), "valid": load_dataset("validation", config.batch_size, config.seed), } # Initialise the training state. initial_rng_key = jax.random.PRNGKey(config.seed) initial_params = model.init(initial_rng_key, next(train_dataset).image) initial_opt_state = optimizer.init(initial_params) state = TrainingState(initial_params, initial_opt_state, initial_rng_key) # Run training and evaluation. for step in range(config.training_steps): state = update(state, next(train_dataset)) if step % config.eval_every == 0: for split, ds in eval_datasets.items(): loss = loss_fn(state.params, state.rng_key, next(ds)) logging.info({ "step": step, "split": split, "elbo": -jax.device_get(loss).item(), }) if __name__ == "__main__": app.run(main)
dm-haiku-main
examples/vae.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A minimal MNIST classifier example.""" from collections.abc import Iterator from typing import NamedTuple from absl import app import haiku as hk import jax import jax.numpy as jnp import numpy as np import optax import tensorflow_datasets as tfds NUM_CLASSES = 10 # MNIST has 10 classes (hand-written digits). class Batch(NamedTuple): image: np.ndarray # [B, H, W, 1] label: np.ndarray # [B] class TrainingState(NamedTuple): params: hk.Params avg_params: hk.Params opt_state: optax.OptState def net_fn(images: jax.Array) -> jax.Array: """Standard LeNet-300-100 MLP network.""" x = images.astype(jnp.float32) / 255. mlp = hk.Sequential([ hk.Flatten(), hk.Linear(300), jax.nn.relu, hk.Linear(100), jax.nn.relu, hk.Linear(NUM_CLASSES), ]) return mlp(x) def load_dataset( split: str, *, shuffle: bool, batch_size: int, ) -> Iterator[Batch]: """Loads the MNIST dataset.""" ds, ds_info = tfds.load("mnist:3.*.*", split=split, with_info=True) ds.cache() if shuffle: ds = ds.shuffle(ds_info.splits[split].num_examples, seed=0) ds = ds.repeat() ds = ds.batch(batch_size) ds = ds.map(lambda x: Batch(**x)) return iter(tfds.as_numpy(ds)) def main(_): # First, make the network and optimiser. network = hk.without_apply_rng(hk.transform(net_fn)) optimiser = optax.adam(1e-3) def loss(params: hk.Params, batch: Batch) -> jax.Array: """Cross-entropy classification loss, regularised by L2 weight decay.""" batch_size, *_ = batch.image.shape logits = network.apply(params, batch.image) labels = jax.nn.one_hot(batch.label, NUM_CLASSES) l2_regulariser = 0.5 * sum( jnp.sum(jnp.square(p)) for p in jax.tree_util.tree_leaves(params)) log_likelihood = jnp.sum(labels * jax.nn.log_softmax(logits)) return -log_likelihood / batch_size + 1e-4 * l2_regulariser @jax.jit def evaluate(params: hk.Params, batch: Batch) -> jax.Array: """Evaluation metric (classification accuracy).""" logits = network.apply(params, batch.image) predictions = jnp.argmax(logits, axis=-1) return jnp.mean(predictions == batch.label) @jax.jit def update(state: TrainingState, batch: Batch) -> TrainingState: """Learning rule (stochastic gradient descent).""" grads = jax.grad(loss)(state.params, batch) updates, opt_state = optimiser.update(grads, state.opt_state) params = optax.apply_updates(state.params, updates) # Compute avg_params, the exponential moving average of the "live" params. # We use this only for evaluation (cf. https://doi.org/10.1137/0330046). avg_params = optax.incremental_update( params, state.avg_params, step_size=0.001) return TrainingState(params, avg_params, opt_state) # Make datasets. train_dataset = load_dataset("train", shuffle=True, batch_size=1_000) eval_datasets = { split: load_dataset(split, shuffle=False, batch_size=10_000) for split in ("train", "test") } # Initialise network and optimiser; note we draw an input to get shapes. initial_params = network.init( jax.random.PRNGKey(seed=0), next(train_dataset).image) initial_opt_state = optimiser.init(initial_params) state = TrainingState(initial_params, initial_params, initial_opt_state) # Training & evaluation loop. for step in range(3001): if step % 100 == 0: # Periodically evaluate classification accuracy on train & test sets. # Note that each evaluation is only on a (large) batch. for split, dataset in eval_datasets.items(): accuracy = np.array(evaluate(state.avg_params, next(dataset))).item() print({"step": step, "split": split, "accuracy": f"{accuracy:.3f}"}) # Do SGD on a batch of training examples. state = update(state, next(train_dataset)) if __name__ == "__main__": app.run(main)
dm-haiku-main
examples/mnist.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================
dm-haiku-main
examples/transformer/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Didactic example of an autoregressive Transformer-based language model. Glossary of shapes: - B: Batch size. - T: Sequence length. - D: Model embedding size. - H: Number of attention heads. - V: Vocabulary size. """ import dataclasses from typing import Optional import haiku as hk import jax import jax.numpy as jnp import numpy as np def _layer_norm(x: jax.Array) -> jax.Array: """Applies a unique LayerNorm to `x` with default settings.""" ln = hk.LayerNorm(axis=-1, create_scale=True, create_offset=True) return ln(x) @dataclasses.dataclass class Transformer(hk.Module): """A transformer stack.""" num_heads: int # Number of attention heads. num_layers: int # Number of transformer (attention + MLP) layers to stack. attn_size: int # Size of the attention (key, query, value) vectors. dropout_rate: float # Probability with which to apply dropout. widening_factor: int = 4 # Factor by which the MLP hidden layer widens. name: Optional[str] = None # Optional identifier for the module. def __call__( self, embeddings: jax.Array, # [B, T, D] mask: jax.Array, # [B, T] ) -> jax.Array: # [B, T, D] """Transforms input embedding sequences to output embedding sequences.""" initializer = hk.initializers.VarianceScaling(2 / self.num_layers) _, seq_len, model_size = embeddings.shape # Compute causal mask for autoregressive sequence modelling. mask = mask[:, None, None, :] # [B, H=1, T'=1, T] causal_mask = np.tril(np.ones((1, 1, seq_len, seq_len))) # [B=1, H=1, T, T] mask = mask * causal_mask # [B, H=1, T, T] h = embeddings for _ in range(self.num_layers): # First the attention block. attn_block = hk.MultiHeadAttention( num_heads=self.num_heads, key_size=self.attn_size, model_size=model_size, w_init=initializer, ) h_norm = _layer_norm(h) h_attn = attn_block(h_norm, h_norm, h_norm, mask=mask) h_attn = hk.dropout(hk.next_rng_key(), self.dropout_rate, h_attn) h = h + h_attn # Then the dense block. dense_block = hk.Sequential([ hk.Linear(self.widening_factor * model_size, w_init=initializer), jax.nn.gelu, hk.Linear(model_size, w_init=initializer), ]) h_norm = _layer_norm(h) h_dense = dense_block(h_norm) h_dense = hk.dropout(hk.next_rng_key(), self.dropout_rate, h_dense) h = h + h_dense return _layer_norm(h) @dataclasses.dataclass class LanguageModel(hk.Module): """An autoregressive transformer-based language model.""" transformer: Transformer model_size: int # Embedding size. vocab_size: int # Size of the vocabulary. pad_token: int # Identity of the padding token (used for masking inputs). name: Optional[str] = None # Optional identifier for the module. def __call__( self, tokens: jax.Array, # Batch of sequences of input tokens, shape [B, T]. ) -> jax.Array: # Batch of sequences of output token logits, shape [B, T, V]. """Forward pass, producing a sequence of logits.""" input_mask = jnp.greater(tokens, self.pad_token) unused_batch_size, seq_len = tokens.shape # Embed the input tokens and positions. embed_init = hk.initializers.TruncatedNormal(stddev=0.02) token_embedding_map = hk.Embed( self.vocab_size, embed_dim=self.model_size, w_init=embed_init) token_embeddings = token_embedding_map(tokens) positional_embeddings = hk.get_parameter( 'positional_embeddings', [seq_len, self.model_size], init=embed_init) input_embeddings = token_embeddings + positional_embeddings # [B, T, D] # Run the transformer over the inputs. embeddings = self.transformer(input_embeddings, input_mask) # [B, T, D] # Decode the embeddings (here, we use untied weights). return hk.Linear(self.vocab_size)(embeddings) # [B, T, V]
dm-haiku-main
examples/transformer/model.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A simple example loader for an ASCII language-modelling dataset.""" from collections.abc import Iterable, Iterator import itertools import random from typing import NamedTuple, TypeVar import numpy as np VOCAB_SIZE = 128 # Number of ASCII code points. PAD_TOKEN = 0 _T = TypeVar('_T') class Batch(NamedTuple): inputs: np.ndarray # Integer tokens, shape [B, T]. targets: np.ndarray # Integer tokens, shape [B, T]. def repeat(dataset: Iterable[_T]) -> Iterator[_T]: return itertools.cycle(dataset) def shuffle(dataset: Iterator[_T], buffer_size: int) -> Iterator[_T]: buffer = [next(dataset) for _ in range(buffer_size)] random.shuffle(buffer) for item in dataset: idx = random.randint(0, buffer_size - 1) # Inclusive. result = buffer[idx] buffer[idx] = item yield result def load_ascii_dataset( corpus: str, *, batch_size: int, sequence_length: int, num_shuffle_batches: int = 10, ) -> Iterator[Batch]: """Loads a single-file ASCII dataset in memory.""" if not corpus.isascii(): raise ValueError('Loaded corpus is not ASCII.') if chr(PAD_TOKEN) in corpus: # Reserve 0 codepoint for pad token. raise ValueError('Corpus must not contain the null byte.') # Naively tokenise by taking ASCII codepoints. corpus = np.array([ord(c) for c in corpus]).astype(np.int32) assert np.max(corpus) < VOCAB_SIZE crop_len = sequence_length + 1 num_batches, remainder = divmod(corpus.size, batch_size * crop_len) if remainder: corpus = corpus[:-remainder] # Drop remainder (incomplete) batch. ds = corpus.reshape([-1, crop_len]) if num_batches < num_shuffle_batches: raise ValueError( f'Only {num_batches} batches in the dataset; consider using a shorter ' 'sequence length or a smaller batch batch size.', ) ds = repeat(ds) ds = shuffle(ds, buffer_size=batch_size * num_shuffle_batches) while True: batch = np.stack([next(ds) for _ in range(batch_size)]) yield Batch(inputs=batch[:, :-1], targets=batch[:, 1:])
dm-haiku-main
examples/transformer/dataset.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Trains a transformer for language modeling on a small text dataset. This example serves to demonstrate: - A clean Haiku transformer implementation. - An example minimal training loop around it. This example runs on ASCII text files. We have not tuned the hyperparameters at all. Example, using Karpathy's tiny_shakespeare dataset: $ wget -O /tmp/shakespeare.txt \ https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt $ python3 examples/transformer/train.py \ --dataset_path=/tmp/shakespeare.txt --alsologtostderr """ from collections.abc import MutableMapping import time from typing import Any, NamedTuple, Union from absl import app from absl import flags from absl import logging import haiku as hk from examples.transformer import dataset from examples.transformer import model import jax import jax.numpy as jnp import numpy as np import optax DATASET_PATH = flags.DEFINE_string( 'dataset_path', None, help='Path to raw dataset file', required=True) # Training hyperparameters. BATCH_SIZE = 2 SEQUENCE_LENGTH = 64 LEARNING_RATE = 3e-4 GRAD_CLIP_VALUE = 1 LOG_EVERY = 50 MAX_STEPS = 10**6 SEED = 0 # Model hyperparameters. NUM_LAYERS = 6 NUM_HEADS = 8 # Number of attention heads. MODEL_SIZE = 128 KEY_SIZE = 32 DROPOUT_RATE = 0.1 # Helpful type aliases. _Batch = dataset.Batch _Metrics = MutableMapping[str, Any] class TrainingState(NamedTuple): """Container for the training state.""" params: hk.Params # Current network parameters. opt_state: optax.OptState # Optimiser state (e.g. gradient moments). rng_key: jax.Array # RNG used for e.g. dropout. Split on each update step. step: jax.Array # Tracks the number of training steps. def forward_pass(tokens: Union[np.ndarray, jax.Array]) -> jax.Array: """Defines the forward pass of the language model.""" lm = model.LanguageModel( model_size=MODEL_SIZE, vocab_size=dataset.VOCAB_SIZE, pad_token=dataset.PAD_TOKEN, transformer=model.Transformer( num_heads=NUM_HEADS, num_layers=NUM_LAYERS, attn_size=KEY_SIZE, dropout_rate=DROPOUT_RATE, ), ) return lm(tokens) # Logits, shape [B, T, V]. def optimiser() -> optax.GradientTransformation: return optax.chain( optax.clip_by_global_norm(GRAD_CLIP_VALUE), optax.adam(LEARNING_RATE, b1=0.9, b2=0.99), ) @hk.transform def loss_fn(data: _Batch) -> jax.Array: """Computes the (scalar) language modelling loss on `data` w.r.t. params.""" logits = forward_pass(data.inputs) log_probs = jax.nn.log_softmax(logits) # [B, T, V] onehot_targets = jax.nn.one_hot(data.targets, dataset.VOCAB_SIZE) log_likelihood = jnp.sum(onehot_targets * log_probs, axis=-1) # [B, T] # Loss is the average negative log-likelihood per (non-masked) token. mask = jnp.not_equal(data.inputs, dataset.PAD_TOKEN) # [B, T] return -jnp.sum(log_likelihood * mask) / jnp.sum(mask) # [] @jax.jit def init(rng: jax.Array, data: _Batch) -> TrainingState: """Makes an initial training state (random parameters).""" rng, init_rng = jax.random.split(rng) initial_params = loss_fn.init(init_rng, data) initial_opt_state = optimiser().init(initial_params) return TrainingState( params=initial_params, opt_state=initial_opt_state, rng_key=rng, step=jnp.array(0), ) @jax.jit def update( state: TrainingState, data: _Batch ) -> tuple[TrainingState, _Metrics]: """Does an SGD step, returning a new training state and metrics.""" rng, net_rng = jax.random.split(state.rng_key) loss_and_grad_fn = jax.value_and_grad(loss_fn.apply) loss, gradients = loss_and_grad_fn(state.params, net_rng, data) updates, new_opt_state = optimiser().update(gradients, state.opt_state) new_params = optax.apply_updates(state.params, updates) new_state = TrainingState( params=new_params, opt_state=new_opt_state, rng_key=rng, step=state.step + 1, ) metrics = { 'step': state.step, 'loss': loss, } return new_state, metrics def main(_): # Create the dataset. with open(DATASET_PATH.value) as file: train_dataset = dataset.load_ascii_dataset( corpus=file.read(), batch_size=BATCH_SIZE, sequence_length=SEQUENCE_LENGTH, ) # Initialise the model parameters. rng = jax.random.PRNGKey(SEED) data = next(train_dataset) state = init(rng, data) # Training loop (note we don't include any explicit eval in this example). prev_time = time.time() for step in range(MAX_STEPS): state, metrics = update(state, data) data = next(train_dataset) # We use JAX runahead to mask data preprocessing and JAX dispatch overheads. # Using values from state/metrics too often will block the runahead and can # cause these overheads to become more prominent. if step % LOG_EVERY == 0: steps_per_sec = LOG_EVERY / (time.time() - prev_time) prev_time = time.time() metrics |= {'steps_per_sec': steps_per_sec} logging.info({k: float(v) for k, v in metrics.items()}) if __name__ == '__main__': app.run(main)
dm-haiku-main
examples/transformer/train.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Actor test.""" from unittest import mock from absl.testing import absltest from bsuite.environments import catch import dm_env from examples.impala import actor as actor_lib from examples.impala import agent as agent_lib from examples.impala import haiku_nets from examples.impala import learner as learner_lib from examples.impala import util import jax import numpy as np import tree class CatchTest(absltest.TestCase): def setUp(self): super().setUp() self.env = catch.Catch() self.action_spec = self.env.action_spec() self.num_actions = self.action_spec.num_values self.obs_spec = self.env.observation_spec() self.agent = agent_lib.Agent( num_actions=self.num_actions, obs_spec=self.obs_spec, net_factory=haiku_nets.CatchNet, ) self.key = jax.random.PRNGKey(42) self.key, subkey = jax.random.split(self.key) self.initial_params = self.agent.initial_params(subkey) def test_unroll(self): mock_learner = mock.MagicMock() traj_len = 10 actor = actor_lib.Actor( agent=self.agent, env=self.env, learner=mock_learner, unroll_length=traj_len, ) self.key, subkey = jax.random.split(self.key) act_out = actor.unroll( rng_key=subkey, frame_count=0, params=self.initial_params, unroll_length=traj_len) self.assertIsInstance(act_out, util.Transition) self.assertIsInstance(act_out.timestep, dm_env.TimeStep) self.assertLen(act_out.timestep.reward.shape, 1) self.assertEqual(act_out.timestep.reward.shape, (traj_len + 1,)) self.assertLen(act_out.timestep.discount.shape, 1) self.assertEqual(act_out.timestep.discount.shape, (traj_len + 1,)) self.assertLen(act_out.timestep.step_type.shape, 1) self.assertEqual(act_out.timestep.step_type.shape, (traj_len + 1,)) self.assertLen(act_out.timestep.observation.shape, 3) self.assertEqual(act_out.timestep.observation.shape, (traj_len + 1,) + self.obs_spec.shape) self.assertIsInstance(act_out.agent_out, agent_lib.AgentOutput) self.assertLen(act_out.agent_out.action.shape, 1) self.assertEqual(act_out.agent_out.action.shape, (traj_len + 1,)) self.assertLen(act_out.agent_out.policy_logits.shape, 2) self.assertEqual(act_out.agent_out.policy_logits.shape, (traj_len + 1, self.num_actions)) self.assertLen(act_out.agent_out.values.shape, 1) self.assertEqual(act_out.agent_out.values.shape, (traj_len + 1,)) self.assertEqual(act_out.agent_state.shape, (traj_len + 1,)) def test_sync_params(self): mock_learner = mock.MagicMock() frame_count = 428 params = self.initial_params mock_learner.params_for_actor.return_value = frame_count, params traj_len = 10 actor = actor_lib.Actor( agent=self.agent, env=self.env, learner=mock_learner, unroll_length=traj_len, ) received_frame_count, received_params = actor.pull_params() self.assertEqual(received_frame_count, frame_count) tree.assert_same_structure(received_params, params) tree.map_structure(np.testing.assert_array_almost_equal, received_params, params) def test_unroll_and_push(self): traj_len = 3 mock_learner = mock.create_autospec(learner_lib.Learner, instance=True) actor = actor_lib.Actor( agent=self.agent, env=self.env, learner=mock_learner, unroll_length=traj_len, ) actor.unroll_and_push(0, self.initial_params) mock_learner.enqueue_traj.assert_called_once() act_out = mock_learner.enqueue_traj.call_args[0][0] self.assertIsInstance(act_out, util.Transition) self.assertIsInstance(act_out.timestep, dm_env.TimeStep) self.assertLen(act_out.timestep.reward.shape, 1) self.assertEqual(act_out.timestep.reward.shape, (traj_len + 1,)) self.assertLen(act_out.timestep.discount.shape, 1) self.assertEqual(act_out.timestep.discount.shape, (traj_len + 1,)) self.assertLen(act_out.timestep.step_type.shape, 1) self.assertEqual(act_out.timestep.step_type.shape, (traj_len + 1,)) self.assertLen(act_out.timestep.observation.shape, 3) self.assertEqual(act_out.timestep.observation.shape, (traj_len + 1,) + self.obs_spec.shape) self.assertIsInstance(act_out.agent_out, agent_lib.AgentOutput) self.assertLen(act_out.agent_out.action.shape, 1) self.assertEqual(act_out.agent_out.action.shape, (traj_len + 1,)) self.assertLen(act_out.agent_out.policy_logits.shape, 2) self.assertEqual(act_out.agent_out.policy_logits.shape, (traj_len + 1, self.num_actions)) self.assertLen(act_out.agent_out.values.shape, 1) self.assertEqual(act_out.agent_out.values.shape, (traj_len + 1,)) self.assertEqual(act_out.agent_state.shape, (traj_len + 1,)) if __name__ == '__main__': absltest.main()
dm-haiku-main
examples/impala/actor_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Single-process IMPALA wiring.""" import threading from absl import app from bsuite.environments import catch from examples.impala import actor as actor_lib from examples.impala import agent as agent_lib from examples.impala import haiku_nets from examples.impala import learner as learner_lib from examples.impala import util import jax import optax ACTION_REPEAT = 1 BATCH_SIZE = 2 DISCOUNT_FACTOR = 0.99 MAX_ENV_FRAMES = 20000 NUM_ACTORS = 2 UNROLL_LENGTH = 20 FRAMES_PER_ITER = ACTION_REPEAT * BATCH_SIZE * UNROLL_LENGTH def run_actor(actor: actor_lib.Actor, stop_signal: list[bool]): """Runs an actor to produce num_trajectories trajectories.""" while not stop_signal[0]: frame_count, params = actor.pull_params() actor.unroll_and_push(frame_count, params) def main(_): # A thunk that builds a new environment. # Substitute your environment here! build_env = catch.Catch # Construct the agent. We need a sample environment for its spec. env_for_spec = build_env() num_actions = env_for_spec.action_spec().num_values agent = agent_lib.Agent(num_actions, env_for_spec.observation_spec(), haiku_nets.CatchNet) # Construct the optimizer. max_updates = MAX_ENV_FRAMES / FRAMES_PER_ITER opt = optax.rmsprop(5e-3, decay=0.99, eps=1e-7) # Construct the learner. learner = learner_lib.Learner( agent, jax.random.PRNGKey(428), opt, BATCH_SIZE, DISCOUNT_FACTOR, FRAMES_PER_ITER, max_abs_reward=1., logger=util.AbslLogger(), # Provide your own logger here. ) # Construct the actors on different threads. # stop_signal in a list so the reference is shared. actor_threads = [] stop_signal = [False] for i in range(NUM_ACTORS): actor = actor_lib.Actor( agent, build_env(), UNROLL_LENGTH, learner, rng_seed=i, logger=util.AbslLogger(), # Provide your own logger here. ) args = (actor, stop_signal) actor_threads.append(threading.Thread(target=run_actor, args=args)) # Start the actors and learner. for t in actor_threads: t.start() learner.run(int(max_updates)) # Stop. stop_signal[0] = True for t in actor_threads: t.join() if __name__ == '__main__': app.run(main)
dm-haiku-main
examples/impala/run_catch.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Util.""" import collections from absl import logging import dm_env import numpy as np import tree # Can represent either a single transition, a trajectory, or a batch of # trajectories. Transition = collections.namedtuple('Transition', ['timestep', 'agent_out', 'agent_state']) def _preprocess_none(t) -> np.ndarray: if t is None: return np.array(0., dtype=np.float32) else: return np.asarray(t) def preprocess_step(timestep: dm_env.TimeStep) -> dm_env.TimeStep: if timestep.discount is None: timestep = timestep._replace(discount=1.) return tree.map_structure(_preprocess_none, timestep) class NullLogger: """Logger that does nothing.""" def write(self, _): pass def close(self): pass class AbslLogger: """Writes to logging.info.""" def write(self, d): logging.info(d) def close(self): pass
dm-haiku-main
examples/impala/util.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Common networks.""" import collections import dm_env import haiku as hk import jax.nn import jax.numpy as jnp NetOutput = collections.namedtuple('NetOutput', ['policy_logits', 'value']) class CatchNet(hk.RNNCore): """A simple neural network for catch.""" def __init__(self, num_actions, name=None): super().__init__(name=name) self._num_actions = num_actions def initial_state(self, batch_size): if batch_size is None: shape = [] else: shape = [batch_size] return jnp.zeros(shape) # Dummy. def __call__(self, x: dm_env.TimeStep, state): torso_net = hk.Sequential( [hk.Flatten(), hk.Linear(128), jax.nn.relu, hk.Linear(64), jax.nn.relu]) torso_output = torso_net(x.observation) policy_logits = hk.Linear(self._num_actions)(torso_output) value = hk.Linear(1)(torso_output) value = jnp.squeeze(value, axis=-1) return NetOutput(policy_logits=policy_logits, value=value), state def unroll(self, x, state): """Unrolls more efficiently than dynamic_unroll.""" out, _ = hk.BatchApply(self)(x, None) return out, state class AtariShallowTorso(hk.Module): """Shallow torso for Atari, from the DQN paper.""" def __init__(self, name=None): super().__init__(name=name) def __call__(self, x): torso_net = hk.Sequential([ lambda x: x / 255., hk.Conv2D(32, kernel_shape=[8, 8], stride=[4, 4], padding='VALID'), jax.nn.relu, hk.Conv2D(64, kernel_shape=[4, 4], stride=[2, 2], padding='VALID'), jax.nn.relu, hk.Conv2D(64, kernel_shape=[3, 3], stride=[1, 1], padding='VALID'), jax.nn.relu, hk.Flatten(), hk.Linear(512), jax.nn.relu, ]) return torso_net(x) class ResidualBlock(hk.Module): """Residual block.""" def __init__(self, num_channels, name=None): super().__init__(name=name) self._num_channels = num_channels def __call__(self, x): main_branch = hk.Sequential([ jax.nn.relu, hk.Conv2D( self._num_channels, kernel_shape=[3, 3], stride=[1, 1], padding='SAME'), jax.nn.relu, hk.Conv2D( self._num_channels, kernel_shape=[3, 3], stride=[1, 1], padding='SAME'), ]) return main_branch(x) + x class AtariDeepTorso(hk.Module): """Deep torso for Atari, from the IMPALA paper.""" def __init__(self, name=None): super().__init__(name=name) def __call__(self, x): torso_out = x / 255. for i, (num_channels, num_blocks) in enumerate([(16, 2), (32, 2), (32, 2)]): conv = hk.Conv2D( num_channels, kernel_shape=[3, 3], stride=[1, 1], padding='SAME') torso_out = conv(torso_out) torso_out = hk.max_pool( torso_out, window_shape=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', ) for j in range(num_blocks): block = ResidualBlock(num_channels, name=f'residual_{i}_{j}') torso_out = block(torso_out) torso_out = jax.nn.relu(torso_out) torso_out = hk.Flatten()(torso_out) torso_out = hk.Linear(256)(torso_out) torso_out = jax.nn.relu(torso_out) return torso_out class AtariNet(hk.RNNCore): """Network for Atari.""" def __init__(self, num_actions, use_resnet, use_lstm, name=None): super().__init__(name=name) self._num_actions = num_actions self._use_resnet = use_resnet self._use_lstm = use_lstm self._core = hk.ResetCore(hk.LSTM(256)) def initial_state(self, batch_size): return self._core.initial_state(batch_size) def __call__(self, x: dm_env.TimeStep, state): x = jax.tree_util.tree_map(lambda t: t[None, ...], x) return self.unroll(x, state) def unroll(self, x, state): """Unrolls more efficiently than dynamic_unroll.""" if self._use_resnet: torso = AtariDeepTorso() else: torso = AtariShallowTorso() torso_output = hk.BatchApply(torso)(x.observation) if self._use_lstm: should_reset = jnp.equal(x.step_type, int(dm_env.StepType.FIRST)) core_input = (torso_output, should_reset) core_output, state = hk.dynamic_unroll(self._core, core_input, state) else: core_output = torso_output # state passes through. return hk.BatchApply(self._head)(core_output), state def _head(self, core_output): policy_logits = hk.Linear(self._num_actions)(core_output) value = hk.Linear(1)(core_output) value = jnp.squeeze(value, axis=-1) return NetOutput(policy_logits=policy_logits, value=value)
dm-haiku-main
examples/impala/haiku_nets.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================
dm-haiku-main
examples/impala/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A stateless agent interface.""" import collections import functools from typing import Any, Callable, Optional import dm_env import haiku as hk from examples.impala import util import jax import jax.numpy as jnp import numpy as np AgentOutput = collections.namedtuple("AgentOutput", ["policy_logits", "values", "action"]) Action = int Nest = Any NetFactory = Callable[[int], hk.RNNCore] class Agent: """A stateless agent interface.""" def __init__(self, num_actions: int, obs_spec: Nest, net_factory: NetFactory): """Constructs an Agent object. Args: num_actions: Number of possible actions for the agent. Assumes a flat, discrete, 0-indexed action space. obs_spec: The observation spec of the environment. net_factory: A function from num_actions to a Haiku module representing the agent. This module should have an initial_state() function and an unroll function. """ self._obs_spec = obs_spec net_factory = functools.partial(net_factory, num_actions) # Instantiate two hk.transforms() - one for getting the initial state of the # agent, another for actually initializing and running the agent. _, self._initial_state_apply_fn = hk.without_apply_rng( hk.transform( lambda batch_size: net_factory().initial_state(batch_size))) self._init_fn, self._apply_fn = hk.without_apply_rng( hk.transform(lambda obs, state: net_factory().unroll(obs, state))) @functools.partial(jax.jit, static_argnums=0) def initial_params(self, rng_key): """Initializes the agent params given the RNG key.""" dummy_inputs = jax.tree_util.tree_map( lambda t: np.zeros(t.shape, t.dtype), self._obs_spec) dummy_inputs = util.preprocess_step(dm_env.restart(dummy_inputs)) dummy_inputs = jax.tree_util.tree_map( lambda t: t[None, None, ...], dummy_inputs) return self._init_fn(rng_key, dummy_inputs, self.initial_state(1)) @functools.partial(jax.jit, static_argnums=(0, 1)) def initial_state(self, batch_size: Optional[int]): """Returns agent initial state.""" # We expect that generating the initial_state does not require parameters. return self._initial_state_apply_fn(None, batch_size) @functools.partial(jax.jit, static_argnums=(0,)) def step( self, rng_key, params: hk.Params, timestep: dm_env.TimeStep, state: Nest, ) -> tuple[AgentOutput, Nest]: """For a given single-step, unbatched timestep, output the chosen action.""" # Pad timestep, state to be [T, B, ...] and [B, ...] respectively. timestep = jax.tree_util.tree_map(lambda t: t[None, None, ...], timestep) state = jax.tree_util.tree_map(lambda t: t[None, ...], state) net_out, next_state = self._apply_fn(params, timestep, state) # Remove the padding from above. net_out = jax.tree_util.tree_map( lambda t: jnp.squeeze(t, axis=(0, 1)), net_out) next_state = jax.tree_util.tree_map( lambda t: jnp.squeeze(t, axis=0), next_state) # Sample an action and return. action = hk.multinomial(rng_key, net_out.policy_logits, num_samples=1) action = jnp.squeeze(action, axis=-1) return AgentOutput(net_out.policy_logits, net_out.value, action), next_state def unroll( self, params: hk.Params, trajectory: dm_env.TimeStep, state: Nest, ) -> AgentOutput: """Unroll the agent along trajectory.""" net_out, _ = self._apply_fn(params, trajectory, state) return AgentOutput(net_out.policy_logits, net_out.value, action=[])
dm-haiku-main
examples/impala/agent.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku.examples.impala.learner.""" from absl.testing import absltest from bsuite.environments import catch from examples.impala import actor as actor_lib from examples.impala import agent as agent_lib from examples.impala import haiku_nets from examples.impala import learner as learner_lib import jax import optax class LearnerTest(absltest.TestCase): def test_integration(self): env = catch.Catch() action_spec = env.action_spec() num_actions = action_spec.num_values obs_spec = env.observation_spec() agent = agent_lib.Agent( num_actions=num_actions, obs_spec=obs_spec, net_factory=haiku_nets.CatchNet, ) unroll_length = 20 learner = learner_lib.Learner( agent=agent, rng_key=jax.random.PRNGKey(42), opt=optax.sgd(1e-2), batch_size=1, discount_factor=0.99, frames_per_iter=unroll_length, ) actor = actor_lib.Actor( agent=agent, env=env, learner=learner, unroll_length=unroll_length, ) frame_count, params = actor.pull_params() actor.unroll_and_push(frame_count=frame_count, params=params) learner.run(max_iterations=1) if __name__ == '__main__': absltest.main()
dm-haiku-main
examples/impala/learner_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """IMPALA actor class.""" import dm_env import haiku as hk from examples.impala import agent as agent_lib from examples.impala import learner as learner_lib from examples.impala import util import jax import numpy as np class Actor: """Manages the state of a single agent/environment interaction loop.""" def __init__( self, agent: agent_lib.Agent, env: dm_env.Environment, unroll_length: int, learner: learner_lib.Learner, rng_seed: int = 42, logger=None, ): self._agent = agent self._env = env self._unroll_length = unroll_length self._learner = learner self._timestep = env.reset() self._agent_state = agent.initial_state(None) self._traj = [] self._rng_key = jax.random.PRNGKey(rng_seed) if logger is None: logger = util.NullLogger() self._logger = logger self._episode_return = 0. def unroll(self, rng_key, frame_count: int, params: hk.Params, unroll_length: int) -> util.Transition: """Run unroll_length agent/environment steps, returning the trajectory.""" timestep = self._timestep agent_state = self._agent_state # Unroll one longer if trajectory is empty. num_interactions = unroll_length + int(not self._traj) subkeys = jax.random.split(rng_key, num_interactions) for i in range(num_interactions): timestep = util.preprocess_step(timestep) agent_out, next_state = self._agent.step(subkeys[i], params, timestep, agent_state) transition = util.Transition( timestep=timestep, agent_out=agent_out, agent_state=agent_state) self._traj.append(transition) agent_state = next_state timestep = self._env.step(agent_out.action) if timestep.last(): self._episode_return += timestep.reward self._logger.write({ 'num_frames': frame_count, 'episode_return': self._episode_return, }) self._episode_return = 0. else: self._episode_return += timestep.reward or 0. # Elide a manual agent_state reset on step_type.first(), as the ResetCore # already takes care of this for us. # Pack the trajectory and reset parent state. trajectory = jax.device_get(self._traj) trajectory = jax.tree_util.tree_map(lambda *xs: np.stack(xs), *trajectory) self._timestep = timestep self._agent_state = agent_state # Keep the bootstrap timestep for next trajectory. self._traj = self._traj[-1:] return trajectory def unroll_and_push(self, frame_count: int, params: hk.Params): """Run one unroll and send trajectory to learner.""" params = jax.device_put(params) self._rng_key, subkey = jax.random.split(self._rng_key) act_out = self.unroll( rng_key=subkey, frame_count=frame_count, params=params, unroll_length=self._unroll_length) self._learner.enqueue_traj(act_out) def pull_params(self): return self._learner.params_for_actor()
dm-haiku-main
examples/impala/actor.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """IMPALA learner class.""" import functools import itertools import queue import threading import warnings import dm_env import haiku as hk from examples.impala import agent as agent_lib from examples.impala import util import jax from jax.example_libraries import optimizers import jax.numpy as jnp import numpy as np import optax import rlax # The IMPALA paper sums losses, rather than taking the mean. # We wrap rlax to do so as well. def policy_gradient_loss(logits, *args): """rlax.policy_gradient_loss, but with sum(loss) and [T, B, ...] inputs.""" mean_per_batch = jax.vmap(rlax.policy_gradient_loss, in_axes=1)(logits, *args) total_loss_per_batch = mean_per_batch * logits.shape[0] return jnp.sum(total_loss_per_batch) def entropy_loss(logits, *args): """rlax.entropy_loss, but with sum(loss) and [T, B, ...] inputs.""" mean_per_batch = jax.vmap(rlax.entropy_loss, in_axes=1)(logits, *args) total_loss_per_batch = mean_per_batch * logits.shape[0] return jnp.sum(total_loss_per_batch) class Learner: """Manages state and performs updates for IMPALA learner.""" def __init__( self, agent: agent_lib.Agent, rng_key, opt: optax.GradientTransformation, batch_size: int, discount_factor: float, frames_per_iter: int, max_abs_reward: float = 0, logger=None, ): if jax.device_count() > 1: warnings.warn('Note: the impala example will only take advantage of a ' 'single accelerator.') self._agent = agent self._opt = opt self._batch_size = batch_size self._discount_factor = discount_factor self._frames_per_iter = frames_per_iter self._max_abs_reward = max_abs_reward # Data pipeline objects. self._done = False self._host_q = queue.Queue(maxsize=self._batch_size) self._device_q = queue.Queue(maxsize=1) # Prepare the parameters to be served to actors. params = agent.initial_params(rng_key) self._params_for_actor = (0, jax.device_get(params)) # Set up logging. if logger is None: logger = util.NullLogger() self._logger = logger def _loss( self, theta: hk.Params, trajectories: util.Transition, ) -> tuple[jax.Array, dict[str, jax.Array]]: """Compute vtrace-based actor-critic loss.""" initial_state = jax.tree_util.tree_map( lambda t: t[0], trajectories.agent_state) learner_outputs = self._agent.unroll(theta, trajectories.timestep, initial_state) v_t = learner_outputs.values[1:] # Remove bootstrap timestep from non-timesteps. _, actor_out, _ = jax.tree_util.tree_map(lambda t: t[:-1], trajectories) learner_outputs = jax.tree_util.tree_map(lambda t: t[:-1], learner_outputs) v_tm1 = learner_outputs.values # Get the discount, reward, step_type from the *next* timestep. timestep = jax.tree_util.tree_map(lambda t: t[1:], trajectories.timestep) discounts = timestep.discount * self._discount_factor rewards = timestep.reward if self._max_abs_reward > 0: rewards = jnp.clip(rewards, -self._max_abs_reward, self._max_abs_reward) # The step is uninteresting if we transitioned LAST -> FIRST. # timestep corresponds to the *next* time step, so we filter for FIRST. mask = jnp.not_equal(timestep.step_type, int(dm_env.StepType.FIRST)) mask = mask.astype(jnp.float32) rhos = rlax.categorical_importance_sampling_ratios( learner_outputs.policy_logits, actor_out.policy_logits, actor_out.action) # vmap vtrace_td_error_and_advantage to take/return [T, B, ...]. vtrace_td_error_and_advantage = jax.vmap( rlax.vtrace_td_error_and_advantage, in_axes=1, out_axes=1) vtrace_returns = vtrace_td_error_and_advantage( v_tm1, v_t, rewards, discounts, rhos) pg_advs = vtrace_returns.pg_advantage pg_loss = policy_gradient_loss(learner_outputs.policy_logits, actor_out.action, pg_advs, mask) baseline_loss = 0.5 * jnp.sum(jnp.square(vtrace_returns.errors) * mask) ent_loss = entropy_loss(learner_outputs.policy_logits, mask) total_loss = pg_loss total_loss += 0.5 * baseline_loss total_loss += 0.01 * ent_loss logs = {} logs['PG_loss'] = pg_loss logs['baseline_loss'] = baseline_loss logs['entropy_loss'] = ent_loss logs['total_loss'] = total_loss return total_loss, logs @functools.partial(jax.jit, static_argnums=0) def update(self, params, opt_state, batch: util.Transition): """The actual update function.""" (_, logs), grads = jax.value_and_grad( self._loss, has_aux=True)(params, batch) grad_norm_unclipped = optimizers.l2_norm(grads) updates, updated_opt_state = self._opt.update(grads, opt_state) params = optax.apply_updates(params, updates) weight_norm = optimizers.l2_norm(params) logs.update({ 'grad_norm_unclipped': grad_norm_unclipped, 'weight_norm': weight_norm, }) return params, updated_opt_state, logs def enqueue_traj(self, traj: util.Transition): """Enqueue trajectory.""" self._host_q.put(traj) def params_for_actor(self) -> tuple[int, hk.Params]: return self._params_for_actor def host_to_device_worker(self): """Elementary data pipeline.""" batch = [] while not self._done: # Try to get a batch. Skip the iteration if we couldn't. try: for _ in range(len(batch), self._batch_size): # As long as possible while keeping learner_test time reasonable. batch.append(self._host_q.get(timeout=10)) except queue.Empty: continue assert len(batch) == self._batch_size # Prepare for consumption, then put batch onto device. stacked_batch = jax.tree_util.tree_map( lambda *xs: np.stack(xs, axis=1), *batch) self._device_q.put(jax.device_put(stacked_batch)) # Clean out the built-up batch. batch = [] def run(self, max_iterations: int = -1): """Runs the learner for max_iterations updates.""" # Start host-to-device transfer worker. transfer_thread = threading.Thread(target=self.host_to_device_worker) transfer_thread.start() (num_frames, params) = self._params_for_actor opt_state = self._opt.init(params) steps = range(max_iterations) if max_iterations != -1 else itertools.count() for _ in steps: batch = self._device_q.get() params, opt_state, logs = self.update(params, opt_state, batch) num_frames += self._frames_per_iter # Collect parameters to distribute to downstream actors. self._params_for_actor = (num_frames, jax.device_get(params)) # Collect and write logs out. logs = jax.device_get(logs) logs.update({ 'num_frames': num_frames, }) self._logger.write(logs) # Shut down. self._done = True self._logger.close() transfer_thread.join()
dm-haiku-main
examples/impala/learner.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================
dm-haiku-main
examples/imagenet/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ImageNet dataset with typical pre-processing.""" from collections.abc import Iterable, Iterator, Mapping, Sequence import enum import itertools as it import types from typing import Optional import jax import jax.numpy as jnp import numpy as np from packaging import version import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds Batch = Mapping[str, np.ndarray] MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255) STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255) class Split(enum.Enum): """Imagenet dataset split.""" TRAIN = 1 TRAIN_AND_VALID = 2 VALID = 3 TEST = 4 @classmethod def from_string(cls, name: str) -> 'Split': return {'TRAIN': Split.TRAIN, 'TRAIN_AND_VALID': Split.TRAIN_AND_VALID, 'VALID': Split.VALID, 'VALIDATION': Split.VALID, 'TEST': Split.TEST}[name.upper()] @property def num_examples(self): return {Split.TRAIN_AND_VALID: 1281167, Split.TRAIN: 1271167, Split.VALID: 10000, Split.TEST: 50000}[self] def _check_min_version(mod: types.ModuleType, min_ver: str): actual_ver = getattr(mod, '__version__') if version.parse(actual_ver) < version.parse(min_ver): raise ValueError( f'{mod.__name__} >= {min_ver} is required, you have {actual_ver}') def check_versions(): _check_min_version(tf, '2.5.0') _check_min_version(tfds, '4.2.0') def load( split: Split, *, is_training: bool, batch_dims: Sequence[int], dtype: jnp.dtype = jnp.float32, transpose: bool = False, zeros: bool = False, ) -> Iterator[Batch]: """Loads the given split of the dataset.""" if zeros: h, w, c = 224, 224, 3 if transpose: image_dims = (*batch_dims[:-1], h, w, c, batch_dims[0]) else: image_dims = (*batch_dims, h, w, c) batch = {'images': np.zeros(image_dims, dtype=dtype), 'labels': np.zeros(batch_dims, dtype=np.uint32)} if is_training: yield from it.repeat(batch) else: num_batches = split.num_examples // np.prod(batch_dims) yield from it.repeat(batch, num_batches) if is_training: start, end = _shard(split, jax.process_index(), jax.process_count()) else: start, end = _shard(split, 0, 1) tfds_split = tfds.core.ReadInstruction(_to_tfds_split(split), from_=start, to=end, unit='abs') ds = tfds.load('imagenet2012:5.*.*', split=tfds_split, decoders={'image': tfds.decode.SkipDecoding()}) total_batch_size = np.prod(batch_dims) options = tf.data.Options() options.experimental_threading.private_threadpool_size = 48 options.experimental_threading.max_intra_op_parallelism = 1 options.experimental_optimization.map_parallelization = True if is_training: options.experimental_deterministic = False ds = ds.with_options(options) if is_training: if jax.process_count() > 1: # Only cache if we are reading a subset of the dataset. ds = ds.cache() ds = ds.repeat() ds = ds.shuffle(buffer_size=10 * total_batch_size, seed=0) else: if split.num_examples % total_batch_size != 0: raise ValueError(f'Test/valid must be divisible by {total_batch_size}') def preprocess(example): image = _preprocess_image(example['image'], is_training) label = tf.cast(example['label'], tf.int32) return {'images': image, 'labels': label} ds = ds.map(preprocess, num_parallel_calls=tf.data.experimental.AUTOTUNE) def transpose_fn(batch): # We use the "double transpose trick" to improve performance for TPUs. Note # that this (typically) requires a matching HWCN->NHWC transpose in your # model code. The compiler cannot make this optimization for us since our # data pipeline and model are compiled separately. batch = dict(**batch) batch['images'] = tf.transpose(batch['images'], (1, 2, 3, 0)) return batch def cast_fn(batch): batch = dict(**batch) batch['images'] = tf.cast(batch['images'], tf.dtypes.as_dtype(dtype)) return batch for i, batch_size in enumerate(reversed(batch_dims)): ds = ds.batch(batch_size) if i == 0: if transpose: ds = ds.map(transpose_fn) # NHWC -> HWCN # NOTE: You may be tempted to move the casting earlier on in the pipeline, # but for bf16 some operations will end up silently placed on the TPU and # this causes stalls while TF and JAX battle for the accelerator. if dtype != jnp.float32: ds = ds.map(cast_fn) ds = ds.prefetch(tf.data.experimental.AUTOTUNE) yield from tfds.as_numpy(ds) def _device_put_sharded(sharded_tree, devices): leaves, treedef = jax.tree_util.tree_flatten(sharded_tree) n = leaves[0].shape[0] return jax.device_put_sharded([ jax.tree_util.tree_unflatten(treedef, [l[i] for l in leaves]) for i in range(n)], devices) def double_buffer(ds: Iterable[Batch]) -> Iterator[Batch]: """Keeps at least two batches on the accelerator. The current GPU allocator design reuses previous allocations. For a training loop this means batches will (typically) occupy the same region of memory as the previous batch. An issue with this is that it means we cannot overlap a host->device copy for the next batch until the previous step has finished and the previous batch has been freed. By double buffering we ensure that there are always two batches on the device. This means that a given batch waits on the N-2'th step to finish and free, meaning that it can allocate and copy the next batch to the accelerator in parallel with the N-1'th step being executed. Args: ds: Iterable of batches of numpy arrays. Yields: Batches of sharded device arrays. """ batch = None devices = jax.local_devices() for next_batch in ds: assert next_batch is not None next_batch = _device_put_sharded(next_batch, devices) if batch is not None: yield batch batch = next_batch if batch is not None: yield batch def _to_tfds_split(split: Split) -> tfds.Split: """Returns the TFDS split appropriately sharded.""" # NOTE: Imagenet did not release labels for the test split used in the # competition, so it has been typical at DeepMind to consider the VALID # split the TEST split and to reserve 10k images from TRAIN for VALID. if split in (Split.TRAIN, Split.TRAIN_AND_VALID, Split.VALID): return tfds.Split.TRAIN else: assert split == Split.TEST return tfds.Split.VALIDATION def _shard(split: Split, shard_index: int, num_shards: int) -> tuple[int, int]: """Returns [start, end) for the given shard index.""" assert shard_index < num_shards arange = np.arange(split.num_examples) shard_range = np.array_split(arange, num_shards)[shard_index] start, end = shard_range[0], (shard_range[-1] + 1) if split == Split.TRAIN: # Note that our TRAIN=TFDS_TRAIN[10000:] and VALID=TFDS_TRAIN[:10000]. offset = Split.VALID.num_examples start += offset end += offset return start, end def _preprocess_image( image_bytes: tf.Tensor, is_training: bool, ) -> tf.Tensor: """Returns processed and resized images.""" if is_training: image = _decode_and_random_crop(image_bytes) image = tf.image.random_flip_left_right(image) else: image = _decode_and_center_crop(image_bytes) assert image.dtype == tf.uint8 # NOTE: Bicubic resize (1) casts uint8 to float32 and (2) resizes without # clamping overshoots. This means values returned will be outside the range # [0.0, 255.0] (e.g. we have observed outputs in the range [-51.1, 336.6]). image = tf.image.resize(image, [224, 224], tf.image.ResizeMethod.BICUBIC) image = _normalize_image(image) return image def _normalize_image(image: tf.Tensor) -> tf.Tensor: """Normalize the image to zero mean and unit variance.""" image -= tf.constant(MEAN_RGB, shape=[1, 1, 3], dtype=image.dtype) image /= tf.constant(STDDEV_RGB, shape=[1, 1, 3], dtype=image.dtype) return image def _distorted_bounding_box_crop( image_bytes: tf.Tensor, *, jpeg_shape: tf.Tensor, bbox: tf.Tensor, min_object_covered: float, aspect_ratio_range: tuple[float, float], area_range: tuple[float, float], max_attempts: int, ) -> tf.Tensor: """Generates cropped_image using one of the bboxes randomly distorted.""" bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box( jpeg_shape, bounding_boxes=bbox, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range, max_attempts=max_attempts, use_image_if_no_bounding_boxes=True) # Crop the image to the specified bounding box. offset_y, offset_x, _ = tf.unstack(bbox_begin) target_height, target_width, _ = tf.unstack(bbox_size) crop_window = tf.stack([offset_y, offset_x, target_height, target_width]) image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3) return image def _decode_and_random_crop(image_bytes: tf.Tensor) -> tf.Tensor: """Make a random crop of 224.""" jpeg_shape = tf.image.extract_jpeg_shape(image_bytes) bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) image = _distorted_bounding_box_crop( image_bytes, jpeg_shape=jpeg_shape, bbox=bbox, min_object_covered=0.1, aspect_ratio_range=(3 / 4, 4 / 3), area_range=(0.08, 1.0), max_attempts=10) if tf.reduce_all(tf.equal(jpeg_shape, tf.shape(image))): # If the random crop failed fall back to center crop. image = _decode_and_center_crop(image_bytes, jpeg_shape) return image def _decode_and_center_crop( image_bytes: tf.Tensor, jpeg_shape: Optional[tf.Tensor] = None, ) -> tf.Tensor: """Crops to center of image with padding then scales.""" if jpeg_shape is None: jpeg_shape = tf.image.extract_jpeg_shape(image_bytes) image_height = jpeg_shape[0] image_width = jpeg_shape[1] padded_center_crop_size = tf.cast( ((224 / (224 + 32)) * tf.cast(tf.minimum(image_height, image_width), tf.float32)), tf.int32) offset_height = ((image_height - padded_center_crop_size) + 1) // 2 offset_width = ((image_width - padded_center_crop_size) + 1) // 2 crop_window = tf.stack([offset_height, offset_width, padded_center_crop_size, padded_center_crop_size]) image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3) return image
dm-haiku-main
examples/imagenet/dataset.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ResNet50 on ImageNet2012.""" from collections.abc import Iterable, Mapping import contextlib import functools import timeit from typing import NamedTuple from absl import app from absl import flags from absl import logging import haiku as hk from examples.imagenet import dataset import jax import jax.numpy as jnp import jmp import numpy as np import optax import tree # Hyper parameters. SPLITS = ('TRAIN', 'TRAIN_AND_VALID', 'VALID', 'TEST') flags.DEFINE_integer('eval_batch_size', 1000, help='') flags.DEFINE_enum('eval_split', 'TEST', SPLITS, help='') flags.DEFINE_float('model_bn_decay', 0.9, help='') flags.DEFINE_bool('model_resnet_v2', True, help='') flags.DEFINE_float('optimizer_momentum', 0.9, help='') flags.DEFINE_bool('optimizer_use_nesterov', True, help='') flags.DEFINE_integer('train_device_batch_size', 128, help='') flags.DEFINE_integer('train_eval_every', -1, help='') flags.DEFINE_integer('train_init_random_seed', 42, help='') flags.DEFINE_integer('train_log_every', 100, help='') flags.DEFINE_integer('train_epochs', 90, help='') flags.DEFINE_integer('train_lr_warmup_epochs', 5, help='') flags.DEFINE_float('train_lr_init', 0.1, help='') flags.DEFINE_float('train_smoothing', .1, lower_bound=0, upper_bound=1, help='') flags.DEFINE_enum('train_split', 'TRAIN_AND_VALID', SPLITS, help='') flags.DEFINE_float('train_weight_decay', 1e-4, help='') flags.DEFINE_string('mp_policy', 'p=f32,c=f32,o=f32', help='') flags.DEFINE_string('mp_bn_policy', 'p=f32,c=f32,o=f32', help='') flags.DEFINE_enum('mp_scale_type', 'NoOp', ['NoOp', 'Static', 'Dynamic'], help='') flags.DEFINE_float('mp_scale_value', 2 ** 15, help='') flags.DEFINE_bool('mp_skip_nonfinite', False, help='') flags.DEFINE_bool('dataset_transpose', False, help='') flags.DEFINE_bool('dataset_zeros', False, help='') FLAGS = flags.FLAGS Scalars = Mapping[str, jax.Array] class TrainState(NamedTuple): params: hk.Params state: hk.State opt_state: optax.OptState loss_scale: jmp.LossScale get_policy = lambda: jmp.get_policy(FLAGS.mp_policy) get_bn_policy = lambda: jmp.get_policy(FLAGS.mp_bn_policy) def get_initial_loss_scale() -> jmp.LossScale: cls = getattr(jmp, f'{FLAGS.mp_scale_type}LossScale') return cls(FLAGS.mp_scale_value) if cls is not jmp.NoOpLossScale else cls() def _forward( batch: dataset.Batch, is_training: bool, ) -> jax.Array: """Forward application of the resnet.""" images = batch['images'] if FLAGS.dataset_transpose: # See note in dataset.py if you are curious about this. images = jnp.transpose(images, (3, 0, 1, 2)) # HWCN -> NHWC net = hk.nets.ResNet50(1000, resnet_v2=FLAGS.model_resnet_v2, bn_config={'decay_rate': FLAGS.model_bn_decay}) return net(images, is_training=is_training) # Transform our forwards function into a pair of pure functions. forward = hk.transform_with_state(_forward) def lr_schedule(step: jax.Array) -> jax.Array: """Cosine learning rate schedule.""" train_split = dataset.Split.from_string(FLAGS.train_split) total_batch_size = FLAGS.train_device_batch_size * jax.device_count() steps_per_epoch = train_split.num_examples / total_batch_size warmup_steps = FLAGS.train_lr_warmup_epochs * steps_per_epoch training_steps = FLAGS.train_epochs * steps_per_epoch lr = FLAGS.train_lr_init * total_batch_size / 256 scaled_step = (jnp.maximum(step - warmup_steps, 0) / (training_steps - warmup_steps)) lr *= 0.5 * (1.0 + jnp.cos(jnp.pi * scaled_step)) if warmup_steps: lr *= jnp.minimum(step / warmup_steps, 1.0) return lr def make_optimizer() -> optax.GradientTransformation: """SGD with nesterov momentum and a custom lr schedule.""" return optax.chain( optax.trace( decay=FLAGS.optimizer_momentum, nesterov=FLAGS.optimizer_use_nesterov), optax.scale_by_schedule(lr_schedule), optax.scale(-1)) def l2_loss(params: Iterable[jax.Array]) -> jax.Array: return 0.5 * sum(jnp.sum(jnp.square(p)) for p in params) def loss_fn( params: hk.Params, state: hk.State, loss_scale: jmp.LossScale, batch: dataset.Batch, ) -> tuple[jax.Array, tuple[jax.Array, hk.State]]: """Computes a regularized loss for the given batch.""" logits, state = forward.apply(params, state, None, batch, is_training=True) labels = jax.nn.one_hot(batch['labels'], 1000) if FLAGS.train_smoothing: labels = optax.smooth_labels(labels, FLAGS.train_smoothing) loss = optax.softmax_cross_entropy(logits=logits, labels=labels).mean() l2_params = [p for ((mod_name, _), p) in tree.flatten_with_path(params) if 'batchnorm' not in mod_name] loss = loss + FLAGS.train_weight_decay * l2_loss(l2_params) return loss_scale.scale(loss), (loss, state) @functools.partial(jax.pmap, axis_name='i', donate_argnums=(0,)) def train_step( train_state: TrainState, batch: dataset.Batch, ) -> tuple[TrainState, Scalars]: """Applies an update to parameters and returns new state.""" params, state, opt_state, loss_scale = train_state grads, (loss, new_state) = ( jax.grad(loss_fn, has_aux=True)(params, state, loss_scale, batch)) # Grads are in "param_dtype" (likely F32) here. We cast them back to the # compute dtype such that we do the all-reduce below in the compute precision # (which is typically lower than the param precision). policy = get_policy() grads = policy.cast_to_compute(grads) grads = loss_scale.unscale(grads) # Taking the mean across all replicas to keep params in sync. grads = jax.lax.pmean(grads, axis_name='i') # We compute our optimizer update in the same precision as params, even when # doing mixed precision training. grads = policy.cast_to_param(grads) # Compute and apply updates via our optimizer. updates, new_opt_state = make_optimizer().update(grads, opt_state) new_params = optax.apply_updates(params, updates) if FLAGS.mp_skip_nonfinite: grads_finite = jmp.all_finite(grads) loss_scale = loss_scale.adjust(grads_finite) new_params, new_state, new_opt_state = jmp.select_tree( grads_finite, (new_params, new_state, new_opt_state), (params, state, opt_state)) # Scalars to log (note: we log the mean across all hosts/devices). scalars = {'train_loss': loss, 'loss_scale': loss_scale.loss_scale} if FLAGS.mp_skip_nonfinite: scalars['grads_finite'] = grads_finite new_state, scalars = jmp.cast_to_full((new_state, scalars)) scalars = jax.lax.pmean(scalars, axis_name='i') train_state = TrainState(new_params, new_state, new_opt_state, loss_scale) return train_state, scalars def initial_state(rng: jax.Array, batch: dataset.Batch) -> TrainState: """Computes the initial network state.""" params, state = forward.init(rng, batch, is_training=True) opt_state = make_optimizer().init(params) loss_scale = get_initial_loss_scale() return TrainState(params, state, opt_state, loss_scale) # NOTE: We use `jit` not `pmap` here because we want to ensure that we see all # eval data once and this is not easily satisfiable with pmap (e.g. n=3). # TODO(tomhennigan) Find a solution to allow pmap of eval. @jax.jit def eval_batch( params: hk.Params, state: hk.State, batch: dataset.Batch, ) -> jax.Array: """Evaluates a batch.""" logits, _ = forward.apply(params, state, None, batch, is_training=False) predicted_label = jnp.argmax(logits, axis=-1) correct = jnp.sum(jnp.equal(predicted_label, batch['labels'])) return correct.astype(jnp.float32) def evaluate( split: dataset.Split, params: hk.Params, state: hk.State, ) -> Scalars: """Evaluates the model at the given params/state.""" if split.num_examples % FLAGS.eval_batch_size: raise ValueError(f'Eval batch size {FLAGS.eval_batch_size} must be a ' f'multiple of {split} num examples {split.num_examples}') # Params/state are sharded per-device during training. We just need the copy # from the first device (since we do not pmap evaluation at the moment). params, state = jax.tree_util.tree_map(lambda x: x[0], (params, state)) test_dataset = dataset.load(split, is_training=False, batch_dims=[FLAGS.eval_batch_size], transpose=FLAGS.dataset_transpose, zeros=FLAGS.dataset_zeros) correct = jnp.array(0) total = 0 for batch in test_dataset: correct += eval_batch(params, state, batch) total += batch['labels'].shape[0] assert total == split.num_examples, total return {'top_1_acc': correct.item() / total} @contextlib.contextmanager def time_activity(activity_name: str): logging.info('[Timing] %s start.', activity_name) start = timeit.default_timer() yield duration = timeit.default_timer() - start logging.info('[Timing] %s finished (Took %.2fs).', activity_name, duration) def main(argv): if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') FLAGS.alsologtostderr = True train_split = dataset.Split.from_string(FLAGS.train_split) eval_split = dataset.Split.from_string(FLAGS.eval_split) # The total batch size is the batch size accross all hosts and devices. In a # multi-host training setup each host will only see a batch size of # `total_train_batch_size / jax.host_count()`. total_train_batch_size = FLAGS.train_device_batch_size * jax.device_count() num_train_steps = ( (train_split.num_examples * FLAGS.train_epochs) // total_train_batch_size) local_device_count = jax.local_device_count() train_dataset = dataset.load( train_split, is_training=True, batch_dims=[local_device_count, FLAGS.train_device_batch_size], dtype=get_policy().compute_dtype, transpose=FLAGS.dataset_transpose, zeros=FLAGS.dataset_zeros) # Assign mixed precision policies to modules. Note that when training in f16 # we keep BatchNorm in full precision. When training with bf16 you can often # use bf16 for BatchNorm. mp_policy = get_policy() bn_policy = get_bn_policy().with_output_dtype(mp_policy.compute_dtype) # NOTE: The order we call `set_policy` doesn't matter, when a method on a # class is called the policy for that class will be applied, or it will # inherit the policy from its parent module. hk.mixed_precision.set_policy(hk.BatchNorm, bn_policy) hk.mixed_precision.set_policy(hk.nets.ResNet50, mp_policy) if jax.default_backend() == 'gpu': # TODO(tomhennigan): This could be removed if XLA:GPU's allocator changes. train_dataset = dataset.double_buffer(train_dataset) # For initialization we need the same random key on each device. rng = jax.random.PRNGKey(FLAGS.train_init_random_seed) rng = jnp.broadcast_to(rng, (local_device_count,) + rng.shape) # Initialization requires an example input. batch = next(train_dataset) train_state = jax.pmap(initial_state)(rng, batch) # Print a useful summary of the execution of our module. summary = hk.experimental.tabulate(train_step)(train_state, batch) for line in summary.split('\n'): logging.info(line) eval_every = FLAGS.train_eval_every log_every = FLAGS.train_log_every with time_activity('train'): for step_num in range(num_train_steps): # Take a single training step. with jax.profiler.StepTraceAnnotation('train', step_num=step_num): batch = next(train_dataset) train_state, train_scalars = train_step(train_state, batch) # By default we do not evaluate during training, but you can configure # this with a flag. if eval_every > 0 and step_num and step_num % eval_every == 0: with time_activity('eval during train'): eval_scalars = evaluate(eval_split, train_state.params, train_state.state) logging.info('[Eval %s/%s] %s', step_num, num_train_steps, eval_scalars) # Log progress at fixed intervals. if step_num and step_num % log_every == 0: train_scalars = jax.tree_util.tree_map( lambda v: np.mean(v).item(), jax.device_get(train_scalars)) logging.info('[Train %s/%s] %s', step_num, num_train_steps, train_scalars) # Once training has finished we run eval one more time to get final results. with time_activity('final eval'): eval_scalars = evaluate(eval_split, train_state.params, train_state.state) logging.info('[Eval FINAL]: %s', eval_scalars) if __name__ == '__main__': dataset.check_versions() app.run(main)
dm-haiku-main
examples/imagenet/train.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================
dm-haiku-main
examples/rnn/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tiny Shakespeare as a language modelling dataset.""" from collections.abc import Iterator, Mapping import numpy as np import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds Batch = Mapping[str, np.ndarray] NUM_CHARS = 128 def load( split: tfds.Split, *, batch_size: int, sequence_length: int, ) -> Iterator[Batch]: """Creates the Tiny Shakespeare dataset as a character modelling task.""" def preprocess_fn(x: Mapping[str, tf.Tensor]) -> Mapping[str, tf.Tensor]: x = x['text'] x = tf.strings.unicode_split(x, 'UTF-8') x = tf.squeeze(tf.io.decode_raw(x, tf.uint8), axis=-1) x = tf.cast(x, tf.int32) return {'input': x[:-1], 'target': x[1:]} ds = tfds.load(name='tiny_shakespeare', split=split) ds = ds.map(preprocess_fn) ds = ds.unbatch() ds = ds.batch(sequence_length, drop_remainder=True) ds = ds.shuffle(100) ds = ds.repeat() ds = ds.batch(batch_size) ds = ds.map(lambda b: tf.nest.map_structure(tf.transpose, b)) # Time major. return iter(tfds.as_numpy(ds)) def decode(x: np.ndarray) -> str: return ''.join([chr(x) for x in x]) def encode(x: str) -> np.ndarray: return np.array([ord(s) for s in x])
dm-haiku-main
examples/rnn/dataset.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Character-level language modelling with a recurrent network in JAX.""" from typing import Any, NamedTuple from absl import app from absl import flags from absl import logging import haiku as hk from examples.rnn import dataset import jax from jax import lax import jax.numpy as jnp import numpy as np import optax import tensorflow_datasets as tfds TRAIN_BATCH_SIZE = flags.DEFINE_integer('train_batch_size', 32, '') EVAL_BATCH_SIZE = flags.DEFINE_integer('eval_batch_size', 1000, '') SEQUENCE_LENGTH = flags.DEFINE_integer('sequence_length', 128, '') HIDDEN_SIZE = flags.DEFINE_integer('hidden_size', 256, '') SAMPLE_LENGTH = flags.DEFINE_integer('sample_length', 128, '') LEARNING_RATE = flags.DEFINE_float('learning_rate', 1e-3, '') TRAINING_STEPS = flags.DEFINE_integer('training_steps', 100_000, '') EVALUATION_INTERVAL = flags.DEFINE_integer('evaluation_interval', 100, '') SAMPLING_INTERVAL = flags.DEFINE_integer('sampling_interval', 100, '') SEED = flags.DEFINE_integer('seed', 42, '') class LoopValues(NamedTuple): tokens: jax.Array state: Any rng_key: jax.Array class TrainingState(NamedTuple): params: hk.Params opt_state: optax.OptState def make_network() -> hk.RNNCore: """Defines the network architecture.""" model = hk.DeepRNN([ lambda x: jax.nn.one_hot(x, num_classes=dataset.NUM_CHARS), hk.LSTM(HIDDEN_SIZE.value), jax.nn.relu, hk.LSTM(HIDDEN_SIZE.value), hk.nets.MLP([HIDDEN_SIZE.value, dataset.NUM_CHARS]), ]) return model def make_optimizer() -> optax.GradientTransformation: """Defines the optimizer.""" return optax.adam(LEARNING_RATE.value) def sequence_loss(batch: dataset.Batch) -> jax.Array: """Unrolls the network over a sequence of inputs & targets, gets loss.""" # Note: this function is impure; we hk.transform() it below. core = make_network() sequence_length, batch_size = batch['input'].shape initial_state = core.initial_state(batch_size) logits, _ = hk.dynamic_unroll(core, batch['input'], initial_state) log_probs = jax.nn.log_softmax(logits) one_hot_labels = jax.nn.one_hot(batch['target'], num_classes=logits.shape[-1]) return -jnp.sum(one_hot_labels * log_probs) / (sequence_length * batch_size) @jax.jit def update(state: TrainingState, batch: dataset.Batch) -> TrainingState: """Does a step of SGD given inputs & targets.""" _, optimizer = make_optimizer() _, loss_fn = hk.without_apply_rng(hk.transform(sequence_loss)) gradients = jax.grad(loss_fn)(state.params, batch) updates, new_opt_state = optimizer(gradients, state.opt_state) new_params = optax.apply_updates(state.params, updates) return TrainingState(params=new_params, opt_state=new_opt_state) def sample( rng_key: jax.Array, context: jax.Array, sample_length: int, ) -> jax.Array: """Draws samples from the model, given an initial context.""" # Note: this function is impure; we hk.transform() it below. assert context.ndim == 1 # No batching for now. core = make_network() def body_fn(t: int, v: LoopValues) -> LoopValues: token = v.tokens[t] next_logits, next_state = core(token, v.state) key, subkey = jax.random.split(v.rng_key) next_token = jax.random.categorical(subkey, next_logits, axis=-1) new_tokens = v.tokens.at[t + 1].set(next_token) return LoopValues(tokens=new_tokens, state=next_state, rng_key=key) logits, state = hk.dynamic_unroll(core, context, core.initial_state(None)) key, subkey = jax.random.split(rng_key) first_token = jax.random.categorical(subkey, logits[-1]) tokens = jnp.zeros(sample_length, dtype=np.int32) tokens = tokens.at[0].set(first_token) initial_values = LoopValues(tokens=tokens, state=state, rng_key=key) values: LoopValues = lax.fori_loop(0, sample_length, body_fn, initial_values) return values.tokens def main(_): flags.FLAGS.alsologtostderr = True # Make training dataset. train_data = dataset.load( tfds.Split.TRAIN, batch_size=TRAIN_BATCH_SIZE.value, sequence_length=SEQUENCE_LENGTH.value) # Make evaluation dataset(s). eval_data = { # pylint: disable=g-complex-comprehension split: dataset.load( split, batch_size=EVAL_BATCH_SIZE.value, sequence_length=SEQUENCE_LENGTH.value) for split in [tfds.Split.TRAIN, tfds.Split.TEST] } # Make loss, sampler, and optimizer. params_init, loss_fn = hk.without_apply_rng(hk.transform(sequence_loss)) _, sample_fn = hk.without_apply_rng(hk.transform(sample)) opt_init, _ = make_optimizer() loss_fn = jax.jit(loss_fn) sample_fn = jax.jit(sample_fn, static_argnums=[3]) # Initialize training state. rng = hk.PRNGSequence(SEED.value) initial_params = params_init(next(rng), next(train_data)) initial_opt_state = opt_init(initial_params) state = TrainingState(params=initial_params, opt_state=initial_opt_state) # Training loop. for step in range(TRAINING_STEPS.value + 1): # Do a batch of SGD. train_batch = next(train_data) state = update(state, train_batch) # Periodically generate samples. if step % SAMPLING_INTERVAL.value == 0: context = train_batch['input'][:, 0] # First element of training batch. assert context.ndim == 1 rng_key = next(rng) samples = sample_fn(state.params, rng_key, context, SAMPLE_LENGTH.value) prompt = dataset.decode(context) continuation = dataset.decode(samples) logging.info('Prompt: %s', prompt) logging.info('Continuation: %s', continuation) # Periodically evaluate training and test loss. if step % EVALUATION_INTERVAL.value == 0: for split, ds in eval_data.items(): eval_batch = next(ds) loss = loss_fn(state.params, eval_batch) logging.info({ 'step': step, 'loss': float(loss), 'split': split, }) if __name__ == '__main__': app.run(main)
dm-haiku-main
examples/rnn/train.py
#!/usr/bin/env python # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Install script.""" import glob import os import pathlib import setuptools stub_files = (glob.glob('tensor_annotations/*.pyi') + glob.glob('tensor_annotations/library_stubs/**/*.pyi', recursive=True)) # package_data expects paths to be relative to the package directory, so strip # 'tensor_annotations/' from start of paths stub_files = [ os.path.join(*pathlib.Path(path).parts[1:]) for path in stub_files ] with open('README.md', 'r') as f: long_description = f.read() setuptools.setup( name='tensor_annotations', version='2.0.3', description=('Enables annotations of tensor shapes in numerical computing ' 'libraries. Includes type stubs for TensorFlow and JAX ' 'describing how library functions change shapes.'), long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/deepmind/tensor_annotations', # Copybara takes care of moving files to 'tensor_annotations/' packages=[ 'tensor_annotations', 'tensor_annotations/tests', ], package_data={'tensor_annotations': stub_files + ['py.typed']}, install_requires=['dm-tree'], extras_require={'dev': [ 'absl-py', 'pytype', ]})
tensor_annotations-master
setup.py
#!/usr/bin/env python # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Install script for TensorFlow stubs.""" import os import pathlib import shutil import tempfile import setuptools # Note: Copybara takes care of moving files to 'tensorflow-stubs/'. setuptools.setup( name='tensor-annotations-tensorflow-stubs', version='2.0.3', description='Shape-aware type stubs for TensorFlow.', long_description='Shape-aware type stubs for TensorFlow. See the `tensor-annotations` package.', long_description_content_type='text/markdown', url='https://github.com/deepmind/tensor_annotations', packages=['tensorflow-stubs'], package_data={'tensorflow-stubs': ['*.pyi', '*/*.pyi']}, install_requires=['tensor-annotations'], )
tensor_annotations-master
tensorflow-stubs/setup.py
tensor_annotations-master
tensorflow-stubs/tensorflow-stubs/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Example demonstrating checking of Time/Batch consistency in TensorFlow.""" from typing import cast from absl import app from tensor_annotations import axes from tensor_annotations import tensorflow as ttf import tensorflow as tf # pylint: disable=missing-function-docstring float16 = ttf.float16 Batch = axes.Batch Time = axes.Time def sample_batch() -> ttf.Tensor2[float16, Time, Batch]: # tf.zeros((x, y)) returns a Tensor2[Any, Any], which is a compatibe # with Tensor2[Batch, Time] => pytype accepts this return. return tf.zeros((3, 5)) # An example of legacy code annotated with a conventional tensor type rather # than the shape-annotated version. def sample_batch_legacy() -> tf.Tensor: # Even with our custom stubs, tf.zeros([...]) (with a list-shape!) returns an # unspecific `Any` type, so the type-checker is happy interpreting it as # tf.Tensor. return tf.zeros([3, 5]) def train_batch(batch: ttf.Tensor2[float16, Batch, Time]): b: ttf.Tensor1[float16, Batch] = tf.reduce_max(batch, axis=1) del b # Unused # `-> None` is necessary for Mypy to check this function def transpose_example() -> None: # From the signature of sample_batch(), x1 is inferred to be of type # Tensor2[Time, Batch]. x1 = sample_batch() # Using our custom stubs for tf.transpose(...), x2 is inferred to be of type # Tensor2[Batch, Time]. x2 = tf.transpose(x1) # Tensor2[Batch, Time] is compatible with the signature of train_batch(), # so we're good! :) # Try changing `x2` to `x1` - you should find that this script no longer # passes type check. train_batch(x2) # `-> None` is necessary for Mypy to check this function def legacy_example() -> None: # From the signature of sample_batch_legacy(), y is inferred to be of # type tf.Tensor. y = sample_batch_legacy() # We explicitly cast it to the desired type. This is a no-op at runtime. y2 = cast(ttf.Tensor2[float16, Batch, Time], y) # Alternative syntax for casting; again a no-op. y3: ttf.Tensor2[float16, Batch, Time] = y # type: ignore train_batch(y2) train_batch(y3) def main(argv): del argv transpose_example() legacy_example() if __name__ == '__main__': app.run(main)
tensor_annotations-master
examples/tensorflow_time_batch.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Example demonstrating checking of Time/Batch consistency in JAX.""" from typing import cast from absl import app import jax.numpy as jnp from tensor_annotations import axes from tensor_annotations import jax as tjax # pylint: disable=missing-function-docstring Batch = axes.Batch Time = axes.Time float32 = tjax.float32 def sample_batch() -> tjax.Array2[float32, Time, Batch]: # jnp.zeros((x, y)) returns a Tensor2[float32, Any, Any], which is compatible # with Tensor2[float32, Batch, Time] => pytype accepts this return. return jnp.zeros((3, 5)) # An example of legacy code annotated with a conventional tensor type rather # than the shape-annotated version. def sample_batch_legacy() -> jnp.ndarray: # Even with our custom stubs, jnp.zeros([...]) (with a list-shape!) returns an # unspecific `Any` type, so the type-checker is happy interpreting it as # jnp.ndarray. return jnp.zeros([3, 5]) def train_batch(batch: tjax.Array2[float32, Batch, Time]): b: tjax.Array1[float32, Batch] = jnp.max(batch, axis=1) del b # Unused # `-> None` is necessary for Mypy to check this function def transpose_example() -> None: # From the signature of sample_batch(), x1 is inferred to be of type # Array2[uint8, Time, Batch]. x1 = sample_batch() # Using our custom stubs for jnp.transpose(...), x2 is inferred to be of type # Array2[uint8, Batch, Time]. x2 = jnp.transpose(x1) # Array2[uint8, Batch, Time] is compatible with the signature of # train_batch(), so we're good! :) # Try changing `x2` to `x1` - you should find that this script no longer # passes type check. train_batch(x2) # `-> None` is necessary for Mypy to check this function def legacy_example() -> None: # From the signature of sample_batch_legacy(), y is inferred to be of # type jnp.ndarray. y1 = sample_batch_legacy() # We explicitly cast it to the desired type. This is a no-op at runtime. y2 = cast(tjax.Array2[float32, Batch, Time], y1) # Alternative syntax for casting; again a no-op. y3: tjax.Array2[float32, Batch, Time] = y1 # type: ignore train_batch(y2) train_batch(y3) def main(argv): del argv transpose_example() legacy_example() if __name__ == '__main__': app.run(main)
tensor_annotations-master
examples/jax_time_batch.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Run pytype on Acme and see how long it takes. Automatically repeats the test a number of times and report the average and minimum/maximum. When run normally, reports the time to type-check without using our stubs. To check the time *with* the stubs, install the stubs as in the main README.md and then run `export TYPESHED_HOME="$HOME/typeshed"` before launching the script. """ import datetime import logging import os import shutil import subprocess import tempfile from absl import app from absl import flags _NUM_RUNS = flags.DEFINE_integer('num_runs', default=3, help='Number of times to repeat test') def main(_): with tempfile.TemporaryDirectory() as d: os.chdir(d) # ===== Download Acme ===== subprocess.run(['git', 'clone', 'https://github.com/deepmind/acme'], check=True) os.chdir('acme') subprocess.run(['git', 'checkout', '4da30b8'], check=True) os.chdir(d) check_dir = os.path.join('acme', 'acme', 'agents', 'tf') # ===== Time how long it takes to run pytype ===== times = [] for run_num in range(_NUM_RUNS.value): logging.info('Test %d/%d', 1 + run_num, _NUM_RUNS.value) t1 = datetime.datetime.now() subprocess.run(['pytype', check_dir, # Ignore dependencies. (I've tried installing dependencies # to fix this, but it still chokes on trfl and reverb, # so giving up for now.) '--disable', 'import-error'], check=True) t2 = datetime.datetime.now() shutil.rmtree('.pytype') # Remove pytype cache delta = t2 - t1 times.append(delta) logging.info('Test %d/%d: %d seconds', 1 + run_num, _NUM_RUNS.value, delta.total_seconds()) # ===== Print statistics ===== mean = sum(times, datetime.timedelta()).total_seconds() / _NUM_RUNS.value logging.info('Average: %d seconds', mean) logging.info('Minimum: %d seconds', min(times).total_seconds()) logging.info('Maximum: %d seconds', max(times).total_seconds()) logging.info('All times: %r', times) if __name__ == '__main__': app.run(main)
tensor_annotations-master
benchmarks/benchmark.py
#!/usr/bin/env python # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Install script for JAX stubs.""" import os import pathlib import shutil import tempfile import setuptools # Note: Copybara takes care of moving files to 'jax-stubs/'. setuptools.setup( name='tensor-annotations-jax-stubs', version='2.0.3', description='Shape-aware type stubs for JAX.', long_description='Shape-aware types stubs for JAX. See the `tensor-annotations` package.', long_description_content_type='text/markdown', url='https://github.com/deepmind/tensor_annotations', packages=['jax-stubs'], package_data={'jax-stubs': ['*.pyi', '*/*.pyi']}, install_requires=['tensor-annotations'], )
tensor_annotations-master
jax-stubs/setup.py
tensor_annotations-master
jax-stubs/jax-stubs/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ==============================================================================
tensor_annotations-master
tensor_annotations/__init__.py
# Copyright 2023 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Custom tensor classes for NumPy supporting shape parameterisation. Note that these should only be used for the purposes of type annotation and should never be instantiated. (Certain IDEs may also use these for autocompletion, too.) Type annotations for these classes are maintained in a separate stubs file, `numpy.pyi`. """ # LINT.IfChange from typing import Any, Generic, TypeVar from tensor_annotations import axes A1 = TypeVar('A1', bound=axes.Axis) A2 = TypeVar('A2', bound=axes.Axis) A3 = TypeVar('A3', bound=axes.Axis) A4 = TypeVar('A4', bound=axes.Axis) A5 = TypeVar('A5', bound=axes.Axis) A6 = TypeVar('A6', bound=axes.Axis) A7 = TypeVar('A7', bound=axes.Axis) A8 = TypeVar('A8', bound=axes.Axis) # We need to define DTypes ourselves rather than use e.g. np.uint8 because # pytype sees NumPy's own DTypes as `Any`. # pylint: disable=invalid-name,multiple-statements,g-wrong-blank-lines class DType: pass class uint8(DType): pass class uint16(DType): pass class uint32(DType): pass class uint64(DType): pass class int8(DType): pass class int16(DType): pass class int32(DType): pass class int64(DType): pass class float16(DType): pass class float32(DType): pass class float64(DType): pass class bfloat16(DType): pass # pylint: enable=invalid-name, multiple-statements,g-wrong-blank-lines # We want to have an `AnyDType` type that behaves like `Any` but for DTypes. # # Should `AnyDType` just be the parent class `DType` itself? No. Consider the # following example: # # def takes_specific_type(x: uint8): ... # def returns_nonspecific_type() -> DType: ... # y = returns_nonspecific_type() # foo(y) # # This doesn't type-check correctly. `DType` cannot be used in place of the # more specific type `uint8`. We want our `AnyDType` type to have the property # that it can be used *anywhere* - including as an argument to a function that # takes a specific type. So using `DType` as our `AnyDType` won't work. # # What about a union of the dtypes above? Initially I thought no. # Consider the following example: # # def takes_specific_type(x: uint8): ... # y: Union[uint8, uint16] # foo(y) # # I *thought* this would be a type error, because we can't guarantee that # `y` is definitely uint8, but it turns out that both mypy and pytype are fine # with it. # # But anyway, we can't do a union of the above types for another reason: # pytype breaks if we do a union of too many types. # # So in the end, we just set this to be an alias of `Any`, so the meaning is # clearer in code. Unfortunately, it still shows up as `Any` in pytype output. # But hey, it's the best we can do. AnyDType = Any DT = TypeVar('DT', bound=DType) class _ArrayBase: """Base class for ArrayN classes containing common methods and attributes.""" # These are necessary so that type checkers know we have these methods. __abs__: Any __add__: Any __add__: Any __float__: Any __floordiv__: Any __ge__: Any __gt__: Any __le__: Any __len__: Any __lt__: Any __matmul__: Any __mul__: Any __neg__: Any __neg__: Any __pos__: Any __pow__: Any __rmatmul__: Any __rmul__: Any __sub__: Any __truediv__: Any shape: Any dtype: Any def __new__(cls, *args, **kwargs): raise TypeError('tensor_annotations tensors should not be instantiated') class Array0(Generic[DT], _ArrayBase): """An scalar array - from eg `np.zeros(())`.""" pass class Array1(Generic[DT, A1], _ArrayBase): """An array of rank 1.""" pass class Array2(Generic[DT, A1, A2], _ArrayBase): """An array of rank 2.""" pass class Array3(Generic[DT, A1, A2, A3], _ArrayBase): """An array of rank 3.""" pass class Array4(Generic[DT, A1, A2, A3, A4], _ArrayBase): """An array of rank 4.""" pass class Array5(Generic[DT, A1, A2, A3, A4, A5], _ArrayBase): """An array of rank 5.""" pass class Array6(Generic[DT, A1, A2, A3, A4, A5, A6], _ArrayBase): """An array of rank 6.""" pass class Array7(Generic[DT, A1, A2, A3, A4, A5, A6, A7], _ArrayBase): """An array of rank 7.""" pass class Array8(Generic[DT, A1, A2, A3, A4, A5, A6, A7, A8], _ArrayBase): """An array of rank 8.""" pass # LINT.ThenChange(numpy.pyi)
tensor_annotations-master
tensor_annotations/numpy.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Custom tensor classes for JAX supporting shape parameterisation. Note that these should only be used for the purposes of type annotation and should never be instantiated. (Certain IDEs may also use these for autocompletion, too.) Type annotations for these classes are maintained in a separate stubs file, `tensorflow.pyi`. """ # LINT.IfChange from typing import Any, Generic, TypeVar from tensor_annotations import axes A1 = TypeVar('A1', bound=axes.Axis) A2 = TypeVar('A2', bound=axes.Axis) A3 = TypeVar('A3', bound=axes.Axis) A4 = TypeVar('A4', bound=axes.Axis) A5 = TypeVar('A5', bound=axes.Axis) A6 = TypeVar('A6', bound=axes.Axis) A7 = TypeVar('A7', bound=axes.Axis) A8 = TypeVar('A8', bound=axes.Axis) # We need to define DTypes ourselves rather than use e.g. tf.uint8 because # according to typing.py, tf.uint8 etc aren't actually types, so they can't # be used as type arguments. # pylint: disable=invalid-name,multiple-statements,g-wrong-blank-lines class DType: pass class uint8(DType): pass class uint16(DType): pass class uint32(DType): pass class uint64(DType): pass class int8(DType): pass class int16(DType): pass class int32(DType): pass class int64(DType): pass class float16(DType): pass class float32(DType): pass class float64(DType): pass class complex64(DType): pass class complex128(DType): pass class bfloat16(DType): pass # Yup, these two definitely are native dtypes in TensorFlow: # https://www.tensorflow.org/api_docs/python/tf/dtypes class string(DType): pass # TensorFlow's boolean dtype is definitely just 'bool'. # It's a little annoying that has the same name as the Python keyword, # but let's stick with TensorFlow's naming. class bool(DType): pass # pylint: disable=redefined-builtin # pylint: enable=invalid-name, multiple-statements,g-wrong-blank-lines # We want to have an `AnyDType` type that behaves like `Any` but for DTypes. # # Should `AnyDType` just be the parent class `DType` itself? No. Consider the # following example: # # def takes_specific_type(x: uint8): ... # def returns_nonspecific_type() -> DType: ... # y = returns_nonspecific_type() # foo(y) # # This doesn't type-check correctly. `DType` cannot be used in place of the # more specific type `uint8`. We want our `AnyDType` type to have the property # that it can be used *anywhere* - including as an argument to a function that # takes a specific type. So using `DType` as our `AnyDType` won't work. # # What about a union of the dtypes above? Initially I thought no. # Consider the following example: # # def takes_specific_type(x: uint8): ... # y: Union[uint8, uint16] # foo(y) # # I *thought* this would be a type error, because we can't guarantee that # `y` is definitely uint8, but it turns out that both mypy and pytype are fine # with it. # # But anyway, we can't do a union of the above types for another reason: # pytype breaks if we do a union of too many types. # # So in the end, we just set this to be an alias of `Any`, so the meaning is # clearer in code. Unfortunately, it still shows up as `Any` in pytype output. # But hey, it's the best we can do. AnyDType = Any DT = TypeVar('DT', bound=DType) class _TensorBase: """Base class for TensorN classes containing common methods and attributes.""" def __new__(cls, *args, **kwargs): raise TypeError('tensor_annotations tensors should not be instantiated') # These are necessary so that type checkers know we have these methods. __abs__: Any __add__: Any __add__: Any __float__: Any __floordiv__: Any __ge__: Any __gt__: Any __le__: Any __len__: Any __lt__: Any __matmul__: Any __mul__: Any __neg__: Any __neg__: Any __pos__: Any __pow__: Any __rmatmul__: Any __rmul__: Any __sub__: Any __truediv__: Any shape: Any dtype: Any def numpy(self) -> Any: pass class Tensor0(Generic[DT], _TensorBase): """A scalar - produced by e.g. tf.reduce_sum(tf.zeros((2, 3))).""" pass class Tensor1(Generic[DT, A1], _TensorBase): """A tensor of rank 1.""" pass class Tensor2(Generic[DT, A1, A2], _TensorBase): """A tensor of rank 2.""" pass class Tensor3(Generic[DT, A1, A2, A3], _TensorBase): """A tensor of rank 3.""" pass class Tensor4(Generic[DT, A1, A2, A3, A4], _TensorBase): """A tensor of rank 4.""" pass class Tensor5(Generic[DT, A1, A2, A3, A4, A5], _TensorBase): """A tensor of rank 5.""" pass class Tensor6(Generic[DT, A1, A2, A3, A4, A5, A6], _TensorBase): """A tensor of rank 6.""" pass class Tensor7(Generic[DT, A1, A2, A3, A4, A5, A6, A7], _TensorBase): """A tensor of rank 7.""" pass class Tensor8(Generic[DT, A1, A2, A3, A4, A5, A6, A7, A8], _TensorBase): """A tensor of rank 8.""" pass Tensor0AnyDType = Tensor0[AnyDType] Tensor1AnyDType = Tensor1[AnyDType, A1] Tensor2AnyDType = Tensor2[AnyDType, A1, A2] Tensor3AnyDType = Tensor3[AnyDType, A1, A2, A3] Tensor4AnyDType = Tensor4[AnyDType, A1, A2, A3, A4] Tensor5AnyDType = Tensor5[AnyDType, A1, A2, A3, A4, A5] Tensor6AnyDType = Tensor6[AnyDType, A1, A2, A3, A4, A5, A6] Tensor7AnyDType = Tensor7[AnyDType, A1, A2, A3, A4, A5, A6, A7] Tensor8AnyDType = Tensor8[AnyDType, A1, A2, A3, A4, A5, A6, A7, A8] # LINT.ThenChange(tensorflow.pyi)
tensor_annotations-master
tensor_annotations/tensorflow.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Custom tensor classes for JAX supporting shape parameterisation. Note that these should only be used for the purposes of type annotation and should never be instantiated. (Certain IDEs may also use these for autocompletion, too.) Type annotations for these classes are maintained in a separate stubs file, `jax.pyi`. """ # LINT.IfChange from typing import Any, Generic, TypeVar, Union from tensor_annotations import axes A1 = TypeVar('A1', bound=axes.Axis) A2 = TypeVar('A2', bound=axes.Axis) A3 = TypeVar('A3', bound=axes.Axis) A4 = TypeVar('A4', bound=axes.Axis) A5 = TypeVar('A5', bound=axes.Axis) A6 = TypeVar('A6', bound=axes.Axis) A7 = TypeVar('A7', bound=axes.Axis) A8 = TypeVar('A8', bound=axes.Axis) # We need to define DTypes ourselves rather than use e.g. jnp.uint8 because # pytype sees JAX's own DTypes as `Any`. # pylint: disable=invalid-name,multiple-statements,g-wrong-blank-lines class DType: pass class uint8(DType): pass class uint16(DType): pass class uint32(DType): pass class uint64(DType): pass class int8(DType): pass class int16(DType): pass class int32(DType): pass class int64(DType): pass class float16(DType): pass class float32(DType): pass class float64(DType): pass class bfloat16(DType): pass # pylint: enable=invalid-name, multiple-statements,g-wrong-blank-lines # We want to have an `AnyDType` type that behaves like `Any` but for DTypes. # # Should `AnyDType` just be the parent class `DType` itself? No. Consider the # following example: # # def takes_specific_type(x: uint8): ... # def returns_nonspecific_type() -> DType: ... # y = returns_nonspecific_type() # foo(y) # # This doesn't type-check correctly. `DType` cannot be used in place of the # more specific type `uint8`. We want our `AnyDType` type to have the property # that it can be used *anywhere* - including as an argument to a function that # takes a specific type. So using `DType` as our `AnyDType` won't work. # # What about a union of the dtypes above? Initially I thought no. # Consider the following example: # # def takes_specific_type(x: uint8): ... # y: Union[uint8, uint16] # foo(y) # # I *thought* this would be a type error, because we can't guarantee that # `y` is definitely uint8, but it turns out that both mypy and pytype are fine # with it. # # But anyway, we can't do a union of the above types for another reason: # pytype breaks if we do a union of too many types. # # So in the end, we just set this to be an alias of `Any`, so the meaning is # clearer in code. Unfortunately, it still shows up as `Any` in pytype output. # But hey, it's the best we can do. AnyDType = Any DT = TypeVar('DT', bound=DType) class _ArrayBase: """Base class for ArrayN classes containing common methods and attributes.""" def __new__(cls, *args, **kwargs): raise TypeError('tensor_annotations tensors should not be instantiated') # These are necessary so that type checkers know we have these methods. __abs__: Any __add__: Any __add__: Any __float__: Any __floordiv__: Any __ge__: Any __gt__: Any __le__: Any __len__: Any __lt__: Any __matmul__: Any __rmatmul__: Any __mul__: Any __neg__: Any __neg__: Any __pos__: Any __pow__: Any __rmul__: Any __sub__: Any __truediv__: Any shape: Any T: Any at: Any dtype: Any reshape: Any astype: Any ndim: Any class Array0(Generic[DT], _ArrayBase): """A scalar - produced by e.g. jnp.sum(jnp.zeros((2, 3))).""" # Technically this exists on all instances of JAX arrays, # but it throws an error for anything apart from a scalar # array, eg jnp.array(0). def item(self) -> Union[int, float, bool, complex]: pass class Array1(Generic[DT, A1], _ArrayBase): """A tensor of rank 1.""" pass class Array2(Generic[DT, A1, A2], _ArrayBase): """A tensor of rank 2.""" pass class Array3(Generic[DT, A1, A2, A3], _ArrayBase): """A tensor of rank 3.""" pass class Array4(Generic[DT, A1, A2, A3, A4], _ArrayBase): """A tensor of rank 4.""" pass class Array5(Generic[DT, A1, A2, A3, A4, A5], _ArrayBase): """A tensor of rank 5.""" pass class Array6(Generic[DT, A1, A2, A3, A4, A5, A6], _ArrayBase): """A tensor of rank 6.""" pass class Array7(Generic[DT, A1, A2, A3, A4, A5, A6, A7], _ArrayBase): """A tensor of rank 7.""" pass class Array8(Generic[DT, A1, A2, A3, A4, A5, A6, A7, A8], _ArrayBase): """A tensor of rank 8.""" pass Array0AnyDType = Array0[AnyDType] Array1AnyDType = Array1[AnyDType, A1] Array2AnyDType = Array2[AnyDType, A1, A2] Array3AnyDType = Array3[AnyDType, A1, A2, A3] Array4AnyDType = Array4[AnyDType, A1, A2, A3, A4] Array5AnyDType = Array5[AnyDType, A1, A2, A3, A4, A5] Array6AnyDType = Array6[AnyDType, A1, A2, A3, A4, A5, A6] Array7AnyDType = Array7[AnyDType, A1, A2, A3, A4, A5, A6, A7] Array8AnyDType = Array8[AnyDType, A1, A2, A3, A4, A5, A6, A7, A8] # LINT.ThenChange(jax.pyi)
tensor_annotations-master
tensor_annotations/jax.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Canonical source for common axis types. We need to make sure that `Batch` in one module means the same as `Batch` in another module. Since we verify equality of axis types based on the identity of the type, that means that both modules need to import and use the same `Batch` type. We therefore provide this file as the canonical reference for axis types that are likely to be used widely. """ from typing import NewType class Axis: """Base type for axis annotations. User-defined axis types should subclass this. """ pass Batch = NewType('Batch', Axis) Channels = NewType('Channels', Axis) Features = NewType('Features', Axis) Time = NewType('Time', Axis) Height = NewType('Height', Axis) Width = NewType('Width', Axis) Depth = NewType('Depth', Axis)
tensor_annotations-master
tensor_annotations/axes.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Render Jinja template for JAX library type stubs.""" from absl import app import jax import jax.nn as jnn import jax.numpy as jnp import jinja2 from tensor_annotations.tools import templates _JAX_TEMPLATE_PATH = 'templates/jax.pyi' _JAX_NUMPY_TEMPLATE_PATH = 'templates/jax_numpy.pyi' _JAX_NN_TEMPLATE_PATH = 'templates/jax_nn.pyi' _JAX_STUBS_PATH = 'library_stubs/third_party/py/jax/__init__.pyi' _JAX_NUMPY_STUBS_PATH = 'library_stubs/third_party/py/jax/numpy/__init__.pyi' _JAX_NN_STUBS_PATH = 'library_stubs/third_party/py/jax/nn/__init__.pyi' def main(argv): del argv # ===== Render stubs for jax.* ===== # Currently we just use `Any`` for everything in jax.* with open(_JAX_TEMPLATE_PATH, 'r') as f: lines = f.readlines() jax_template = jinja2.Template( ''.join(lines), extensions=['jinja2.ext.do'], ) jax_dir = dir(jax) # We _don't_ want to stub `jax.numpy` as `Any`, because it would prevent # our stubs for jax.numpy.* being used. jax_dir.remove('numpy') # Ditto `jax.nn`. jax_dir.remove('nn') # `jax.Array` is actually an important type, so we've added it as a class # manually in the template, and don't need to stub it as `Any`. jax_dir.remove('Array') with open(_JAX_STUBS_PATH, 'w') as f: f.write(jax_template.render(jax_dir=jax_dir)) # ===== Render stubs for jax.numpy.* ===== with open(_JAX_NUMPY_TEMPLATE_PATH, 'r') as f: lines = f.readlines() # Strip IfChange/ThenChange lines. lines = [l for l in lines if not l.startswith('# LINT')] jax_numpy_template = jinja2.Template( ''.join(lines), extensions=['jinja2.ext.do'], ) jax_numpy_template.globals['reduction_axes'] = templates.reduction_axes jax_numpy_template.globals['transpose_axes'] = templates.transpose_axes jax_numpy_template.globals['get_jax_array_type'] = templates.jax_array_type jax_numpy_template.globals['get_axis_list'] = templates.axis_list # We need to make sure that the library functions we _haven't_ annotated # are still present in the type stubs or the type checker will think they # don't exist at all. We do this in a bit of a hacky way: enumerating through # `dir(jnp)` and adding an `Any` annotation for everything we find that's # not currently annotated. current_stubs = open(_JAX_NUMPY_STUBS_PATH).read() jnp_dir = [] for x in dir(jnp): if (x.startswith('_') or f'def {x}(' in current_stubs or f'class {x}:' in current_stubs): continue jnp_dir.append(x) with open(_JAX_NUMPY_STUBS_PATH, 'w') as f: f.write(jax_numpy_template.render(jnp_dir=jnp_dir)) # ===== Render stubs for jax.nn.* ===== with open(_JAX_NN_TEMPLATE_PATH, 'r') as f: lines = f.readlines() # Strip IfChange/ThenChange lines. lines = [l for l in lines if not l.startswith('# LINT')] jax_nn_template = jinja2.Template( ''.join(lines), extensions=['jinja2.ext.do'], ) current_stubs = open(_JAX_NN_STUBS_PATH).read() jnn_dir = [] for x in dir(jnn): if ( x.startswith('_') or f'def {x}(' in current_stubs or f'class {x}:' in current_stubs ): continue jnn_dir.append(x) with open(_JAX_NN_STUBS_PATH, 'w') as f: f.write(jax_nn_template.render(jnn_dir=jnn_dir)) if __name__ == '__main__': app.run(main)
tensor_annotations-master
tensor_annotations/tools/render_jax_library_template.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Render Jinja template for custom tensor class type stubs.""" from absl import app from absl import flags import jinja2 from tensor_annotations.tools import templates flags.DEFINE_string('template', default=None, help='Template file') flags.DEFINE_string('out', default=None, help='Output file') flags.DEFINE_string('vars', default=None, help='A comma-separated list of ' 'template substitutions, ' 'e.g. foo=1,bar=2') FLAGS = flags.FLAGS def main(argv): del argv with open(FLAGS.template, 'r') as f: lines = f.readlines() # Strip IfChange/ThenChange lines. lines = [l for l in lines if not l.startswith('# LINT')] template = jinja2.Template(''.join(lines), extensions=['jinja2.ext.do']) template.globals['reduction_axes'] = templates.reduction_axes substitutions = {} if FLAGS.vars: for kv in FLAGS.vars.split(','): k, v = kv.split('=') substitutions[k] = v with open(FLAGS.out, 'w') as f: f.write(template.render(**substitutions)) if __name__ == '__main__': app.run(main)
tensor_annotations-master
tensor_annotations/tools/render_tensor_template.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions for template rendering.""" import collections import itertools ReductionAxes = collections.namedtuple('ReductionAxes', ['n_axes', 'all_axes', 'reduction_axes', 'remaining_n_axes', 'remaining_axes']) TransposeAxes = collections.namedtuple('TransposeAxes', ['n_axes', 'all_axes', 'transpose_axes', 'result_axes']) def axis_list(n_axes: int, reverse=False) -> str: """Returns a comma-separated list of axis TypeVar short names. Args: n_axes: Maximum number of axes to include in the list. n_axes=1 -> 'A1', n_axes=2 -> 'A1, A2', etc. reverse: If False, the returned list starts from A1 and counts up to An. If True, starts at An and counts down to A1. Returns: A string containing the list of axes. For example, get_axis_list(2) -> 'A1, A2'. """ axes = range(1, n_axes + 1) if reverse: axes = reversed(axes) return ', '.join(f'A{i}' for i in axes) def jax_array_type(n_axes: int) -> str: """Returns the generic JAX array type, parameterised by a number of axes. For example, get_jax_array_type(2) -> 'Array2[A1, A2]'. Args: n_axes: Rank of array type to return. Returns: A string containing array type. """ return f'Array{n_axes}[{axis_list(n_axes)}]' def transpose_axes(n_axes: int): """A generator that yields input and output axes of transpose. Args: n_axes: Rank of array whose possible transposes to consider. Yields: A `TransposeAxes` object for each possible transpose. For example, calculate_transpose_axes(2) would yield `TransposeAxes` objects encoding: Transpose shape [A1, A2] with axes=[0, 1] -> Shape[A1, A2] [1, 0] -> Shape[A2, A1] """ assert n_axes >= 1 # [A1, A2, ..., An] all_axes = list(range(1, n_axes + 1)) all_axes_str = [f'A{i}' for i in all_axes] all_axes_str = ', '.join(all_axes_str) for transpose_axes in itertools.permutations(range(n_axes)): transpose_axes_str = (f'L{i}' for i in transpose_axes) transpose_axes_str = ', '.join(transpose_axes_str) transpose_axes_str = f'Tuple[{transpose_axes_str}]' result_axes = (all_axes[i] for i in transpose_axes) if result_axes: result_axes_str = (f'A{i}' for i in result_axes) result_axes_str = ', '.join(result_axes_str) else: result_axes_str = '' yield TransposeAxes(n_axes=n_axes, all_axes=all_axes_str, transpose_axes=transpose_axes_str, result_axes=result_axes_str) def reduction_axes(n_axes: int): """A generator that yields input and output axes of reduction operations. Args: n_axes: Rank of array whose possible reductions to consider. Yields: A `ReductionAxes` object for each possible reduction (where axes increase in value - e.g. we don't consider `axes=(1, 0)` - to cut down on the size of the stubs generated). For example, calculate_reduction_axes(2) would yield `ReductionAxes` objects encoding: Reduce shape [A1, A2] over axes 0 -> shape[A2] 1 -> shape[A1] -1 -> shape[A1] 0, 1 -> shape[] """ assert n_axes >= 1 final_axis = n_axes - 1 # [A1, A2, ..., An] all_axes_str = [f'A{i}' for i in range(1, n_axes + 1)] all_axes_str = ', '.join(all_axes_str) n_reduction_axes_iter = range(1, n_axes + 1) for n_reduction_axes in n_reduction_axes_iter: # First, make a list of all possible permutations of reduction axes. reduction_axes_list = [] for reduction_axes_combo in itertools.combinations( range(n_axes), n_reduction_axes ): # Thanks to `combinations`, `reduction_axes_combo` is already sorted. reduction_axes_list.append(reduction_axes_combo) # Also consider permutations where we refer to the final axis as '-1'. if final_axis in reduction_axes_combo: reduction_axes_list.append((*reduction_axes_combo[:-1], -1)) # Second, for each permutation of reduction axes, yield a ReductionAxes. for reduction_axes in reduction_axes_list: reduction_axes_str = ( f'L{i}' if i != -1 else 'LN1' for i in reduction_axes ) reduction_axes_str = ', '.join(reduction_axes_str) if len(reduction_axes) != 1: reduction_axes_str = f'Tuple[{reduction_axes_str}]' concrete_reduction_axes = [ (n_axes - 1) if axis == -1 else axis for axis in reduction_axes ] remaining_axes = set(range(n_axes)) - set(concrete_reduction_axes) remaining_axes = sorted(tuple(remaining_axes)) remaining_n_axes = len(remaining_axes) if remaining_axes: remaining_axes_str = (f'A{i + 1}' for i in remaining_axes) remaining_axes_str = ', '.join(remaining_axes_str) remaining_axes_str = ', ' + remaining_axes_str else: remaining_axes_str = '' yield ReductionAxes(n_axes, all_axes_str, reduction_axes_str, remaining_n_axes, remaining_axes_str)
tensor_annotations-master
tensor_annotations/tools/templates.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Render Jinja template for TensorFlow library type stubs.""" from absl import app import jinja2 from tensor_annotations.tools import templates _TEMPLATE_PATH = 'templates/tensorflow.pyi' _STUBS_PATH = 'tensorflow_stubs.pyi' def main(argv): del argv with open(_TEMPLATE_PATH, 'r') as f: lines = f.readlines() # Strip IfChange/ThenChange lines. lines = [l for l in lines if not l.startswith('# LINT')] template = jinja2.Template(''.join(lines), extensions=['jinja2.ext.do']) template.globals['reduction_axes'] = templates.reduction_axes template.globals['transpose_axes'] = templates.transpose_axes template.globals['get_axis_list'] = templates.axis_list with open(_STUBS_PATH, 'w') as f: f.write(template.render()) if __name__ == '__main__': app.run(main)
tensor_annotations-master
tensor_annotations/tools/render_tensorflow_library_template.py
# Copyright 2023 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Render Jinja template for NumPy library type stubs.""" from absl import app import jinja2 import numpy as np from tensor_annotations.tools import templates _NUMPY_TEMPLATE_PATH = 'templates/numpy.pyi' _NUMPY_STUBS_PATH = 'library_stubs/third_party/py/numpy/__init__.pyi' def main(argv): del argv with open(_NUMPY_TEMPLATE_PATH, 'r') as f: lines = f.readlines() # Strip IfChange/ThenChange lines. lines = [l for l in lines if not l.startswith('# LINT')] numpy_template = jinja2.Template( ''.join(lines), extensions=['jinja2.ext.do'], ) numpy_template.globals['reduction_axes'] = templates.reduction_axes numpy_template.globals['transpose_axes'] = templates.transpose_axes numpy_template.globals['get_axis_list'] = templates.axis_list # We need to make sure that the library functions we _haven't_ annotated # are still present in the type stubs or the type checker will think they # don't exist at all. We do this in a bit of a hacky way: enumerating through # `dir(np)` and adding an `Any` annotation for everything we find that's # not currently annotated. current_stubs = open(_NUMPY_STUBS_PATH).read() np_dir = [] for x in dir(np): if (x.startswith('_') or f'def {x}(' in current_stubs or f'class {x}:' in current_stubs): continue np_dir.append(x) with open(_NUMPY_STUBS_PATH, 'w') as f: f.write(numpy_template.render(np_dir=np_dir)) if __name__ == '__main__': app.run(main)
tensor_annotations-master
tensor_annotations/tools/render_numpy_library_template.py
# Copyright 2023 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for NumPy stubs.""" from typing import cast, NewType, SupportsFloat from absl.testing import absltest import numpy as np from tensor_annotations import axes from tensor_annotations.axes import Batch from tensor_annotations.numpy import AnyDType from tensor_annotations.numpy import Array0 from tensor_annotations.numpy import Array1 from tensor_annotations.numpy import Array2 from tensor_annotations.numpy import float32 from tensor_annotations.numpy import float64 from tensor_annotations.numpy import int16 from tensor_annotations.numpy import int8 from tensor_annotations.tests import utils A1 = NewType('A1', axes.Axis) A2 = NewType('A2', axes.Axis) A3 = NewType('A3', axes.Axis) # It's less than ideal that we have to repeat imports etc. here for pytype, but # this seems like the best balance between readability and complexity. _PREAMBLE = """ from typing import cast, NewType, SupportsFloat import numpy as np from tensor_annotations import axes from tensor_annotations.axes import Batch from tensor_annotations.numpy import AnyDType, float32, float64, int8, int16 from tensor_annotations.numpy import Array0, Array1, Array2 A1 = NewType('A1', axes.Axis) A2 = NewType('A2', axes.Axis) A3 = NewType('A3', axes.Axis) """ class NumPyStubTests(absltest.TestCase): """Tests for numpy.* stubs.""" def testTranspose_InferredShapeMatchesActualShape(self): with utils.SaveCodeAsString() as code_saver: x: Array2[AnyDType, A1, A2] = np.zeros((1, 2)) y = np.transpose(x) y2 = x.T inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(inferred.y, y.shape) self.assertEqual(inferred.y2, y2.shape) def testUnaryOperator_ReturnCustomType(self): """Confirms that things like np.abs() don't change the shape.""" with utils.SaveCodeAsString() as code_saver: x: Array1[AnyDType, A1] = np.zeros((1,)) # Let's just test a representative subset. a = np.abs(x) # pylint: disable=unused-variable b = np.sin(x) # pylint: disable=unused-variable c = np.floor(x) # pylint: disable=unused-variable d = np.ones_like(x) # pylint: disable=unused-variable e = np.sign(x) # pylint: disable=unused-variable f = np.round(x) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) expected = 'Array1[Any, A1]' self.assertEqual(inferred.a, expected) self.assertEqual(inferred.b, expected) self.assertEqual(inferred.c, expected) self.assertEqual(inferred.d, expected) self.assertEqual(inferred.e, expected) self.assertEqual(inferred.f, expected) def testZerosOnes_ReturnsCorrectShape(self): """Confirms that np.zeros() returns a tensor_annotations type.""" with utils.SaveCodeAsString() as code_saver: a = np.zeros(()) # pylint: disable=unused-variable b = np.ones(()) # pylint: disable=unused-variable c = np.zeros((1,)) # pylint: disable=unused-variable d = np.ones((1,)) # pylint: disable=unused-variable e = np.zeros((1, 1)) # pylint: disable=unused-variable f = np.ones((1, 1)) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.a, 'Array0') self.assertEqual(inferred.b, 'Array0') self.assertEqual(inferred.c, 'Array1') self.assertEqual(inferred.d, 'Array1') self.assertEqual(inferred.e, 'Array2') self.assertEqual(inferred.f, 'Array2') def testSum_InferredMatchesActualShape(self): """Tests whether np.sum() return the right shapes.""" with utils.SaveCodeAsString() as code_saver: x: Array2[float64, A1, A2] = np.zeros((1, 2)) y1 = np.sum(x, axis=0) y2 = np.sum(x, axis=1) y3 = np.sum(x, axis=(0, 1)) y4 = np.sum(x) inferred_types = utils.pytype_infer_types(_PREAMBLE + code_saver.code) inferred_shapes = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(inferred_shapes.y1, y1.shape) self.assertEqual(inferred_shapes.y2, y2.shape) # y3 and y4 should just be scalars. self.assertEqual(type(y3), np.float64) self.assertEqual(type(y4), np.float64) self.assertEqual(inferred_types.y3, 'float64') self.assertEqual(inferred_types.y4, 'float64') def testSumKeepdimsTrue_ReturnsAny(self): # We haven't got around to making stubs for keepdims=True yet; # make sure the type reflects that. with utils.SaveCodeAsString() as code_saver: x: Array1[AnyDType, A1] = np.zeros((1,)) a = np.sum(x, axis=0, keepdims=True) # pylint: disable=unused-variable b = np.sum(x, keepdims=True) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.a, 'Any') self.assertEqual(inferred.b, 'Any') def testTensorAdd_ReturnsCustomType(self): with utils.SaveCodeAsString() as code_saver: x: Array1[AnyDType, A1] = np.zeros((1,)) a = x + 1 # pylint: disable=unused-variable b = x + x # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual('Array1[Any, A1]', inferred.a) self.assertEqual('Array1[Any, A1]', inferred.b) def testMatmul_InferredMatchesActualShape(self): with utils.SaveCodeAsString() as code_saver: x: Array2[AnyDType, A1, A2] = np.zeros((1, 2)) y: Array2[AnyDType, A2, A3] = np.zeros((2, 3)) xy = x @ y inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(inferred.xy, xy.shape) def testArrayUnaryOp_ReturnsCorrectTypeAndShape(self): """Confirms that unary functions like abs() don't change the shape.""" with utils.SaveCodeAsString() as code_saver: x0 = cast(Array0[AnyDType], np.array(())) y1 = abs(x0) # pylint: disable=unused-variable y2 = -x0 # pylint: disable=unused-variable x1 = cast(Array1[AnyDType, A1], np.array([0])) y3 = abs(x1) # pylint: disable=unused-variable y4 = -x1 # pylint: disable=unused-variable x2 = cast(Array2[AnyDType, A1, A2], np.array([[0]])) y5 = abs(x2) # pylint: disable=unused-variable y6 = -x2 # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual('Array0', inferred.y1) self.assertEqual('Array0', inferred.y2) self.assertEqual('Array1[Any, A1]', inferred.y3) self.assertEqual('Array1[Any, A1]', inferred.y4) self.assertEqual('Array2[Any, A1, A2]', inferred.y5) self.assertEqual('Array2[Any, A1, A2]', inferred.y6) def testBinaryOpWithScalar_InferredMatchesActualShape(self): with utils.SaveCodeAsString() as code_saver: x: Array2[AnyDType, A1, A2] = np.zeros((1, 2)) y1 = x + 1.0 y2 = x - 1.0 y3 = x / 1.0 y4 = x * 1.0 inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(y1.shape, inferred.y1) self.assertEqual(y2.shape, inferred.y2) self.assertEqual(y3.shape, inferred.y3) self.assertEqual(y4.shape, inferred.y4) def testBinaryOpWithBroadcast_InferredMatchesActualShape(self): with utils.SaveCodeAsString() as code_saver: a: Array2[AnyDType, A1, A2] = np.ones((1, 2)) b: Array1[AnyDType, A2] = np.ones((2,)) y1 = a + b y2 = a - b y3 = a / b y4 = a * b inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(y1.shape, inferred.y1) self.assertEqual(y2.shape, inferred.y2) self.assertEqual(y3.shape, inferred.y3) self.assertEqual(y4.shape, inferred.y4) def testBinaryOpWithSameShape_InferredMatchesActualShape(self): with utils.SaveCodeAsString() as code_saver: a: Array2[AnyDType, A1, A2] = np.ones((1, 2)) b: Array2[AnyDType, A1, A2] = np.ones((1, 2)) y1 = a + b y2 = a - b y3 = a / b y4 = a * b inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(y1.shape, inferred.y1) self.assertEqual(y2.shape, inferred.y2) self.assertEqual(y3.shape, inferred.y3) self.assertEqual(y4.shape, inferred.y4) def testShapeAttribute_HasCorrectLength(self): with utils.SaveCodeAsString() as code_saver: x0 = np.zeros(()) x1 = np.zeros((1,)) x2 = np.zeros((1, 2)) x3 = np.zeros((1, 2, 3)) x4 = np.zeros((1, 2, 3, 4)) x0_shape = x0.shape # pylint: disable=unused-variable x1_shape = x1.shape # pylint: disable=unused-variable x2_shape = x2.shape # pylint: disable=unused-variable x3_shape = x3.shape # pylint: disable=unused-variable x4_shape = x4.shape # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(x0_shape, ()) self.assertEqual(x1_shape, (1,)) self.assertEqual(x2_shape, (1, 2)) self.assertEqual(x3_shape, (1, 2, 3)) self.assertEqual(x4_shape, (1, 2, 3, 4)) self.assertEqual('Tuple[()]', inferred.x0_shape) self.assertEqual('Tuple[int]', inferred.x1_shape) self.assertEqual('Tuple[int, int]', inferred.x2_shape) self.assertEqual('Tuple[int, int, int]', inferred.x3_shape) self.assertEqual('Tuple[int, int, int, int]', inferred.x4_shape) def testArray0Item_ReturnsIntFloatBoolComplexUnion(self): with utils.SaveCodeAsString() as code_saver: x = cast(Array0[AnyDType], np.zeros(())) y = x.item() # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.y, 'Union[bool, complex, float, int]') def testArray0_CanBeConvertedToFloat(self): with utils.SaveCodeAsString() as code_saver: x = np.zeros(()) y = float(x) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.y, 'float') def testArray0_SupportsFloat(self): with utils.SaveCodeAsString() as code_saver: def foo(x: SupportsFloat): return x x = np.zeros(()) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) class NumPyDtypeTests(absltest.TestCase): """Tests for data types inferred from NumPy type stubs using pytype.""" def testTranspose_ReturnsSameDtypeAsInput(self): """Tests that np.transpose() doesn't change the dtype.""" with utils.SaveCodeAsString() as code_saver: x8: Array2[int8, A1, A1] = np.array([[0]], dtype=np.int8) x16: Array2[int16, A1, A1] = np.array([[0]], dtype=np.int16) y8 = np.transpose(x8) # pylint: disable=unused-variable y16 = np.transpose(x16) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.y8, 'Array2[int8, A1, A1]') self.assertEqual(inferred.y16, 'Array2[int16, A1, A1]') def testZerosOnes_ReturnsAnyDType(self): """Tests that np.zeros and np.ones returns AnyDType.""" with utils.SaveCodeAsString() as code_saver: a = np.zeros(()) # pylint: disable=unused-variable b = np.ones(()) # pylint: disable=unused-variable c = np.zeros((1,)) # pylint: disable=unused-variable d = np.ones((1,)) # pylint: disable=unused-variable e = np.zeros((1, 1)) # pylint: disable=unused-variable f = np.ones((1, 1)) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) # These should be e.g. Array1[AnyDType, Any], but because AnyDType # is currently aliased to `Any`, and pytype doesn't print type arguments at # all when they're all `Any`, hence just comparing to e.g. Array1. self.assertEqual(inferred.a, 'Array0') self.assertEqual(inferred.b, 'Array0') self.assertEqual(inferred.c, 'Array1') self.assertEqual(inferred.d, 'Array1') self.assertEqual(inferred.e, 'Array2') self.assertEqual(inferred.f, 'Array2') def testSum_ReturnsSameDtypeAsInput(self): """Tests that np.sum() doesn't change the dtype.""" with utils.SaveCodeAsString() as code_saver: x32: Array1[float32, A1] = np.array([0.0], dtype=float32) # pylint: disable=unused-variable x64: Array1[float64, A1] = np.array([0.0], dtype=float64) # pylint: disable=unused-variable y32: Array2[float32, A1, A1] = np.array([[0.0]], dtype=float32) # pylint: disable=unused-variable y64: Array2[float64, A1, A1] = np.array([[0.0]], dtype=float64) # pylint: disable=unused-variable xsum32 = np.sum(x32, axis=0) # pylint: disable=unused-variable xsum64 = np.sum(x64, axis=0) # pylint: disable=unused-variable ysum32 = np.sum(y32, axis=0) # pylint: disable=unused-variable ysum64 = np.sum(y64, axis=0) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.xsum32, 'float32') self.assertEqual(inferred.xsum64, 'float64') self.assertEqual(inferred.ysum32, 'Array1[float32, A1]') self.assertEqual(inferred.ysum64, 'Array1[float64, A1]') def testArrayAdd_ReturnsAnyDType(self): """Tests that e.g. `x + 1` has dtype AnyDType.""" with utils.SaveCodeAsString() as code_saver: x: Array1[int8, A1] = np.array([[0]]) a = x + 1 # pylint: disable=unused-variable b = x + x # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) # AnyDType is printed as Any in pytype output. self.assertEqual(inferred.a, 'Array1[Any, A1]') self.assertEqual(inferred.b, 'Array1[Any, A1]') def testArrayUnaryOp_ReturnsSameDTypeAsInput(self): """Tests that e.g. `-x` has the same dtype as `x`.""" with utils.SaveCodeAsString() as code_saver: a8: Array1[int8, A1] = np.array([0], dtype=np.int8) b8 = abs(a8) # pylint: disable=unused-variable c8 = -a8 # pylint: disable=unused-variable a16: Array1[int16, A1] = np.array([0], dtype=np.int16) b16 = abs(a16) # pylint: disable=unused-variable c16 = -a16 # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.b8, 'Array1[int8, A1]') self.assertEqual(inferred.c8, 'Array1[int8, A1]') self.assertEqual(inferred.b16, 'Array1[int16, A1]') self.assertEqual(inferred.c16, 'Array1[int16, A1]') def testBinaryOpWithScalar_ReturnsAnyDType(self): """Tests that e.g. `x + 1` has dtype AnyDType.""" with utils.SaveCodeAsString() as code_saver: x: Array1[int8, A1] = np.array([0], dtype=np.int8) y1 = x + 1 # pylint: disable=unused-variable y2 = x - 1 # pylint: disable=unused-variable y3 = x / 1 # pylint: disable=unused-variable y4 = x * 1 # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) # pytype displays AnyDType as Any. self.assertEqual(inferred.y1, 'Array1[Any, A1]') self.assertEqual(inferred.y2, 'Array1[Any, A1]') self.assertEqual(inferred.y3, 'Array1[Any, A1]') self.assertEqual(inferred.y4, 'Array1[Any, A1]') def testBinaryOpWithArray_ReturnsAnyDType(self): """Tests that e.g. adding two arrays results in dtype AnyDType.""" with utils.SaveCodeAsString() as code_saver: a: Array1[int8, A1] = np.array([0], dtype=np.int8) b: Array1[int8, A1] = np.array([0], dtype=np.int8) y1 = a + b # pylint: disable=unused-variable y2 = a - b # pylint: disable=unused-variable y3 = a / b # pylint: disable=unused-variable y4 = a * b # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) # pytype displays AnyDType as Any. self.assertEqual(inferred.y1, 'Array1[Any, A1]') self.assertEqual(inferred.y2, 'Array1[Any, A1]') self.assertEqual(inferred.y3, 'Array1[Any, A1]') self.assertEqual(inferred.y4, 'Array1[Any, A1]') def testFunctionWithInt8Argument_AcceptsInt8Value(self): """Tests whether a function will accept a value with the right dtype.""" with utils.SaveCodeAsString() as code_saver: def foo(_: Array1[int8, Batch]): pass x = cast(Array1[int8, Batch], np.array([0], dtype=np.int8)) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) def testFunctionWithInt8Argument_RejectsInt16Value(self): """Tests whether a function will reject a value with the wrong dtype.""" with utils.SaveCodeAsString() as code_saver: def foo(_: Array1[int8, Batch]): pass x = cast(Array1[int16, Batch], np.array([0], dtype=np.int16)) foo(x) utils.assert_pytype_fails(_PREAMBLE + code_saver.code) def testFunctionWithAnyDTypeArgument_AcceptsInt8Value(self): """Tests whether AnyDType makes a function argument compatible with all.""" with utils.SaveCodeAsString() as code_saver: def foo(_: Array1[AnyDType, Batch]): pass x = cast(Array1[int8, Batch], np.array([0], dtype=np.int8)) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) def testFunctionWithInt8Argument_AcceptsAnyDTypeValue(self): """Tests whether AnyDType is compatible with an arbitrary argument dtype.""" with utils.SaveCodeAsString() as code_saver: def foo(_: Array1[int8, Batch]): pass x = cast(Array1[AnyDType, Batch], np.array([0])) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) if __name__ == '__main__': absltest.main()
tensor_annotations-master
tensor_annotations/tests/numpy.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for TensorFlow stubs.""" from typing import Any, NewType, SupportsFloat, TypeVar from absl.testing import absltest # For sharded test support from tensor_annotations import axes from tensor_annotations.axes import Batch from tensor_annotations.axes import Time import tensor_annotations.tensorflow as ttf from tensor_annotations.tensorflow import AnyDType from tensor_annotations.tensorflow import float32 from tensor_annotations.tensorflow import float64 from tensor_annotations.tensorflow import int16 from tensor_annotations.tensorflow import int8 from tensor_annotations.tensorflow import Tensor0 from tensor_annotations.tensorflow import Tensor1 from tensor_annotations.tensorflow import Tensor1AnyDType from tensor_annotations.tensorflow import Tensor2 from tensor_annotations.tests import utils import tensorflow as tf A1 = NewType('A1', axes.Axis) A2 = NewType('A2', axes.Axis) A3 = NewType('A3', axes.Axis) AxisTypeVar = TypeVar('AxisTypeVar') # It's less than ideal that we have to repeat imports etc. here for pytype, but # this seems like the best balance between readability and complexity. _PREAMBLE = """ from typing import Any, NewType, SupportsFloat, TypeVar import tensorflow as tf from tensor_annotations import axes from tensor_annotations.axes import Batch, Time import tensor_annotations.tensorflow as ttf from tensor_annotations.tensorflow import AnyDType from tensor_annotations.tensorflow import float32, float64, int8, int16 from tensor_annotations.tensorflow import Tensor0, Tensor1, Tensor1AnyDType, Tensor2 A1 = NewType('A1', axes.Axis) A2 = NewType('A2', axes.Axis) A3 = NewType('A3', axes.Axis) AxisTypeVar = TypeVar('AxisTypeVar') """ class TensorFlowShapeTests(absltest.TestCase): """Tests for shapes inferred from TensorFlow type stubs using pytype.""" def testTranspose_InferredMatchesActualShapeShape(self): with utils.SaveCodeAsString() as code_saver: x: Tensor2[Any, A1, A2] = tf.zeros((1, 2)) y = tf.transpose(x) inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(inferred.y, y.shape) def testUnaryOperator_ReturnCustomType(self): """Tests that operators like `tf.sin` return tensor_annotations types.""" with utils.SaveCodeAsString() as code_saver: x: Tensor1[Any, A1] = tf.zeros((1,)) # Let's just test a representative subset. a = tf.abs(x) # pylint: disable=unused-variable b = tf.sin(x) # pylint: disable=unused-variable c = tf.floor(x) # pylint: disable=unused-variable d = tf.ones_like(x) # pylint: disable=unused-variable e = tf.round(x) # pylint: disable=unused-variable f = tf.sign(x) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) # Any is printed as Any in pytype output. expected = 'Tensor1[Any, A1]' self.assertEqual(inferred.a, expected) self.assertEqual(inferred.b, expected) self.assertEqual(inferred.c, expected) self.assertEqual(inferred.d, expected) self.assertEqual(inferred.e, expected) self.assertEqual(inferred.f, expected) def testMathUnaryOperator_ReturnCustomType(self): """Tests that operators like `tf.math.sin` return the correct types.""" with utils.SaveCodeAsString() as code_saver: x: Tensor1[Any, A1] = tf.zeros((1,)) # Let's just test a representative subset. a = tf.math.abs(x) # pylint: disable=unused-variable b = tf.math.sin(x) # pylint: disable=unused-variable c = tf.math.floor(x) # pylint: disable=unused-variable d = tf.math.round(x) # pylint: disable=unused-variable e = tf.math.sign(x) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) # Any is printed as Any in pytype output. expected = 'Tensor1[Any, A1]' self.assertEqual(inferred.a, expected) self.assertEqual(inferred.b, expected) self.assertEqual(inferred.c, expected) self.assertEqual(inferred.d, expected) self.assertEqual(inferred.e, expected) def testZerosOnes_ReturnsCorrectShape(self): """Tests that e.g. `tf.zeros` returns the correct types.""" with utils.SaveCodeAsString() as code_saver: a = tf.zeros(()) # pylint: disable=unused-variable b = tf.ones(()) # pylint: disable=unused-variable c = tf.zeros((1,)) # pylint: disable=unused-variable d = tf.ones((1,)) # pylint: disable=unused-variable e = tf.zeros((1, 1)) # pylint: disable=unused-variable f = tf.ones((1, 1)) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.a, 'Tensor0') self.assertEqual(inferred.b, 'Tensor0') self.assertEqual(inferred.c, 'Tensor1') self.assertEqual(inferred.d, 'Tensor1') self.assertEqual(inferred.e, 'Tensor2') self.assertEqual(inferred.f, 'Tensor2') def testSum_InferredMatchesActualShape(self): """Tests that `tf.reduce_sum` returns the correct types.""" with utils.SaveCodeAsString() as code_saver: x: Tensor1[Any, A1] = tf.zeros((1,)) y: Tensor2[Any, A1, A2] = tf.zeros((1, 2)) x0 = tf.reduce_sum(x, axis=0) y0 = tf.reduce_sum(y, axis=0) y1 = tf.reduce_sum(y, axis=1) yn1 = tf.reduce_sum(y, axis=-1) inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(inferred.x0, x0.shape) self.assertEqual(inferred.y0, y0.shape) self.assertEqual(inferred.y1, y1.shape) self.assertEqual(inferred.yn1, yn1.shape) def testMatmul_InferredMatchesActualShape(self): """Tests that `x @ y` returns the correct types.""" with utils.SaveCodeAsString() as code_saver: x: Tensor2[Any, A1, A2] = tf.zeros((1, 2)) y: Tensor2[Any, A2, A3] = tf.zeros((2, 3)) xy = x @ y inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(inferred.xy, xy.shape) def testTensorAdd_ReturnsCustomType(self): """Tests that addition returns the correct types.""" with utils.SaveCodeAsString() as code_saver: x: Tensor1[Any, A1] = tf.zeros((1,)) a = x + 1 # pylint: disable=unused-variable b = x + x # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) # Any is printed as Any in pytype output. self.assertEqual(inferred.a, 'Tensor1[Any, A1]') self.assertEqual(inferred.b, 'Tensor1[Any, A1]') def testTensorUnaryOp_ReturnsCorrectTypeAndShape(self): """Tests that e.g. `-x` has the correct type.""" with utils.SaveCodeAsString() as code_saver: x1: Tensor0[int16] = tf.zeros(()) y1 = abs(x1) # pylint: disable=unused-variable y2 = -x1 # pylint: disable=unused-variable x2: Tensor1[int16, A1] = tf.zeros((1,)) y3 = abs(x2) # pylint: disable=unused-variable y4 = -x2 # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual('Tensor0[int16]', inferred.y1) self.assertEqual('Tensor0[int16]', inferred.y2) # Any is printed as Any in pytype output. self.assertEqual('Tensor1[int16, A1]', inferred.y3) self.assertEqual('Tensor1[int16, A1]', inferred.y4) def testBinaryOpWithScalar_InferredMatchesActualShape(self): """Tests that e.g. `x + 1` has the correct type.""" with utils.SaveCodeAsString() as code_saver: x: Tensor2[Any, A1, A2] = tf.zeros((1, 2)) y1 = x + 1.0 y2 = x - 1.0 y3 = x / 1.0 y4 = x * 1.0 inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(y1.shape, inferred.y1) self.assertEqual(y2.shape, inferred.y2) self.assertEqual(y3.shape, inferred.y3) self.assertEqual(y4.shape, inferred.y4) def testBinaryOpWithBroadcast_InferredMatchesActualShape(self): """Tests the result of e.g. adding two tensors with different shapes.""" with utils.SaveCodeAsString() as code_saver: a: Tensor2[Any, A1, A2] = tf.zeros((1, 2)) b: Tensor1[Any, A2] = tf.zeros((2,)) y1 = a + b y2 = a - b y3 = a / b y4 = a * b inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(y1.shape, inferred.y1) self.assertEqual(y2.shape, inferred.y2) self.assertEqual(y3.shape, inferred.y3) self.assertEqual(y4.shape, inferred.y4) def testBinaryOpWithSameShape_InferredMatchesActualShape(self): """Tests the result of e.g. adding two tensors with the same shape.""" with utils.SaveCodeAsString() as code_saver: a: Tensor2[Any, A1, A2] = tf.zeros((1, 2)) b: Tensor2[Any, A1, A2] = tf.zeros((1, 2)) y1 = a + b y2 = a - b y3 = a / b y4 = a * b inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(y1.shape, inferred.y1) self.assertEqual(y2.shape, inferred.y2) self.assertEqual(y3.shape, inferred.y3) self.assertEqual(y4.shape, inferred.y4) def testShapeAttribute_HasTypeTensorShape(self): """Tests that `x.shape` is a tensorflow.TensorShape.""" with utils.SaveCodeAsString() as code_saver: x0 = tf.zeros(()) x1 = tf.zeros((1,)) x2 = tf.zeros((1, 2)) x3 = tf.zeros((1, 2, 3)) x4 = tf.zeros((1, 2, 3, 4)) x5 = tf.zeros((1, 2, 3, 4, 5)) x0_shape = x0.shape # pylint: disable=unused-variable x1_shape = x1.shape # pylint: disable=unused-variable x2_shape = x2.shape # pylint: disable=unused-variable x3_shape = x3.shape # pylint: disable=unused-variable x4_shape = x4.shape # pylint: disable=unused-variable x5_shape = x5.shape # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual('tensorflow.TensorShape', inferred.x0_shape) self.assertEqual('tensorflow.TensorShape', inferred.x1_shape) self.assertEqual('tensorflow.TensorShape', inferred.x2_shape) self.assertEqual('tensorflow.TensorShape', inferred.x3_shape) self.assertEqual('tensorflow.TensorShape', inferred.x4_shape) self.assertEqual('tensorflow.TensorShape', inferred.x5_shape) def testShapeAttribute_HasLen(self): with utils.SaveCodeAsString() as code_saver: x = tf.zeros((1,)) rank = len(x.shape) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual('int', inferred.rank) def testTensor0_CanBeConvertedToFloat(self): with utils.SaveCodeAsString() as code_saver: x = tf.zeros(()) y = float(x) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.y, 'float') def testTensor0_SupportsFloat(self): with utils.SaveCodeAsString() as code_saver: def foo(x: SupportsFloat): return x x = tf.zeros(()) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) class TensorFlowDtypeTests(absltest.TestCase): """Tests for data types inferred from TensorFlow type stubs using pytype.""" def testTranspose_ReturnsSameDtypeAsInput(self): """Tests that tf.transpose() doesn't change the dtype.""" with utils.SaveCodeAsString() as code_saver: x8: Tensor2[int8, A1, A1] = tf.constant([[0]], dtype=tf.int8) x16: Tensor2[int16, A1, A1] = tf.constant([[0]], dtype=tf.int16) y8 = tf.transpose(x8) # pylint: disable=unused-variable y16 = tf.transpose(x16) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.y8, 'Tensor2[int8, A1, A1]') self.assertEqual(inferred.y16, 'Tensor2[int16, A1, A1]') def testUnaryFunctions_ReturnSameDtypeAsInput(self): """Tests that functions like `tf.sin` don't change the dtype.""" with utils.SaveCodeAsString() as code_saver: x32: Tensor1[float32, A1] = tf.constant([0.0], dtype=tf.float32) x64: Tensor1[float64, A1] = tf.constant([0.0], dtype=tf.float64) # Let's just test a representative subset. a32 = tf.abs(x32) # pylint: disable=unused-variable a64 = tf.abs(x64) # pylint: disable=unused-variable b32 = tf.sin(x32) # pylint: disable=unused-variable b64 = tf.sin(x64) # pylint: disable=unused-variable c32 = tf.floor(x32) # pylint: disable=unused-variable c64 = tf.floor(x64) # pylint: disable=unused-variable d32 = tf.round(x32) # pylint: disable=unused-variable d64 = tf.round(x64) # pylint: disable=unused-variable e32 = tf.sign(x32) # pylint: disable=unused-variable e64 = tf.sign(x64) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.a32, 'Tensor1[float32, A1]') self.assertEqual(inferred.a64, 'Tensor1[float64, A1]') self.assertEqual(inferred.b32, 'Tensor1[float32, A1]') self.assertEqual(inferred.b64, 'Tensor1[float64, A1]') self.assertEqual(inferred.c32, 'Tensor1[float32, A1]') self.assertEqual(inferred.c64, 'Tensor1[float64, A1]') self.assertEqual(inferred.d32, 'Tensor1[float32, A1]') self.assertEqual(inferred.d64, 'Tensor1[float64, A1]') self.assertEqual(inferred.e32, 'Tensor1[float32, A1]') self.assertEqual(inferred.e64, 'Tensor1[float64, A1]') def testMathUnaryFunctions_ReturnSameDtypeAsInput(self): """Tests that functions like `tf.math.sin` don't change the dtype.""" with utils.SaveCodeAsString() as code_saver: x32: Tensor1[float32, A1] = tf.constant([0.0], dtype=tf.float32) x64: Tensor1[float64, A1] = tf.constant([0.0], dtype=tf.float64) # Let's just test a representative subset. a32 = tf.math.abs(x32) # pylint: disable=unused-variable a64 = tf.math.abs(x64) # pylint: disable=unused-variable b32 = tf.math.sin(x32) # pylint: disable=unused-variable b64 = tf.math.sin(x64) # pylint: disable=unused-variable c32 = tf.math.floor(x32) # pylint: disable=unused-variable c64 = tf.math.floor(x64) # pylint: disable=unused-variable d32 = tf.math.round(x32) # pylint: disable=unused-variable d64 = tf.math.round(x64) # pylint: disable=unused-variable e32 = tf.math.sign(x32) # pylint: disable=unused-variable e64 = tf.math.sign(x64) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.a32, 'Tensor1[float32, A1]') self.assertEqual(inferred.a64, 'Tensor1[float64, A1]') self.assertEqual(inferred.b32, 'Tensor1[float32, A1]') self.assertEqual(inferred.b64, 'Tensor1[float64, A1]') self.assertEqual(inferred.c32, 'Tensor1[float32, A1]') self.assertEqual(inferred.c64, 'Tensor1[float64, A1]') self.assertEqual(inferred.d32, 'Tensor1[float32, A1]') self.assertEqual(inferred.d64, 'Tensor1[float64, A1]') self.assertEqual(inferred.e32, 'Tensor1[float32, A1]') self.assertEqual(inferred.e64, 'Tensor1[float64, A1]') def testZerosOnes_ReturnsAnyDType(self): """Tests that tf.zeros and tf.ones returns AnyDType.""" with utils.SaveCodeAsString() as code_saver: a = tf.zeros(()) # pylint: disable=unused-variable b = tf.ones(()) # pylint: disable=unused-variable ref0: Tensor0[AnyDType] = tf.constant(0) # pylint: disable=unused-variable c = tf.zeros((1,)) # pylint: disable=unused-variable d = tf.ones((1,)) # pylint: disable=unused-variable ref1: Tensor1[AnyDType, Any] = tf.constant([0]) # pylint: disable=unused-variable e = tf.zeros((1, 1)) # pylint: disable=unused-variable f = tf.ones((1, 1)) # pylint: disable=unused-variable ref2: Tensor2[AnyDType, Any, Any] = tf.constant([[0]]) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) # We can't compare explicitly to e.g. Tensor0[AnyDType], because AnyDType # is currently aliased to Any, and if all the type arguments are Any, # pytype doesn't print the type arguments at all. self.assertEqual(inferred.a, inferred.ref0) self.assertEqual(inferred.b, inferred.ref0) self.assertEqual(inferred.c, inferred.ref1) self.assertEqual(inferred.d, inferred.ref1) self.assertEqual(inferred.e, inferred.ref2) self.assertEqual(inferred.f, inferred.ref2) def testSum_ReturnsSameDtypeAsInput(self): """Tests that tf.reduce_sum() doesn't change the dtype.""" with utils.SaveCodeAsString() as code_saver: x32: Tensor1[float32, A1] = tf.constant([0.0], dtype=tf.float32) # pylint: disable=unused-variable x64: Tensor1[float64, A1] = tf.constant([0.0], dtype=tf.float64) # pylint: disable=unused-variable y32: Tensor2[float32, A1, A1] = tf.constant([[0.0]], dtype=tf.float32) # pylint: disable=unused-variable y64: Tensor2[float64, A1, A1] = tf.constant([[0.0]], dtype=tf.float64) # pylint: disable=unused-variable xsum32 = tf.reduce_sum(x32, axis=0) # pylint: disable=unused-variable xsum64 = tf.reduce_sum(x64, axis=0) # pylint: disable=unused-variable ysum32 = tf.reduce_sum(y32, axis=0) # pylint: disable=unused-variable ysum64 = tf.reduce_sum(y64, axis=0) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.xsum32, 'Tensor0[float32]') self.assertEqual(inferred.xsum64, 'Tensor0[float64]') self.assertEqual(inferred.ysum32, 'Tensor1[float32, A1]') self.assertEqual(inferred.ysum64, 'Tensor1[float64, A1]') def testTensorAdd_ReturnsAnyDType(self): """Tests that e.g. `x + 1` has dtype AnyDType.""" with utils.SaveCodeAsString() as code_saver: x: Tensor1[int8, A1] = tf.constant([[0]]) a = x + 1 # pylint: disable=unused-variable b = x + x # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) # AnyDType is printed as Any in pytype output. self.assertEqual(inferred.a, 'Tensor1[Any, A1]') self.assertEqual(inferred.b, 'Tensor1[Any, A1]') def testTensorUnaryOp_ReturnsSameDTypeAsInput(self): """Tests that e.g. `-x` has the same dtype as `x`.""" with utils.SaveCodeAsString() as code_saver: a8: Tensor0[int8] = tf.constant([[0]], dtype=tf.int8) b8 = abs(a8) # pylint: disable=unused-variable c8 = -a8 # pylint: disable=unused-variable a16: Tensor0[int16] = tf.constant([[0]], dtype=tf.int16) b16 = abs(a16) # pylint: disable=unused-variable c16 = -a16 # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.b8, 'Tensor0[int8]') self.assertEqual(inferred.c8, 'Tensor0[int8]') self.assertEqual(inferred.b16, 'Tensor0[int16]') self.assertEqual(inferred.c16, 'Tensor0[int16]') def testBinaryOpWithScalar_ReturnsAnyDType(self): """Tests that e.g. `x + 1` has dtype AnyDType.""" with utils.SaveCodeAsString() as code_saver: x: Tensor1[int8, A1] = tf.constant([0], dtype=tf.int8) y1 = x + 1 # pylint: disable=unused-variable y2 = x - 1 # pylint: disable=unused-variable y3 = x / 1 # pylint: disable=unused-variable y4 = x * 1 # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) # pytype displays AnyDType as Any. self.assertEqual(inferred.y1, 'Tensor1[Any, A1]') self.assertEqual(inferred.y2, 'Tensor1[Any, A1]') self.assertEqual(inferred.y3, 'Tensor1[Any, A1]') self.assertEqual(inferred.y4, 'Tensor1[Any, A1]') def testBinaryOpWithArray_ReturnsAnyDType(self): """Tests that e.g. adding two arrays results in dtype AnyDType.""" with utils.SaveCodeAsString() as code_saver: a: Tensor1[int8, A1] = tf.constant([0], dtype=tf.int8) b: Tensor1[int8, A1] = tf.constant([0], dtype=tf.int8) y1 = a + b # pylint: disable=unused-variable y2 = a - b # pylint: disable=unused-variable y3 = a / b # pylint: disable=unused-variable y4 = a * b # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) # pytype displays AnyDType as Any. self.assertEqual(inferred.y1, 'Tensor1[Any, A1]') self.assertEqual(inferred.y2, 'Tensor1[Any, A1]') self.assertEqual(inferred.y3, 'Tensor1[Any, A1]') self.assertEqual(inferred.y4, 'Tensor1[Any, A1]') def testFunctionWithInt8Argument_AcceptsInt8Value(self): """Tests whether a function will accept a value with the right dtype.""" with utils.SaveCodeAsString() as code_saver: def foo(_: Tensor0[int8]): pass x: Tensor0[int8] = tf.constant([0], dtype=tf.int8) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) def testFunctionWithInt8Argument_RejectsInt16Value(self): """Tests whether a function will reject a value with the wrong dtype.""" with utils.SaveCodeAsString() as code_saver: def foo(_: Tensor0[int8]): pass x: Tensor0[int16] = tf.constant([0], dtype=tf.int16) foo(x) utils.assert_pytype_fails(_PREAMBLE + code_saver.code) def testFunctionWithAnyDTypeArgument_AcceptsInt8Value(self): """Tests whether AnyDType makes a function argument compatible with all.""" with utils.SaveCodeAsString() as code_saver: def foo(_: Tensor0[AnyDType]): pass x: Tensor0[int8] = tf.constant([0], dtype=tf.int8) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) def testFunctionWithInt8Argument_AcceptsAnyDTypeValue(self): """Tests whether AnyDType is compatible with an arbitrary argument dtype.""" with utils.SaveCodeAsString() as code_saver: def foo(_: Tensor0[int8]): pass x: Tensor0[AnyDType] = tf.constant([0]) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) def testFunctionWithBoolArgument_AcceptsBoolValue(self): """No problems with using 'bool' as a dtype name, right?""" with utils.SaveCodeAsString() as code_saver: def foo(_: Tensor0[ttf.bool]): pass x: Tensor0[ttf.bool] = tf.constant(False) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) def testTensorShapeAttr_IsTensorShape(self): with utils.SaveCodeAsString() as code_saver: x: Tensor1[int8, A1] = tf.constant([0], dtype=tf.int8) s = x.shape # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.s, 'tensorflow.TensorShape') def testTensorShapeIndexedWithInt_IsInt(self): with utils.SaveCodeAsString() as code_saver: x: Tensor1[int8, A1] = tf.constant([0], dtype=tf.int8) s = x.shape s0 = s[0] # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.s0, 'int') def testTensorShapeIndexedWithSlice_IsTensorShape(self): with utils.SaveCodeAsString() as code_saver: x: Tensor1[int8, A1] = tf.constant([0], dtype=tf.int8) s = x.shape s0 = s[:1] # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.s0, 'tensorflow.TensorShape') def testTensorShapeAsList_IsListOfInt(self): with utils.SaveCodeAsString() as code_saver: x: Tensor1[int8, A1] = tf.constant([0], dtype=tf.int8) s = x.shape l = s.as_list() # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.l, 'List[int]') class TensorFlowAnyDtypeAliasTests(absltest.TestCase): """Tests for backwards-compatible aliases that don't use DTypes.""" def testInt8Batch_AcceptsAnyDTypeBatch(self): """Is Tensor1AnyDType[Batch] compatible with Tensor1[int8, Batch]?""" with utils.SaveCodeAsString() as code_saver: def foo(_: Tensor1[int8, Batch]): pass x: Tensor1AnyDType[Batch] = tf.constant([[0]]) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) def testInt8Batch_RejectsAnyDTypeTime(self): """Is Tensor1AnyDType[Time] compatible with Tensor1[int8, Batch]?""" with utils.SaveCodeAsString() as code_saver: def foo(_: Tensor1[int8, Batch]): pass x: Tensor1AnyDType[Time] = tf.constant([[0]]) foo(x) utils.assert_pytype_fails(_PREAMBLE + code_saver.code) def testAnyDTypeBatch_AcceptsUint8Batch(self): """Is Tensor1[int8, Batch] compatible with Tensor1AnyDType[Batch]?""" with utils.SaveCodeAsString() as code_saver: def foo(_: Tensor1AnyDType[Batch]): pass x: Tensor1[int8, Batch] = tf.constant([[0]]) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) def testAnyDTypeBatch_RejectsUint8Time(self): """Is Tensor1[int8, Time] compatible with Tensor1AnyDType[Batch]?""" with utils.SaveCodeAsString() as code_saver: def foo(_: Tensor1AnyDType[Batch]): pass x: Tensor1[int8, Time] = tf.constant([[0]]) foo(x) utils.assert_pytype_fails(_PREAMBLE + code_saver.code) if __name__ == '__main__': absltest.main()
tensor_annotations-master
tensor_annotations/tests/tensorflow.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for JAX stubs.""" from typing import cast, NewType, SupportsFloat, TypeVar from absl.testing import absltest import jax import jax.numpy as jnp from tensor_annotations import axes from tensor_annotations.axes import Batch from tensor_annotations.axes import Time from tensor_annotations.jax import AnyDType from tensor_annotations.jax import Array0 from tensor_annotations.jax import Array1 from tensor_annotations.jax import Array1AnyDType from tensor_annotations.jax import Array2 from tensor_annotations.jax import float32 from tensor_annotations.jax import float64 from tensor_annotations.jax import int16 from tensor_annotations.jax import int8 from tensor_annotations.tests import utils A1 = NewType('A1', axes.Axis) A2 = NewType('A2', axes.Axis) A3 = NewType('A3', axes.Axis) AxisTypeVar = TypeVar('AxisTypeVar') # It's less than ideal that we have to repeat imports etc. here for pytype, but # this seems like the best balance between readability and complexity. _PREAMBLE = """ from typing import Any, cast, NewType, SupportsFloat, TypeVar, Union import jax import jax.numpy as jnp from tensor_annotations import axes from tensor_annotations.axes import Batch, Time from tensor_annotations.jax import AnyDType, float32, float64, int16, int8 from tensor_annotations.jax import Array0, Array1, Array1AnyDType, Array2 A1 = NewType('A1', axes.Axis) A2 = NewType('A2', axes.Axis) A3 = NewType('A3', axes.Axis) AxisTypeVar = TypeVar('AxisTypeVar') """ class JAXStubTests(absltest.TestCase): """Tests for jax.* stubs.""" def test_custom_stubs_are_used_for_jax(self): """Tests whether eg a syntax error in jax.pyi prevents stubs being used.""" # _sentinel is a member that exists with a specific type in our stubs but # not in the JAX library code itself (and would therefore normally be # seen as `Any` by pytype). code = _PREAMBLE + 's = jax._sentinel' inferred = utils.pytype_infer_types(code) self.assertEqual(inferred.s, 'int') class JAXNumpyStubTests(absltest.TestCase): """Tests for jax.numpy.* stubs.""" def testTranspose_InferredShapeMatchesActualShape(self): with utils.SaveCodeAsString() as code_saver: x: Array2[AnyDType, A1, A2] = jnp.zeros((1, 2)) y = jnp.transpose(x) y2 = x.T inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(inferred.y, y.shape) self.assertEqual(inferred.y2, y2.shape) def testUnaryOperator_ReturnCustomType(self): with utils.SaveCodeAsString() as code_saver: x: Array1[AnyDType, A1] = jnp.zeros((1,)) # Let's just test a representative subset. a = jnp.abs(x) # pylint: disable=unused-variable b = jnp.sin(x) # pylint: disable=unused-variable c = jnp.floor(x) # pylint: disable=unused-variable d = jnp.ones_like(x) # pylint: disable=unused-variable e = jnp.round(x) # pylint: disable=unused-variable f = jnp.sign(x) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) expected = 'Array1[Any, A1]' self.assertEqual(inferred.a, expected) self.assertEqual(inferred.b, expected) self.assertEqual(inferred.c, expected) self.assertEqual(inferred.d, expected) self.assertEqual(inferred.e, expected) self.assertEqual(inferred.f, expected) def testZerosOnes_ReturnsCorrectShape(self): with utils.SaveCodeAsString() as code_saver: a = jnp.zeros(()) # pylint: disable=unused-variable b = jnp.ones(()) # pylint: disable=unused-variable c = jnp.zeros((1,)) # pylint: disable=unused-variable d = jnp.ones((1,)) # pylint: disable=unused-variable e = jnp.zeros((1, 1)) # pylint: disable=unused-variable f = jnp.ones((1, 1)) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.a, 'Array0[float32]') self.assertEqual(inferred.b, 'Array0[float32]') self.assertEqual(inferred.c, 'Array1[float32, Any]') self.assertEqual(inferred.d, 'Array1[float32, Any]') self.assertEqual(inferred.e, 'Array2[float32, Any, Any]') self.assertEqual(inferred.f, 'Array2[float32, Any, Any]') def testSum_InferredMatchesActualShape(self): with utils.SaveCodeAsString() as code_saver: x: Array2[AnyDType, A1, A2] = jnp.zeros((1, 2)) y1 = jnp.sum(x, axis=0) y2 = jnp.sum(x, axis=1) y3 = jnp.sum(x, axis=(0, 1)) y4 = jnp.sum(x) inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(inferred.y1, y1.shape) self.assertEqual(inferred.y2, y2.shape) self.assertEqual(inferred.y3, y3.shape) self.assertEqual(inferred.y4, y4.shape) def testSumKeepdimsTrue_ReturnsAny(self): # We haven't got around to making stubs for keepdims=True yet; # make sure the type reflects that. with utils.SaveCodeAsString() as code_saver: x: Array1[AnyDType, A1] = jnp.zeros((1,)) a = jnp.sum(x, axis=0, keepdims=True) # pylint: disable=unused-variable b = jnp.sum(x, keepdims=True) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.a, 'Any') self.assertEqual(inferred.b, 'Any') def testTensorAdd_ReturnsCustomType(self): with utils.SaveCodeAsString() as code_saver: x: Array1[AnyDType, A1] = jnp.zeros((1,)) a = x + 1 # pylint: disable=unused-variable b = x + x # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual('Array1[Any, A1]', inferred.a) self.assertEqual('Array1[Any, A1]', inferred.b) def testMatmul_InferredMatchesActualShape(self): with utils.SaveCodeAsString() as code_saver: x: Array2[AnyDType, A1, A2] = jnp.zeros((1, 2)) y: Array2[AnyDType, A2, A3] = jnp.zeros((2, 3)) xy = x @ y inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(inferred.xy, xy.shape) def testTensorUnaryOp_ReturnsCorrectTypeAndShape(self): with utils.SaveCodeAsString() as code_saver: x1: Array0 = jnp.zeros(()) y1 = abs(x1) # pylint: disable=unused-variable y2 = -x1 # pylint: disable=unused-variable x2: Array1[AnyDType, A1] = jnp.zeros((1,)) y3 = abs(x2) # pylint: disable=unused-variable y4 = -x2 # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual('Array0[DType]', inferred.y1) self.assertEqual('Array0[DType]', inferred.y2) self.assertEqual('Array1[Any, A1]', inferred.y3) self.assertEqual('Array1[Any, A1]', inferred.y4) def testBinaryOpWithScalar_InferredMatchesActualShape(self): with utils.SaveCodeAsString() as code_saver: x: Array2[AnyDType, A1, A2] = jnp.zeros((1, 2)) y1 = x + 1.0 y2 = x - 1.0 y3 = x / 1.0 y4 = x * 1.0 inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(y1.shape, inferred.y1) self.assertEqual(y2.shape, inferred.y2) self.assertEqual(y3.shape, inferred.y3) self.assertEqual(y4.shape, inferred.y4) def testBinaryOpWithBroadcast_InferredMatchesActualShape(self): with utils.SaveCodeAsString() as code_saver: a: Array2[AnyDType, A1, A2] = jnp.zeros((1, 2)) b: Array1[AnyDType, A2] = jnp.zeros((2,)) y1 = a + b y2 = a - b y3 = a / b y4 = a * b inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(y1.shape, inferred.y1) self.assertEqual(y2.shape, inferred.y2) self.assertEqual(y3.shape, inferred.y3) self.assertEqual(y4.shape, inferred.y4) def testBinaryOpWithSameShape_InferredMatchesActualShape(self): with utils.SaveCodeAsString() as code_saver: a: Array2[AnyDType, A1, A2] = jnp.zeros((1, 2)) b: Array2[AnyDType, A1, A2] = jnp.zeros((1, 2)) y1 = a + b y2 = a - b y3 = a / b y4 = a * b inferred = utils.pytype_infer_shapes(_PREAMBLE + code_saver.code) self.assertEqual(y1.shape, inferred.y1) self.assertEqual(y2.shape, inferred.y2) self.assertEqual(y3.shape, inferred.y3) self.assertEqual(y4.shape, inferred.y4) def testShapeAttribute_HasCorrectLength(self): with utils.SaveCodeAsString() as code_saver: x0 = jnp.zeros(()) x1 = jnp.zeros((1,)) x2 = jnp.zeros((1, 2)) x3 = jnp.zeros((1, 2, 3)) x4 = jnp.zeros((1, 2, 3, 4)) x0_shape = x0.shape # pylint: disable=unused-variable x1_shape = x1.shape # pylint: disable=unused-variable x2_shape = x2.shape # pylint: disable=unused-variable x3_shape = x3.shape # pylint: disable=unused-variable x4_shape = x4.shape # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(x0_shape, ()) self.assertEqual(x1_shape, (1,)) self.assertEqual(x2_shape, (1, 2)) self.assertEqual(x3_shape, (1, 2, 3)) self.assertEqual(x4_shape, (1, 2, 3, 4)) self.assertEqual('Tuple[()]', inferred.x0_shape) self.assertEqual('Tuple[int]', inferred.x1_shape) self.assertEqual('Tuple[int, int]', inferred.x2_shape) self.assertEqual('Tuple[int, int, int]', inferred.x3_shape) self.assertEqual('Tuple[int, int, int, int]', inferred.x4_shape) def testArray0Item_ReturnsIntFloatBoolComplexUnion(self): with utils.SaveCodeAsString() as code_saver: x = jnp.zeros(()) y = x.item() # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.y, 'Union[bool, complex, float, int]') def testArray0_CanBeConvertedToFloat(self): with utils.SaveCodeAsString() as code_saver: x = jnp.zeros(()) y = float(x) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.y, 'float') def testArray0_SupportsFloat(self): with utils.SaveCodeAsString() as code_saver: def foo(x: SupportsFloat): return x x = jnp.zeros(()) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) class JAXDtypeTests(absltest.TestCase): """Tests for data types inferred from JAX type stubs using pytype.""" def testTranspose_ReturnsSameDtypeAsInput(self): """Tests that jnp.transpose() doesn't change the dtype.""" with utils.SaveCodeAsString() as code_saver: x8: Array2[int8, A1, A1] = jnp.array([[0]], dtype=jnp.int8) x16: Array2[int16, A1, A1] = jnp.array([[0]], dtype=jnp.int16) y8 = jnp.transpose(x8) # pylint: disable=unused-variable y16 = jnp.transpose(x16) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.y8, 'Array2[int8, A1, A1]') self.assertEqual(inferred.y16, 'Array2[int16, A1, A1]') def testUnaryFunctions_ReturnSameDtypeAsInput(self): """Tests that functions like `jnp.sin` don't change the dtype.""" with utils.SaveCodeAsString() as code_saver: x32: Array1[float32, A1] = jnp.array([0.0], dtype=jnp.float32) x64: Array1[float64, A1] = jnp.array([0.0], dtype=jnp.float64) # Let's just test a representative subset. a32 = jnp.abs(x32) # pylint: disable=unused-variable a64 = jnp.abs(x64) # pylint: disable=unused-variable b32 = jnp.sin(x32) # pylint: disable=unused-variable b64 = jnp.sin(x64) # pylint: disable=unused-variable c32 = jnp.floor(x32) # pylint: disable=unused-variable c64 = jnp.floor(x64) # pylint: disable=unused-variable d32 = jnp.round(x32) # pylint: disable=unused-variable d64 = jnp.round(x64) # pylint: disable=unused-variable e32 = jnp.sign(x32) # pylint: disable=unused-variable e64 = jnp.sign(x64) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.a32, 'Array1[float32, A1]') self.assertEqual(inferred.a64, 'Array1[float64, A1]') self.assertEqual(inferred.b32, 'Array1[float32, A1]') self.assertEqual(inferred.b64, 'Array1[float64, A1]') self.assertEqual(inferred.c32, 'Array1[float32, A1]') self.assertEqual(inferred.c64, 'Array1[float64, A1]') self.assertEqual(inferred.d32, 'Array1[float32, A1]') self.assertEqual(inferred.d64, 'Array1[float64, A1]') self.assertEqual(inferred.e32, 'Array1[float32, A1]') self.assertEqual(inferred.e64, 'Array1[float64, A1]') def testZerosOnes_ReturnsCorrectDtype(self): """Tests that jnp.zeros and jnp.ones returns arrays with correct dtypes.""" with utils.SaveCodeAsString() as code_saver: a = jnp.zeros(()) # pylint: disable=unused-variable b = jnp.ones(()) # pylint: disable=unused-variable c = jnp.zeros((), dtype=jnp.int8) # pylint: disable=unused-variable d = jnp.ones((), dtype=jnp.int8) # pylint: disable=unused-variable e = jnp.zeros((1,)) # pylint: disable=unused-variable f = jnp.ones((1,)) # pylint: disable=unused-variable g = jnp.zeros((1,), dtype=jnp.int8) # pylint: disable=unused-variable h = jnp.ones((1,), dtype=jnp.int8) # pylint: disable=unused-variable i = jnp.zeros((1, 1)) # pylint: disable=unused-variable j = jnp.ones((1, 1)) # pylint: disable=unused-variable k = jnp.zeros((1, 1), dtype=jnp.int8) # pylint: disable=unused-variable l = jnp.ones((1, 1), dtype=jnp.int8) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.a, 'Array0[float32]') self.assertEqual(inferred.b, 'Array0[float32]') # These should be Array0[AnyDType], but because AnyDType is currently # aliased to `Any`, and pytype doesn't print type arguments at all when # they're all `Any`, hence just comparing to e.g. Array0. # Ditto tests below. self.assertEqual(inferred.c, 'Array0') self.assertEqual(inferred.d, 'Array0') self.assertEqual(inferred.e, 'Array1[float32, Any]') self.assertEqual(inferred.f, 'Array1[float32, Any]') self.assertEqual(inferred.g, 'Array1') self.assertEqual(inferred.h, 'Array1') self.assertEqual(inferred.i, 'Array2[float32, Any, Any]') self.assertEqual(inferred.j, 'Array2[float32, Any, Any]') self.assertEqual(inferred.k, 'Array2') self.assertEqual(inferred.l, 'Array2') def testSum_ReturnsSameDtypeAsInput(self): """Tests that jnp.sum() doesn't change the dtype.""" with utils.SaveCodeAsString() as code_saver: x32: Array1[float32, A1] = jnp.array([0.0], dtype=jnp.float32) # pylint: disable=unused-variable x64: Array1[float64, A1] = jnp.array([0.0], dtype=jnp.float64) # pylint: disable=unused-variable y32: Array2[float32, A1, A1] = jnp.array([[0.0]], dtype=jnp.float32) # pylint: disable=unused-variable y64: Array2[float64, A1, A1] = jnp.array([[0.0]], dtype=jnp.float64) # pylint: disable=unused-variable xsum32 = jnp.sum(x32, axis=0) # pylint: disable=unused-variable xsum64 = jnp.sum(x64, axis=0) # pylint: disable=unused-variable ysum32 = jnp.sum(y32, axis=0) # pylint: disable=unused-variable ysum64 = jnp.sum(y64, axis=0) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.xsum32, 'Array0[float32]') self.assertEqual(inferred.xsum64, 'Array0[float64]') self.assertEqual(inferred.ysum32, 'Array1[float32, A1]') self.assertEqual(inferred.ysum64, 'Array1[float64, A1]') def testArrayAdd_ReturnsAnyDType(self): """Tests that e.g. `x + 1` has dtype AnyDType.""" with utils.SaveCodeAsString() as code_saver: x: Array1[int8, A1] = jnp.array([[0]]) a = x + 1 # pylint: disable=unused-variable b = x + x # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) # AnyDType is printed as Any in pytype output. self.assertEqual(inferred.a, 'Array1[Any, A1]') self.assertEqual(inferred.b, 'Array1[Any, A1]') def testArrayUnaryOp_ReturnsSameDTypeAsInput(self): """Tests that e.g. `-x` has the same dtype as `x`.""" with utils.SaveCodeAsString() as code_saver: a8: Array0[int8] = jnp.array([[0]], dtype=jnp.int8) b8 = abs(a8) # pylint: disable=unused-variable c8 = -a8 # pylint: disable=unused-variable a16: Array0[int16] = jnp.array([[0]], dtype=jnp.int16) b16 = abs(a16) # pylint: disable=unused-variable c16 = -a16 # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.b8, 'Array0[int8]') self.assertEqual(inferred.c8, 'Array0[int8]') self.assertEqual(inferred.b16, 'Array0[int16]') self.assertEqual(inferred.c16, 'Array0[int16]') def testBinaryOpWithScalar_ReturnsAnyDType(self): """Tests that e.g. `x + 1` has dtype AnyDType.""" with utils.SaveCodeAsString() as code_saver: x: Array1[int8, A1] = jnp.array([0], dtype=jnp.int8) y1 = x + 1 # pylint: disable=unused-variable y2 = x - 1 # pylint: disable=unused-variable y3 = x / 1 # pylint: disable=unused-variable y4 = x * 1 # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) # pytype displays AnyDType as Any. self.assertEqual(inferred.y1, 'Array1[Any, A1]') self.assertEqual(inferred.y2, 'Array1[Any, A1]') self.assertEqual(inferred.y3, 'Array1[Any, A1]') self.assertEqual(inferred.y4, 'Array1[Any, A1]') def testBinaryOpWithArray_ReturnsAnyDType(self): """Tests that e.g. adding two arrays results in dtype AnyDType.""" with utils.SaveCodeAsString() as code_saver: a: Array1[int8, A1] = jnp.array([0], dtype=jnp.int8) b: Array1[int8, A1] = jnp.array([0], dtype=jnp.int8) y1 = a + b # pylint: disable=unused-variable y2 = a - b # pylint: disable=unused-variable y3 = a / b # pylint: disable=unused-variable y4 = a * b # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) # pytype displays AnyDType as Any. self.assertEqual(inferred.y1, 'Array1[Any, A1]') self.assertEqual(inferred.y2, 'Array1[Any, A1]') self.assertEqual(inferred.y3, 'Array1[Any, A1]') self.assertEqual(inferred.y4, 'Array1[Any, A1]') def testFunctionWithInt8Argument_AcceptsInt8Value(self): """Tests whether a function will accept a value with the right dtype.""" with utils.SaveCodeAsString() as code_saver: def foo(_: Array0[int8]): pass x: Array0[int8] = jnp.array([0], dtype=jnp.int8) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) def testFunctionWithInt8Argument_RejectsInt16Value(self): """Tests whether a function will reject a value with the wrong dtype.""" with utils.SaveCodeAsString() as code_saver: def foo(_: Array0[int8]): pass x: Array0[int16] = jnp.array([0], dtype=jnp.int16) foo(x) utils.assert_pytype_fails(_PREAMBLE + code_saver.code) def testFunctionWithAnyDTypeArgument_AcceptsInt8Value(self): """Tests whether AnyDType makes a function argument compatible with all.""" with utils.SaveCodeAsString() as code_saver: def foo(_: Array0[AnyDType]): pass x: Array0[int8] = jnp.array([0], dtype=jnp.int8) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) def testFunctionWithInt8Argument_AcceptsAnyDTypeValue(self): """Tests whether AnyDType is compatible with an arbitrary argument dtype.""" with utils.SaveCodeAsString() as code_saver: def foo(_: Array0[int8]): pass x: Array0[AnyDType] = jnp.array([0]) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) class JAXAnyDtypeAliasTests(absltest.TestCase): """Tests for backwards-compatible aliases that don't use DTypes.""" def testInt8Batch_AcceptsAnyDTypeBatch(self): """Is Array1AnyDType[Batch] compatible with Array1[int8, Batch]?""" with utils.SaveCodeAsString() as code_saver: def foo(_: Array1[int8, Batch]): pass x: Array1AnyDType[Batch] = jnp.array([[0]]) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) def testInt8Batch_RejectsAnyDTypeTime(self): """Is Array1AnyDType[Time] compatible with Array1[int8, Batch]?""" with utils.SaveCodeAsString() as code_saver: def foo(_: Array1[int8, Batch]): pass x: Array1AnyDType[Time] = jnp.array([[0]]) foo(x) utils.assert_pytype_fails(_PREAMBLE + code_saver.code) def testAnyDTypeBatch_AcceptsUint8Batch(self): """Is Array1[int8, Batch] compatible with Array1AnyDType[Batch]?""" with utils.SaveCodeAsString() as code_saver: def foo(_: Array1AnyDType[Batch]): pass x: Array1[int8, Batch] = jnp.array([[0]]) foo(x) utils.assert_pytype_succeeds(_PREAMBLE + code_saver.code) def testAnyDTypeBatch_RejectsUint8Time(self): """Is Array1[int8, Time] compatible with Array1AnyDType[Batch]?""" with utils.SaveCodeAsString() as code_saver: def foo(_: Array1AnyDType[Batch]): pass x: Array1[int8, Time] = jnp.array([[0]]) foo(x) utils.assert_pytype_fails(_PREAMBLE + code_saver.code) class JAXArrayTests(absltest.TestCase): """Test for operations on official jax.Array class. We need to do some explicit casting in these tests because, since we're using our stubs, things like jnp.zeros returns an ArrayN, rather than a jax.Array, as we want. """ def testArrayShape_HasInferredTypeTupleInt(self): """Tests that pytype infers tuple[int, ...] for jax.Array.shape.""" with utils.SaveCodeAsString() as code_saver: x = cast(jax.Array, jnp.zeros(3)) s = x.shape # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.s, 'Tuple[int, ...]') def testArrayFunctions_ReturnJaxArray(self): """Tests that the inferred types for eg jax.Array.astype() is are right.""" with utils.SaveCodeAsString() as code_saver: a = cast(jax.Array, jnp.zeros(3)) b = a.astype(jnp.int64) c = a + 1 d = 1 + a e = a - 1 f = 1 - a g = a * 2 h = 2 * a i = a / 2 j = a // 2 k = a ** 2 l = a @ a m = a[0] n = a.T o = a.at[0].set(1) inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) # These are all jax.Arrays, right? # Or close enough - they'll actually be some subclass of jax.Array # like tensorflow.compiler.xla.python.xla_extension.Array. self.assertIsInstance(a, jax.Array) self.assertIsInstance(b, jax.Array) self.assertIsInstance(c, jax.Array) self.assertIsInstance(d, jax.Array) self.assertIsInstance(e, jax.Array) self.assertIsInstance(f, jax.Array) self.assertIsInstance(g, jax.Array) self.assertIsInstance(h, jax.Array) self.assertIsInstance(i, jax.Array) self.assertIsInstance(j, jax.Array) self.assertIsInstance(k, jax.Array) self.assertIsInstance(l, jax.Array) self.assertIsInstance(m, jax.Array) self.assertIsInstance(n, jax.Array) self.assertIsInstance(o, jax.Array) # If all the variables are definitely jax.Arrays, then we should have # inferred jax.Array types. self.assertEqual(inferred.a, 'jax.Array') self.assertEqual(inferred.b, 'jax.Array') self.assertEqual(inferred.c, 'jax.Array') self.assertEqual(inferred.d, 'jax.Array') self.assertEqual(inferred.e, 'jax.Array') self.assertEqual(inferred.f, 'jax.Array') self.assertEqual(inferred.g, 'jax.Array') self.assertEqual(inferred.h, 'jax.Array') self.assertEqual(inferred.i, 'jax.Array') self.assertEqual(inferred.j, 'jax.Array') self.assertEqual(inferred.k, 'jax.Array') self.assertEqual(inferred.l, 'jax.Array') self.assertEqual(inferred.m, 'jax.Array') self.assertEqual(inferred.n, 'jax.Array') self.assertEqual(inferred.o, 'jax.Array') def testUnaryFunction_ReturnsJaxArray(self): with utils.SaveCodeAsString() as code_saver: x = cast(jax.Array, jnp.zeros(3)) y = jnp.abs(x) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.y, 'jax.Array') def testZerosLike_ReturnsJaxArray(self): """Tests that jnp.zeros_like(jax.Array) returns a jax.Array.""" with utils.SaveCodeAsString() as code_saver: a = cast(jax.Array, jnp.zeros(3)) # pylint: disable=unused-variable b = jnp.zeros_like(a) c = jnp.zeros_like(a, dtype=jnp.uint8) # pylint: enable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.b, 'jax.Array') self.assertEqual(inferred.c, 'jax.Array') def testRound_ReturnsJaxArray(self): with utils.SaveCodeAsString() as code_saver: x = cast(jax.Array, jnp.zeros(3)) y = jnp.round(x, 2) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.y, 'jax.Array') def testSum_ReturnsJaxArray(self): """Tests that jnp.sum(jax.Array) returns a jax.Array.""" with utils.SaveCodeAsString() as code_saver: a = cast(jax.Array, jnp.zeros(3)) # pylint: disable=unused-variable b = jnp.sum(a) c = jnp.sum(a, keepdims=True) d = jnp.sum(a, axis=0) e = jnp.sum(a, axis=0, keepdims=True) # pylint: enable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.b, 'jax.Array') self.assertEqual(inferred.c, 'jax.Array') self.assertEqual(inferred.d, 'jax.Array') self.assertEqual(inferred.e, 'jax.Array') def testTranspsoe_ReturnsJaxArray(self): with utils.SaveCodeAsString() as code_saver: a = cast(jax.Array, jnp.zeros(3)) b = jnp.transpose(a) # pylint: disable=unused-variable c = jnp.transpose(a, axes=(0,)) # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.b, 'jax.Array') self.assertEqual(inferred.c, 'jax.Array') def testArray_HasDtypeAttribute(self): with utils.SaveCodeAsString() as code_saver: a = cast(jax.Array, jnp.zeros(3)) b = a.dtype # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.b, 'numpy.dtype') class JnpNdarrayTests(absltest.TestCase): """Tests for operations on the plain jnp.ndarray class. Users might not have all their arrays being typed as Tensor Annotations types - they might also have some plain jnp.ndarrays around. We need to make sure they don't get weird type errors on those. """ def testSlicingNdArray_ReturnsNdArray(self): with utils.SaveCodeAsString() as code_saver: a = cast(jnp.ndarray, jnp.zeros((2, 3))) b = a[0] # pylint: disable=unused-variable c = a[0:1] # pylint: disable=unused-variable d = a[:, 2:] # pylint: disable=unused-variable inferred = utils.pytype_infer_types(_PREAMBLE + code_saver.code) self.assertEqual(inferred.b, 'jax.numpy.ndarray') self.assertEqual(inferred.c, 'jax.numpy.ndarray') self.assertEqual(inferred.d, 'jax.numpy.ndarray') if __name__ == '__main__': absltest.main()
tensor_annotations-master
tensor_annotations/tests/jax.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tools/templates.py.""" import unittest from tensor_annotations.tools import templates class TemplateTests(unittest.TestCase): def test_axis_list(self): self.assertEqual( templates.axis_list(n_axes=1), 'A1' ) self.assertEqual( templates.axis_list(n_axes=2), 'A1, A2' ) self.assertEqual( templates.axis_list(n_axes=1, reverse=True), 'A1' ) self.assertEqual( templates.axis_list(n_axes=2, reverse=True), 'A2, A1' ) def test_jax_array_type(self): self.assertEqual( 'Array1[A1]', templates.jax_array_type(n_axes=1) ) self.assertEqual( 'Array2[A1, A2]', templates.jax_array_type(n_axes=2) ) def test_transpose_axes(self): self.assertEqual( list(templates.transpose_axes(1)), [ templates.TransposeAxes( n_axes=1, all_axes='A1', transpose_axes='Tuple[L0]', result_axes='A1' ) ] ) self.assertEqual( list(templates.transpose_axes(2)), [ templates.TransposeAxes( n_axes=2, all_axes='A1, A2', transpose_axes='Tuple[L0, L1]', result_axes='A1, A2' ), templates.TransposeAxes( n_axes=2, all_axes='A1, A2', transpose_axes='Tuple[L1, L0]', result_axes='A2, A1' ), ] ) def test_reduction_axes(self): self.assertEqual( list(templates.reduction_axes(1)), [ templates.ReductionAxes( n_axes=1, all_axes='A1', reduction_axes='L0', remaining_n_axes=0, remaining_axes='' ), templates.ReductionAxes( n_axes=1, all_axes='A1', reduction_axes='LN1', remaining_n_axes=0, remaining_axes='' ) ] ) self.assertEqual( list(templates.reduction_axes(2)), [ templates.ReductionAxes( n_axes=2, all_axes='A1, A2', reduction_axes='L0', remaining_n_axes=1, remaining_axes=', A2' ), templates.ReductionAxes( n_axes=2, all_axes='A1, A2', reduction_axes='L1', remaining_n_axes=1, remaining_axes=', A1' ), templates.ReductionAxes( n_axes=2, all_axes='A1, A2', reduction_axes='LN1', remaining_n_axes=1, remaining_axes=', A1' ), templates.ReductionAxes( n_axes=2, all_axes='A1, A2', reduction_axes='Tuple[L0, L1]', remaining_n_axes=0, remaining_axes='' ), templates.ReductionAxes( n_axes=2, all_axes='A1, A2', reduction_axes='Tuple[L0, LN1]', remaining_n_axes=0, remaining_axes='' ), ] ) if __name__ == '__main__': unittest.main()
tensor_annotations-master
tensor_annotations/tests/templates.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests to confirm that Pytype helpers function correctly.""" import textwrap import unittest from tensor_annotations.tests import utils _PREAMBLE = """ from typing import NewType from tensor_annotations.jax import Array2, int8 from tensor_annotations import axes A1 = NewType('A1', axes.Axis) A2 = NewType('A2', axes.Axis) """ class PytypeTests(unittest.TestCase): def testSimpleCorrectExample_PassesPytype(self): code = """ def foo(x: Array2[int8, A1, A2]): pass x: Array2[int8, A1, A2] = Array2() foo(x) """ code = _PREAMBLE + textwrap.dedent(code) utils.assert_pytype_succeeds(code) def testSimpleIncorrectExample_FailsPytype(self): code = """ def foo(x: Array2[int8, A1, A2]): pass x: Array2[int8, A2, A1] = Array2() foo(x) """ code = _PREAMBLE + textwrap.dedent(code) utils.assert_pytype_fails(code) if __name__ == '__main__': unittest.main()
tensor_annotations-master
tensor_annotations/tests/pytype.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test helpers.""" import importlib import inspect import os import pathlib import re import subprocess import tempfile import textwrap import types from typing import List from typing import Optional def run_pytype(code: str, check: bool) -> subprocess.CompletedProcess: # pylint: disable=g-doc-args """Runs pytype on the specified code. Raises: subprocess.CalledProcessError if check=True and pytype return is non-zero Returns: A subprocess.CompletedProcess instance containing stdout """ with tempfile.TemporaryDirectory() as tmp_dir: code_filename = os.path.join(tmp_dir, 'test.py') with open(code_filename, 'w') as f: f.write(code) pytype_path = pathlib.Path('pytype-single') tensor_annotations_dir = pathlib.Path(__file__).parent.parent stubs_dir = pathlib.Path(tmp_dir) _link_stubs(tensor_annotations_dir, stubs_dir) _generate_tensor_annotations_stubs(pytype_path, tensor_annotations_dir, stubs_dir) cmd = ([str(pytype_path), '--pythonpath', str(stubs_dir), code_filename]) if 'TENSOR_ANNOTATIONS_DEBUG' in os.environ: input(f'About to run:\n{" ".join(cmd)}\nPress enter to continue: ') proc = subprocess.run( [str(pytype_path), '--pythonpath', str(stubs_dir), code_filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=check, # Raise error if non-zero return code. ) if 'TENSOR_ANNOTATIONS_DEBUG' in os.environ: print('pytype stdout:') print(proc.stdout.decode()) print('\npytype stderr:') print(proc.stderr.decode()) return proc def _link_stubs(tensor_annotations_dir: pathlib.Path, stubs_dir: pathlib.Path): """Link JAX/TensorFlow stubs to a place where pytype can find them.""" google_internal = False if not google_internal: jax_module = importlib.import_module('jax-stubs') jax_stubs_dir = pathlib.Path(jax_module.__path__[0]) tf_module = importlib.import_module('tensorflow-stubs') tf_stubs_dir = pathlib.Path(tf_module.__path__[0]) np_module = importlib.import_module('numpy-stubs') np_stubs_dir = pathlib.Path(np_module.__path__[0]) for source, target in [ # Library functions, e.g. tf.reduce_sum. (jax_stubs_dir, stubs_dir / 'jax'), (tf_stubs_dir, stubs_dir / 'tensorflow'), (np_stubs_dir, stubs_dir / 'numpy'), # Tensor functions, e.g. Tensor.__add__. (tensor_annotations_dir / 'jax.pyi', stubs_dir / 'tensor_annotations' / 'jax.pyi'), (tensor_annotations_dir / 'tensorflow.pyi', stubs_dir / 'tensor_annotations' / 'tensorflow.pyi'), (tensor_annotations_dir / 'numpy.pyi', stubs_dir / 'tensor_annotations' / 'numpy.pyi') ]: if not os.path.exists(source): raise Exception(f"Stub file '{source}' does not exist") target.parent.mkdir(parents=True, exist_ok=True) target.symlink_to(source) def _generate_tensor_annotations_stubs(pytype_path: pathlib.Path, tensor_annotations_dir: pathlib.Path, stubs_dir: pathlib.Path): """Generates stubs for tensor_annotations modules.""" path = tensor_annotations_dir / 'axes.py' pyi_path = stubs_dir / 'tensor_annotations' / 'axes.pyi' pyi_path.parent.mkdir(parents=True, exist_ok=True) subprocess.run( [ str(pytype_path), '-o', str(pyi_path), str(path), ], check=True, # Raise error if non-zero return code. ) def assert_pytype_succeeds(code: str): try: process = run_pytype(code, check=True) except subprocess.CalledProcessError as e: print(e.stdout.decode()) print(e.stderr.decode()) raise e def assert_pytype_fails(code: str): try: run_pytype(code, check=True) except subprocess.CalledProcessError: pass else: assert False, 'pytype did not raise error' def pytype_infer_types(code: str) -> types.SimpleNamespace: """Runs pytype on `code`, returning inferred type of each variable. Args: code: Code to run pytype on. Should include assignment to one or more variables, e.g. 'x = jnp.zeros((3, 1))'. We collect a list of variables assigned to, and use pytype to infer type at the end of the code. Returns: A SimpleNamespace whose attributes map from variable names to types. Raises: Exception: If types could not be parsed from pytype output. For example, if `code` is x = 'foo' x = 2 y = 3.0 we return a SimpleNamespace `a` such that a.x = int a.y = float """ # This may contain duplicates, but that's fine. var_names = re.findall(r'^([^: ]*).*=', code, re.MULTILINE) var_names = [vn.strip() for vn in var_names] # Remove any newline prefixes var_names = [vn for vn in var_names if not vn.startswith('#')] # Comments for var in var_names: code += f'\nreveal_type({var})' process = run_pytype(code, check=False) # We look at both stdout and stderr because pytype behaves differently # depending on whether we run the Google-internal version or the normal # version lines = (process.stdout.decode() + process.stderr.decode()).split('\n') return _parse_pytype_output(var_names, lines) def _parse_pytype_output(var_names: List[str], lines: List[str]) -> types.SimpleNamespace: """Parses the inferred type of each variable from pytype output.""" reveal_type_lines = [l for l in lines if '[reveal-type]' in l] assert len(reveal_type_lines) == len(var_names) types_dict = {} for var, line in zip(var_names, reveal_type_lines): match = re.search(r'File "[^"]*", line \d+, in [^:]*: ' r'(.*) \[reveal-type\]', line) if match is None: raise Exception(f"Couldn't parse type from line: {line}") t = match.group(1) # Simplifies e.g. `tensor_annotations.jax.Array0` to just `Array0` t = re.sub(r'tensor_annotations.[^.]*\.', '', t) types_dict[var] = t return types.SimpleNamespace(**types_dict) def _parse_mypy_output(var_names: List[str], lines: List[str]) -> types.SimpleNamespace: """Parses the inferred type of each variable from Mypy output.""" reveal_type_lines = [l for l in lines if 'Revealed type is' in l] assert len(reveal_type_lines) == len(var_names) types_dict = {} for var, line in zip(var_names, reveal_type_lines): match = re.search("Revealed type is '(.*)'", line) if match is None: raise Exception(f"Couldn't parse type from line: {line}") t = match.group(1) # Simplifies e.g. `tensor_annotations.jax.Array0` to just `Array0` t = re.sub(r'tensor_annotations.[^.]*\.', '', t) # Remove the '*' that Mypy suffixes types with if the types were inferred # using type variable substitution. t = t.replace('*', '') # Mypy will format axis types as e.g. `test.A1`. Get rid of the `test.`. t = re.sub(r'test.(A\d+)', r'\1', t) # Mypy will format unparameterised generics as e.g. `Tensor1[Any]`, but # we wrote tests assuming they'd be formatted as just `Tensor1`, so get # rid of the `[Any]`. t = t.replace('[Any]', '') types_dict[var] = t return types.SimpleNamespace(**types_dict) def pytype_infer_shapes( code: str, ) -> types.SimpleNamespace: # pylint: disable=g-doc-args,g-doc-return-or-yield,g-doc-exception """Runs pytype on `code`, returning inferred shape of array/tensor variables. Note that shapes are inferred based on the axis labels: axis label 'A1' is assumed to represent a dimension of size 1, 'A2' a dimension of size 2, and so on. For example, we assume that a tensor of type Tensor2[int8, A1, A2] has shape (1, 2). For example, if `code` is x: tf.Tensor2[float32, A3, A5] = tf.zeros((3, 5)) y = tf.transpose(x) # tf.Tensor2[float32, A5, A3] we return a SimpleNamespace `a` such that a.x = (3, 5) a.y = (5, 3) This helper function exists so that we can easily compare the shape of the real outputs of shape-changing functions (e.g. tf.transpose) to the shape inferred by the type checker using our stubs, to confirm that our stubs are correct. See `pytype_infer_types` for more info. Args: code: The code to run pytype on. expect_dtype: Whether to expect a DType as the first type argument to the generic. This is a temporary flag used for gradually adding support for DTypes, and will be removed in the future. """ types_namespace = pytype_infer_types(code) shapes_dict = {} var_names = [d for d in dir(types_namespace) if not d.startswith('_')] for var in var_names: var_type = getattr(types_namespace, var) if var_type == 'Any': shape = 'Any' elif 'Array' not in var_type and 'Tensor' not in var_type: continue elif var_type.endswith('Array0') or var_type.endswith('Tensor0'): shape = () else: match = re.search(r'\[(.*)\]', var_type) if match is None: raise ValueError(f"Couldn't parse type '{var_type}'") axis_types = match.group(1) # e.g. 'A1, A2' axis_types_list = axis_types.split(', ') unused_dtype, *shape_types = axis_types_list shape_str_list = [t.replace('A', '') for t in shape_types] shape = tuple(int(s) for s in shape_str_list) shapes_dict[var] = shape return types.SimpleNamespace(**shapes_dict) class SaveCodeAsString: r"""Saves code executed within the context manager. Indentation is automatically adjusted such that the first line has no indenation in the saved code. For example, if used as follows: with SaveCodeString() as code_saver: foo = 'bar' f() then `code_saver.code` would contain "foo = 'bar'\nf()". """ def __init__(self): self._frame_where_entered = None self._frame_where_exited = None self.code: Optional[str] = None def __enter__(self): self._frame_where_entered = inspect.stack()[1] return self def __exit__(self, *_): with open(self._frame_where_entered.filename, 'r') as f: lines = f.readlines() start_line_num = self._frame_where_entered.lineno - 1 start_line = lines[start_line_num] start_indentation = len(start_line) - len(start_line.lstrip()) for line_num, line in enumerate( lines[start_line_num + 1:], start=start_line_num + 1, ): if not line.strip(): continue line_indentation = len(line) - len(line.lstrip()) if line_indentation <= start_indentation: break end_line_num = line_num lines = lines[start_line_num + 1:end_line_num] self.code = ''.join(lines).rstrip() self.code = textwrap.dedent(self.code)
tensor_annotations-master
tensor_annotations/tests/utils.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implements experimental routines. Experimental protocol corresponds to the one discussed in "Kuzborskij, I., Vernade, C., Gyorgy, A., & Szepesvári, C. (2021, March). Confident off-policy evaluation and selection through self-normalized importance weighting. In International Conference on Artificial Intelligence and Statistics (pp. 640-648). PMLR.". function run_single_experiment(...) defines an experiment performed on a single dataset given multiple estimators over multiple data splits. function run_experiment_suite(...) generalizes the above to multiple datasets. function print_results prints the results returned by run_experiment_suite. """ from typing import Dict, List, Tuple, Any from absl import logging import numpy as np import tabulate import offpolicy_selection_eslb.data as data import offpolicy_selection_eslb.estimators as est import offpolicy_selection_eslb.policies as policies def run_single_experiment( estimators: List[est.Estimator], openml_id: int, n_trials: int, behavior_policy_temperature: float, behavior_faulty_actions: List[int], target_policy_specs: List[Tuple[str, Dict[str, Any]]], reward_noise_p: float, ) -> Tuple[np.ndarray, np.ndarray, int]: """Returns scores of an experiment on a single dataset for all estimators. Evaluates all estimators on a single dataset for a given number of trials, given description of the behavior policy and specifications of target policies. Args: estimators: A list of objects of a base class Estimator (imported as est). openml_id: OpenML dataset id (integer). n_trials: Number of experimental trials (data splits). behavior_policy_temperature: Positive float controlling the temperature of a Softmax behavior policy. behavior_faulty_actions: List of labels on which the behavior policy makes mistakes. target_policy_specs: Tuple of target policy specifications consisting of two-element tuples("<policy class name>", <dict of arguments to be passed to the constructor>) e.g. ( ("SoftmaxGAPolicy", dict( step_size=0.1, steps=1000, temperature=0.1, obj_type=policies.TrainedPolicyObjType.IW)), ). reward_noise_p: Probability of a Bernoulli noise added to the reward. Returns: Tuple (all_test_rewards, all_reference_rewards, dataset_name). Here all_test_rewards is np.array of dimension (#estimators, #datasets, n_trials) where each entry is a reward of a given estimator on a dataset at a particular trial (data split). all_reference_rewards is is np.array of dimension (#datasets, n_trials) where each entry is a reward of a best estimator in a hindsight on a dataset at a particular trial (data split). dataset_name is a human-readable OpenML dataset name. """ np.random.seed(1) dataset = data.Dataset( openml_id, standardize=True, log_frac=0.50, subsample=1, reward_noise=reward_noise_p, random_state=0) all_test_rewards = np.zeros((len(estimators), dataset.n_test, n_trials)) all_reference_rewards = np.zeros((dataset.n_test, n_trials)) contexts, labels = dataset.contexts_train, dataset.labels_train test_contexts, test_labels = dataset.contexts_test, dataset.labels_test action_set = dataset.get_action_set() behavior_policy = policies.SoftmaxDataPolicy( train_contexts=contexts, train_labels=labels, test_contexts=test_contexts, test_labels=test_labels, action_set=action_set, temperature=behavior_policy_temperature, faulty_actions=behavior_faulty_actions) for i_trial in range(n_trials): logging.info( "\u001b[32mrun_single_experiment:: trial = %d/%d ... \u001b[0m", i_trial + 1, n_trials) np.random.seed(i_trial) actions, _ = behavior_policy.query(contexts) behavior_probs = behavior_policy.get_probs_by_actions(contexts, actions) rewards = data.get_reward(actions, labels, reward_noise_p) target_policies = [] for (t_pol_name, t_pol_params) in target_policy_specs: if t_pol_name == "SoftmaxDataPolicy": t_pol = policies.SoftmaxDataPolicy( train_contexts=contexts, train_labels=labels, test_contexts=test_contexts, test_labels=test_labels, action_set=action_set, **t_pol_params) elif t_pol_name == "SoftmaxGAPolicy": t_pol = policies.SoftmaxGAPolicy(action_set=action_set, **t_pol_params) logging.debug("run_single_experiment:: training %s", str(t_pol)) t_pol.train(contexts, actions, rewards, behavior_probs) target_policies.append(t_pol) test_rewards, _, reference_test_rewards = est.evaluate_estimators( contexts, actions, rewards, behavior_policy, target_policies, estimators, dataset) all_test_rewards[:, :, i_trial] = test_rewards all_reference_rewards[:, i_trial] = reference_test_rewards return all_test_rewards, all_reference_rewards, dataset.name def run_experiment_suite( list_data_ids: List[int], n_trials: int, behavior_policy_temperature: float, behavior_faulty_actions: List[int], target_policy_specs: List[Tuple[str, Dict[str, Any]]], reward_noise_p: float, estimators: List[est.Estimator], ): """Returns results of an experimental suite. Evaluates all estimators on all datasets for a given number of trials, given description of the behavior policy and specifications of target policies. Args: list_data_ids: List of OpenML dataset IDs. n_trials: Number of experimental trials (data splits). behavior_policy_temperature: Positive float controlling the temperature of a behavior Softmax policy. behavior_faulty_actions: List of labels on which the behavior policy makes mistakes. target_policy_specs: Tuple of target policy specifications consisting of two-element tuples ("<policy class name>", <dict of arguments to be passed to the constructor>) e.g. ("SoftmaxGAPolicy", dict(step_size=0.1, steps=1000, temperature=0.1, obj_type=policies.TrainedPolicyObjType.IW)) reward_noise_p: Probability of a Bernoulli noise added to the reward. estimators: List of bjects of a base class Estimator. Returns: A tuple (mean_test_rewards, std_test_rewards, mean_reference_rewards, std_reference_rewards, dataset_names). Here mean_test_rewards and std_test_rewards are np.array's of dimension (#estimators, #datasets). mean_test_rewards stand for the average over data splits. mean_reference_rewards is np.array of dimension #datasets, and stands for the average reward of the best policy in a hindsight, over data splits. std_* stands for the standard deviation. dataset_names stands for human-readable dataset names. """ mean_test_rewards = np.zeros((len(estimators), len(list_data_ids))) std_test_rewards = np.zeros((len(estimators), len(list_data_ids))) mean_reference_rewards = np.zeros(len(list_data_ids)) std_reference_rewards = np.zeros(len(list_data_ids)) dataset_names = [] for data_id_i, data_id in enumerate(list_data_ids): logging.info("\u001b[32mrun_experiment_suite:: dataset = %d\u001b[0m", data_id) (test_rewards_for_dataset, reference_rewards_for_dataset, dataset_name) = run_single_experiment( estimators=estimators, openml_id=data_id, n_trials=n_trials, behavior_policy_temperature=behavior_policy_temperature, behavior_faulty_actions=behavior_faulty_actions, target_policy_specs=target_policy_specs, reward_noise_p=reward_noise_p) mean_test_rewards[:, data_id_i] = np.array([ test_rewards_for_dataset[i, :, :].mean() for i in range(test_rewards_for_dataset.shape[0]) ]) std_test_rewards[:, data_id_i] = np.array([ test_rewards_for_dataset[i, :, :].std(axis=0).mean() for i in range(test_rewards_for_dataset.shape[0]) ]) mean_reference_rewards[data_id_i] = np.nanmean( reference_rewards_for_dataset) std_reference_rewards[data_id_i] = np.nanstd(reference_rewards_for_dataset) dataset_names.append(dataset_name) return (mean_test_rewards, std_test_rewards, mean_reference_rewards, std_reference_rewards, dataset_names) def print_results( estimators: List[est.Estimator], dataset_names: List[str], mean_test_rewards: np.ndarray, std_test_rewards: np.ndarray, mean_reference_rewards: np.ndarray, std_reference_rewards: np.ndarray, table_format: str = "psql", ): """Prints results of run_experiment_suite(...) in a pretty table. Printing routines are implemented by the tabulate package. Args: estimators: A list of n_est objects of a base class Estimator. dataset_names: A list of strings, names of the corresponding ids. mean_test_rewards: Returned by run_experiment_suite. std_test_rewards: Returned by run_experiment_suite. mean_reference_rewards: Returned by run_experiment_suite. std_reference_rewards: Returned by run_experiment_suite. table_format: Parameter tablefmt of tabulate(...). """ headers = [r"Estimator \ Dataset"] + dataset_names rows = [] for (i, est_) in enumerate(estimators): rows.append([est_.get_abbrev()] + list( map(lambda x: "%.3f ± %.3f" % x, zip(mean_test_rewards[i, :], std_test_rewards[i, :])))) rows.append(["Best policy on the test set"] + list( map(lambda x: "%.3f ± %.3f" % x, zip(mean_reference_rewards, std_reference_rewards)))) print(tabulate.tabulate(rows, headers=headers, tablefmt=table_format))
offpolicy_selection_eslb-main
experiment.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Multiple sampling from simplex tool.""" import numpy as np def sample_from_simplices_m_times(p: np.ndarray, m: int) -> np.ndarray: """Samples from each of n probability simplices for m times. Args: p: n-times-K matrix where each row describes a probability simplex m: number of times to sample Returns: n-times-m matrix of indices of simplex corners. """ axis = 1 r = np.expand_dims(np.random.rand(p.shape[1 - axis], m), axis=axis) p_ = np.expand_dims(p.cumsum(axis=axis), axis=2) return (np.repeat(p_, m, axis=2) > r).argmax(axis=1)
offpolicy_selection_eslb-main
utils.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implements several value estimator for contextual bandit off-policy problem. All estimators are described in "Kuzborskij, I., Vernade, C., Gyorgy, A., & Szepesvári, C. (2021, March). Confident off-policy evaluation and selection through self-normalized importance weighting. In International Conference on Artificial Intelligence and Statistics (pp. 640-648). PMLR.". In the following we occasionally refer to the statements in the paper (e.g. Theorem 1, Proposition 1). class ESLB implements an Efron-Stein high probability bound for off-policy evaluation (Theorem 1 and Algorithm 1). class IWEstimator implements the standard importance weighted estimator (IW). class SNIWEstimator implements a self-normalized version of IW. class IWLambdaEmpBernsteinEstimator implements a high probability empirical Bernstein bound for λ-corrected IW (the estimator is stabilized by adding λ to the denominator) with appropriate tuning of λ (see Proposition 1). """ import abc import math import enum from typing import List from absl import logging import numpy as np from offpolicy_selection_eslb import data from offpolicy_selection_eslb import policies from offpolicy_selection_eslb import utils class Estimator(abc.ABC): """Abstract class for a value estimator.""" @abc.abstractmethod def __call__( self, t_probs: np.ndarray, b_probs: np.ndarray, actions: np.ndarray, rewards: np.ndarray, ): """Computes an estimate. Here n is a sample size, while K is a number actions. Args: t_probs: n-times-K matrix, where i-th row corresponds to π_t(. | X_i) (target probabilities under the target policy). b_probs: n-times-K matrix, where i-th row corresponds to π_b(. | X_i) (target probabilities under the behavior policy). actions: n-sized vector of actions. rewards: n-sized reward vector. Returns: Must return a Dict with "estimate" entry present. """ @abc.abstractmethod def get_name(self) -> str: """Returns a the name of the estimator. """ @abc.abstractmethod def get_abbrev(self) -> str: """Returns a shorter version of the name returned by get_name. """ class ESLBBiasType(enum.Enum): """Bias control type of ESLB estimator. ESLBBiasType.MultOneHot = Multiplicative bias (only for `one-hot' rewards). ESLBBiasType.Bernstein = Bernstein bias (for rewards in [0,1], looser than above). """ MultOneHot = "MultOneHot" Bernstein = "Bernstein" def __str__(self): return str(self.value) class ESLB(Estimator): """Implements a Semi-Empirical Efron-Stein bound for the SNIW (Self-normalized Importance Weighted estimator). Attributes: delta: Error probability in (0,1). n_iterations: Number of Monte-Carlo simulation iterations for approximating a multiplicative bias and a variance proxy. n_batch_size: Monte-Carlo simulation batch size. bias_type: type of bias control to use (see ESLBBiasType). """ def __init__( self, delta: float, n_iterations: int, n_batch_size: int, bias_type: ESLBBiasType ): """Constructs an estimator. The estimate holds with probability 1-delta. Args: delta: delta: Error probability in (0,1) for a confidence interval. n_iterations: Monte-Carlo simulation iterations. n_batch_size: Monte-Carlo simulation batch size. bias_type: type of bias control to use. """ self.delta = delta self.n_iterations = n_iterations self.n_batch_size = n_batch_size self.bias_type = bias_type def get_name(self): """Returns the long name of the estimator.""" return "Semi-Empirical Efron-Stein bound for the Self-normalized Estimator" def get_abbrev(self): """Returns the short name of the estimator.""" return "ESLB" def __call__( self, t_probs: np.ndarray, b_probs: np.ndarray, actions: np.ndarray, rewards: np.ndarray, ): """Computes Efron-Stein lower bound of Theorem 1 as described in Algorithm 1. Here n is a sample size, while K is a number actions. Args: t_probs: n-times-K matrix, where i-th row corresponds to π_t(. | X_i) (target probabilities under the target policy). b_probs: n-times-K matrix, where i-th row corresponds to π_b(. | X_i) (target probabilities under the behavior policy). actions: n-sized vector of actions. rewards: n-sized reward vector. Returns: A dictionary with 8 entries: lower_bound: Corresponds to the actual lower bound. estimate: Same as lower_bound (required by select_policy(...)). est_value: Empirical value. mult_bias: Multiplicative bias. concentration_of_contexts: Hoeffding term, concentration of contexts. var_proxy: Variance proxy. expected_variance_proxy: Estimated expected counterpart. """ conf = math.log(2.0 / self.delta) n = len(actions) ix_1_n = np.arange(n) # Importance weights weights = t_probs[ix_1_n, actions] / b_probs[ix_1_n, actions] weights_cumsum = weights.cumsum() weights_cumsum = np.repeat( np.expand_dims(weights_cumsum, axis=1), self.n_batch_size, axis=1) weights_repeated = np.repeat( np.expand_dims(weights, axis=1), self.n_batch_size, axis=1) weight_table = t_probs / b_probs var_proxy_unsumed = np.zeros((n,)) expected_var_proxy_unsumed = np.zeros((n,)) loo_expected_recip_weights = 0.0 are_rewards_binary = ((rewards==0) | (rewards==1)).all() if self.bias_type == ESLBBiasType.MultOneHot and not are_rewards_binary: raise Exception("""bias_type=ESLBBiasType.MultOneHot only supports one-hot rewards. Consider using bias_type=ESLBBiasType.Bernstein""") logging.debug( "ESLB:: Running Monte-Carlo estimation of the variance proxy and bias") logging.debug("ESLB:: iterations = %d, batch size = %d", self.n_iterations, self.n_batch_size) for i in range(self.n_iterations): actions_sampled = utils.sample_from_simplices_m_times( b_probs, self.n_batch_size) weights_sampled = weight_table[ix_1_n, actions_sampled.T].T weights_sampled_cumsum = weights_sampled[::-1, :].cumsum(axis=0)[::-1, :] # Hybrid sums: sums of empirical and sampled weights weights_hybrid_sums = np.copy(weights_cumsum) weights_hybrid_sums[:-1, :] += weights_sampled_cumsum[1:, :] # Computing variance proxy weights_hybrid_sums_replace_k = weights_hybrid_sums - weights_repeated + weights_sampled sn_weights = weights_repeated / weights_hybrid_sums sn_weights_prime = weights_sampled / weights_hybrid_sums_replace_k var_proxy_t = (sn_weights + sn_weights_prime)**2 var_proxy_new_item = var_proxy_t.mean(axis=1) var_proxy_unsumed += (var_proxy_new_item - var_proxy_unsumed) / (i + 1) actions_sampled_for_expected_var = utils.sample_from_simplices_m_times( b_probs, self.n_batch_size) weights_sampled_for_expected_var = weight_table[ ix_1_n, actions_sampled_for_expected_var.T].T expected_var_proxy_new_item = ( (weights_sampled_for_expected_var / weights_sampled_for_expected_var.sum(axis=0))**2).mean(axis=1) expected_var_proxy_unsumed += (expected_var_proxy_new_item - expected_var_proxy_unsumed) / (i + 1) if self.bias_type == ESLBBiasType.MultOneHot: # Computing bias (loo = leave-one-out) # Rewards are `one-hot' actions_sampled_for_bias = utils.sample_from_simplices_m_times( b_probs, self.n_batch_size) weights_sampled_for_bias = weight_table[ix_1_n, actions_sampled_for_bias.T].T loo_sum_weights = np.outer( np.ones((n,)), np.sum(weights_sampled_for_bias, axis=0) ) - weights_sampled_for_bias loo_expected_recip_weights += (1 / np.min(loo_sum_weights, axis=0)).mean() var_proxy = var_proxy_unsumed.sum() expected_var_proxy = expected_var_proxy_unsumed.sum() if self.bias_type == ESLBBiasType.MultOneHot: loo_expected_recip_weights /= self.n_iterations eff_sample_size = 1.0 / loo_expected_recip_weights mult_bias = min(1.0, eff_sample_size / n) add_bias = 0 elif self.bias_type == ESLBBiasType.Bernstein: # Computing Bernstein bias control (based on lower tail Bernstein's inequality) expected_sum_weights_sq = (t_probs**2 / b_probs).sum() bias_x = math.log(n) / 2 mult_bias = 1 - math.sqrt(2 * expected_sum_weights_sq * bias_x) / n mult_bias = max(0, mult_bias) add_bias = math.exp(-bias_x) concentration = math.sqrt( 2.0 * (var_proxy + expected_var_proxy) * (conf + 0.5 * math.log(1 + var_proxy / expected_var_proxy))) concentration_of_contexts = math.sqrt(conf / (2 * n)) est_value = weights.dot(rewards) / weights.sum() lower_bound = mult_bias * (est_value - concentration - add_bias) - concentration_of_contexts return dict( estimate=max(0, lower_bound), lower_bound=max(0, lower_bound), est_value=est_value, concentration=concentration, mult_bias=mult_bias, concentration_of_contexts=concentration_of_contexts, var_proxy=var_proxy, expected_var_proxy=expected_var_proxy) class IWEstimator(Estimator): """Implements an importance-weighted estimator of the value.""" def __call__( self, t_probs: np.ndarray, b_probs: np.ndarray, actions: np.ndarray, rewards: np.ndarray, ): """Computes an importance-weighted (IW) estimate. Here n is a sample size, while K is a number actions. Args: t_probs: n-times-K matrix, where i-th row corresponds to π_t(. | X_i) (target probabilities under the target policy). b_probs: n-times-K matrix, where i-th row corresponds to π_b(. | X_i) (target probabilities under the behavior policy). actions: n-sized vector of actions. rewards: n-sized reward vector. Returns: A dictionary with 1 entry: estimate: Importance-weighted estimate (required by select_policy(...)). """ n = len(actions) ix_1_n = np.arange(n) # Importance weights weights = t_probs[ix_1_n, actions] / b_probs[ix_1_n, actions] estimate = rewards.dot(weights) / n return dict(estimate=estimate) def get_name(self): """Returns a long name of an estimator.""" return "Importance-weighted estimator" def get_abbrev(self): """Returns a short name of an estimator.""" return "IW" class SNIWEstimator(Estimator): """Implements a self-normalized importance-weighted estimator of the value.""" def get_name(self): """Returns a long name of an estimator.""" return "Self-normalized importance-weighted estimator" def get_abbrev(self): """Returns a short name of an estimator.""" return "SNIW" def __call__( self, t_probs: np.ndarray, b_probs: np.ndarray, actions: np.ndarray, rewards: np.ndarray, ): """Computes a self-normalized importance-weighted (SNIW) estimate. Here n is a sample size, while K is a number actions. Args: t_probs: n-times-K matrix, where i-th row corresponds to π_t(. | X_i) (target probabilities under the target policy). b_probs: n-times-K matrix, where i-th row corresponds to π_b(. | X_i) (target probabilities under the behavior policy). actions: n-sized vector of actions. rewards: n-sized reward vector. Returns: A dictionary with 1 entry: estimate: SNIW estimate (required by select_policy(...)). """ n = len(actions) ix_1_n = np.arange(n) # Importance weights weights = t_probs[ix_1_n, actions] / b_probs[ix_1_n, actions] estimate = rewards.dot(weights) / weights.sum() return dict(estimate=estimate) class IWLambdaEmpBernsteinEstimator(Estimator): """Implements an empirical Bernstein confidence bound for λ-corrected IW. λ-corrected importance-weighted (IW) estimator is defined w.r.t. weights of a form π_target(A|X) / (π_behavior(A|X) + λ), where λ=1/sqrt(n), and the choice of λ ensures asymptotic convergence of the confidence bound (see accompaying paper for details). Attributes: delta: Error probability in (0,1). """ def __init__(self, delta: float): """Constructs an estimator. The estimate holds with probability 1-delta. Args: delta: Error probability in (0,1). """ self.delta = delta def get_name(self): """Returns a long name of an estimator.""" return ("Empirical Bernstein bound for λ-corrected importance-weighted " "estimator (λ=1/sqrt(n))") def get_abbrev(self): """Returns a short name of an estimator.""" return "Emp. Bernstein for λ-IW" def __call__( self, t_probs: np.ndarray, b_probs: np.ndarray, actions: np.ndarray, rewards: np.ndarray, ): """Computes Empirical Bernstein λ-IW estimate. Computes an estimate according to the Empirical Bernstein bound for λ-corrected importance-weighted (see Proposition 1). Here n is a sample size, while K is a number actions. Args: t_probs: n-times-K matrix, where i-th row corresponds to π_t(. | X_i) (target probabilities under the target policy). b_probs: n-times-K matrix, where i-th row corresponds to π_b(. | X_i) (target probabilities under the behavior policy). actions: n-sized vector of actions. rewards: n-sized reward vector. Returns: A dictionary with 8 entries: lower_bound: Corresponds to the actual lower bound. estimate: Same as lower_bound (required by select_policy(...)). est_value: Empirical value. concentration: Concentration term. bias: Bias term. concentration_of_contexts: Hoeffding term, concentration of contexts. est_var: sample variance of the estimator. """ n = len(actions) ix_1_n = np.arange(n) conf = math.log(3.0 / self.delta) lambda_corr = 1.0 / math.sqrt(n) # Importance weights with lambda correction weights = t_probs[ix_1_n, actions] / ( b_probs[ix_1_n, actions] + lambda_corr) v_estimates = weights * rewards est_value = np.mean(v_estimates) est_var = np.var(v_estimates) bias = 0.0 # Computing the bias term for i_feature in range(n): for k_action in range(b_probs.shape[1]): t_prob_context_k = t_probs[i_feature, k_action] b_prob_context_k = b_probs[i_feature, k_action] bias += t_prob_context_k * abs(b_prob_context_k / (b_prob_context_k + lambda_corr) - 1.0) bias /= n concentration = math.sqrt( (2 * conf / n) * est_var) + (7 * conf) / (3 * lambda_corr * (n - 1)) concentration_of_contexts = math.sqrt(2 * conf / n) lower_bound = est_value - concentration - bias - concentration_of_contexts return dict( estimate=max(0, lower_bound), lower_bound=max(0, lower_bound), est_value=est_value, concentration=concentration, bias=bias, concentration_of_contexts=concentration_of_contexts, est_var=est_var) class SNIWChebyshevEstimator(Estimator): """Implements Chebyshev bound for SNIW estimator. Attributes: delta: Error probability in (0,1). """ def __init__(self, delta: float): """Constructs an estimator. The estimate holds with probability 1-delta. Args: delta: Error probability in (0,1). """ self.delta = delta def __call__( self, t_probs: np.ndarray, b_probs: np.ndarray, actions: np.ndarray, rewards: np.ndarray, ): """Computes Chebyshev bound for SNIW estimate. Computes an estimate according to the Chebyshev bound for the self-normalized importance-weighted estimator (see Proposition 1). Here n is a sample size, while K is a number actions. Args: t_probs: n-times-K matrix, where i-th row corresponds to π_t(. | X_i) (target probabilities under the target policy). b_probs: n-times-K matrix, where i-th row corresponds to π_b(. | X_i) (target probabilities under the behavior policy). actions: n-sized vector of actions. rewards: n-sized reward vector. Returns: A dictionary with 8 entries: lower_bound: Corresponds to the actual lower bound; estimate: Same as lower_bound (required by select_policy(...)) est_value: Empirical value; concentration: Concentration term; mult_bias: Multiplicative bias term; concentration_of_contexts: Hoeffding term, concentration of contexts; est_var: Sample variance of the estimator; """ n = len(actions) ix_1_n = np.arange(n) conf = 3.0 / self.delta ln_conf = math.log(3.0 / self.delta) # Importance weights weights = t_probs[ix_1_n, actions] / b_probs[ix_1_n, actions] t_probs_all_actions = t_probs[ix_1_n, :] b_probs_all_actions = b_probs[ix_1_n, :] weights = weights.squeeze() est_value = rewards.dot(weights) / weights.sum() expected_sum_weights_sq = (t_probs_all_actions**2 / b_probs_all_actions).sum() eff_sample_size = max( n - math.sqrt(2.0 * ln_conf * expected_sum_weights_sq), 0) if eff_sample_size > 0: est_var = expected_sum_weights_sq / eff_sample_size**2 concentration = math.sqrt(conf * est_var) concentration_of_contexts = math.sqrt((2 * ln_conf) / n) mult_bias = eff_sample_size / n lower_bound = mult_bias * (est_value - concentration) - concentration_of_contexts else: est_var = np.nan est_var = np.nan concentration = np.nan concentration_of_contexts = np.nan mult_bias = np.nan lower_bound = 0.0 return dict( estimate=max(0, lower_bound), lower_bound=max(0, lower_bound), est_value=est_value, concentration=concentration, mult_bias=mult_bias, concentration_of_contexts=concentration_of_contexts, est_var=est_var) def get_name(self): """Returns a long name of an estimator.""" return "Chebyshev bound for self-normalized importance-weighted estimator" def get_abbrev(self): """Returns a short name of an estimator.""" return "Cheb-SNIW" def select_policy( contexts: np.ndarray, actions: np.ndarray, rewards: np.ndarray, b_policy: policies.Policy, t_policies: List[policies.Policy], estimator: Estimator, ): """Selects a policy given an estimator. Args: contexts: A n x d matrix of n context vectors. actions: A n-vector of actions. rewards: A n-vector of rewards. b_policy: Behavior policy implementing get_probs(...) method (see SoftmaxDataPolicy in policies.py). t_policies: A list of objects of implementing get_probs(...) method (see SoftmaxGAPolicy). estimator: An object of a base class Estimator. Returns: A tuple (estimate, policy) with the highest estimate. """ estimates_and_policies = [] b_probs = b_policy.get_probs(contexts) for pol in t_policies: t_probs = pol.get_probs(contexts) result_dict = estimator( t_probs=t_probs, b_probs=b_probs, actions=actions, rewards=rewards) estimates_and_policies.append((result_dict["estimate"], pol)) ordered_estimates_and_policies = sorted( estimates_and_policies, key=lambda x: x[0]) return ordered_estimates_and_policies[-1] def evaluate_estimators( contexts: np.ndarray, actions: np.ndarray, rewards: np.ndarray, b_policy: policies.Policy, t_policies: List[policies.Policy], estimators: List[Estimator], dataset: data.Dataset, ): """Evaluates multiple estimators based on their ability to select a policy. Args: contexts: A n x d matrix of n context vectors. actions: A n-vector of actions. rewards: A n-vector of rewards. b_policy: Behavior policy implementing get_probs(...) method (see SoftmaxDataPolicy). t_policies: A list of n_pol objects of implementing get_probs(...) method (see SoftmaxGAPolicy). estimators: A list of n_est objects of a base class Estimator. dataset: Object of the class Dataset. Returns: A tuple with three elements: (test_rewards, winners, reference_test_rewards) where test_rewards is a (n_est x n_test) matrix of test rewards such that n_test is a test sample size; winners a list of size n_est of high-scoring policies according to each estimator; reference_test_rewards is a n_test-vector of highest-scoring policy on a test set in hindsight. """ winners = [] # winner policies of each estimator test_rewards = np.zeros((len(estimators), dataset.n_test)) for (est_i, est) in enumerate(estimators): est_winner, pol_winner = select_policy(contexts, actions, rewards, b_policy, t_policies, est) winners.append(pol_winner) if est_winner > 0: _, _, pol_winner_test_rewards, _ = dataset.get_test(pol_winner) test_rewards[est_i, :] = pol_winner_test_rewards else: test_rewards[est_i, :] = np.nan logging.debug("evaluate_estimators:: est '%s' didn't score anything.", est.get_abbrev()) # Getting test reward of the best policy (as a reference) reference_test_rewards = [] for pol in t_policies: _, _, reference_test_rewards_for_pol, _ = dataset.get_test(pol) reference_test_rewards.append(reference_test_rewards_for_pol) reference_test_rewards = sorted(reference_test_rewards, key=np.mean)[-1] return test_rewards, winners, reference_test_rewards def get_estimators( delta, eslb_iter: int, eslb_batch_size: int, eslb_bias_type: ESLBBiasType ): """Constructs estimators to be used in the benchmark. Args: delta: Error probability in (0,1). eslb_iter: Monte-Carlo simulation iterations for ESLB estimator. eslb_batch_size: Monte-Carlo simulation batch size for ESLB estimator. eslb_bias_type: type of bias control to use (see ESLBBiasType). Returns: A list of dictionaries containing at least one entry "estimate" (key). """ estimators = [ IWEstimator(), SNIWEstimator(), SNIWChebyshevEstimator(delta=delta), IWLambdaEmpBernsteinEstimator(delta=delta), ESLB(delta=delta, n_iterations=eslb_iter, n_batch_size=eslb_batch_size, bias_type=eslb_bias_type), ] return estimators
offpolicy_selection_eslb-main
estimators.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Policies are functions mapping contexts to actions. Policies are described in "Kuzborskij, I., Vernade, C., Gyorgy, A., & Szepesvári, C. (2021, March). Confident off-policy evaluation and selection through self-normalized importance weighting. In International Conference on Artificial Intelligence and Statistics (pp. 640-648). PMLR.". class SoftmaxDataPolicy is a mock-up policy which can hold either training sample or a testing sample (each of which consists of context and labels). When either set of contexts is passed to the policy (get_probs(...)) it returns action probabilities associated with those contexts. Note that this is a mock-up policy, so only one of the two samples is supported. class SoftmaxGAPolicy implements a softmax policy with linear parameterized potential, where parameters are fitted by the gradient ascent maximizing either importance weighted or self-normalized importance weighted estimator. """ import abc import enum import math from typing import Sequence, NamedTuple from absl import logging import jax from jax import numpy as jnp from jax import scipy as jsc import numpy as np import scipy import sklearn.preprocessing as skl_prep from offpolicy_selection_eslb.utils import sample_from_simplices_m_times class Query(NamedTuple): """Actions generated by a (randomized) policy when given a set of contexts. Attributes: actions: n-times-1 Array -- chosen (sampled) actions probabilities: n-times-1 Array -- corresponding probabilities """ actions: np.ndarray probabilities: np.ndarray def log_vhat_importance_weighting( parameters: np.ndarray, temperature: float, contexts: np.ndarray, actions: np.ndarray, rewards: np.ndarray, b_prob: np.ndarray, ) -> np.ndarray: """Returns the log of importance weighted estimator. Returns the log of importance weighted estimator where each importance weight is computed w.r.t. the softmax target policy defined w.r.t. a linear model as defined in the description of a class. Args: parameters: Parameters of the linear model of a target policy. temperature: Positive float controlling the temperature of a Softmax policy. contexts: Array of contexts (n-times-d, d=data dim., n=sample size). actions: Actions (integers). rewards: Rewards (float). b_prob: Probabilities corresponding to (context, action) pairs according to the behavior policy. Returns: The logarithm of importance-weighted estimate. """ n, _ = contexts.shape v = (1.0 / temperature) * contexts.dot(parameters) pot = (1.0 / temperature) * (contexts * parameters[:, actions].T).sum(axis=1) a = jnp.log(rewards / (n * b_prob)) - jsc.special.logsumexp(v, axis=1) rs = jsc.special.logsumexp(pot + a, axis=0) return rs def log_vhat_sn_importance_weighting( parameters: np.ndarray, temperature: float, contexts: np.ndarray, actions: np.ndarray, rewards: np.ndarray, b_prob: np.ndarray, ) -> np.ndarray: """Returns a log of self-normalized (SN) importance weighted estimator. Returns a log of (SN) importance weighted estimator where each importance weight is computed w.r.t. the softmax target policy defined w.r.t. a linear model as defined in the description of a class. Args: parameters: Parameters of the linear model of a target policy. temperature: Positive float controlling the temperature of a Softmax policy. contexts: Array of contexts (n-times-d, d=data dim., n=sample size). actions: Actions (integers). rewards: Rewards (float). b_prob: Probabilities corresponding to (context, action) pairs according to the behavior policy. Returns: The logarithm of SN importance-weighted estimate. """ v = (1.0 / temperature) * contexts.dot(parameters) pot = (1.0 / temperature) * (contexts * parameters[:, actions].T).sum(axis=1) a = jnp.log(rewards / b_prob) - jsc.special.logsumexp(v, axis=1) ln_numer = jsc.special.logsumexp(pot + a, axis=0) a = -jnp.log(b_prob) - jsc.special.logsumexp(v, axis=1) ln_denom = jsc.special.logsumexp(pot + a, axis=0) return ln_numer - ln_denom class Policy(abc.ABC): """A Policy samples actions given contexts. """ @abc.abstractmethod def query(self, contexts: np.ndarray) -> Query: """Returns actions and their probs sampled by Policy given the contexts. Args: contexts: Array of contexts (n-times-d, d=data dim., n=sample size), which are either training or testing contexts provided during the initialization. Returns: A Tuple of arrays of actions (int) and corresponding probs (float) """ @abc.abstractmethod def get_probs(self, contexts: np.ndarray) -> np.ndarray: """Returns probability distribution over actions for each context. The softmax policy is defined as a probability vector exp(alt_bin_labels / temp) / sum(exp(alt_bin_labels / temp)) where temp is a temperature of a policy and alt_bin_labels is a binary encoding of labels altered by alter_labels(...) Args: contexts: Array of contexts (n-times-d, d=data dim., n=sample size), which are either training or testing contexts provided during the initialization. Returns: Array of probabilities according to the policy, where K is the number of actions (size n-times-K). Raises: NotImplementedError: when contexts is not training or testing contexts """ class TrainedPolicyObjType(enum.Enum): """Softmax gradient ascent fitted policy types with Objective function. TrainedPolicyObjType.IW = importance-weighted estimator. TrainedPolicyObjType.SNIW = self-normalized importance-weighted. """ IW = "IW" SNIW = "SNIW" def __str__(self): return str(self.value) class SoftmaxDataPolicy(Policy): """Memorization policy (using true labels). This object can hold either training sample or a testing sample (each of which consists of context and labels). When either set of contexts is passed to the policy (get_probs(...)) it returns action probabilities associated with those contexts. Note that this is a mock-up policy, so only one of the two samples is supported. Attributes: action_set: A list of unique integer actions. train_contexts: A n-times-d array of training contexts(d=data dim., n=sample size). train_labels: A n-array of training labels. test_contexts: A n-times-d array of training contexts(d=data dim., n'=sample size). test_labels: A n'-array of training labels. temperature: A positive float controlling the temp. of a Softmax policy. faulty_actions: A list of labels where the behavior policy makes mistakes. rand: Random state of numpy.random.RandomState type. """ def __init__( self, train_contexts: np.ndarray, train_labels: np.ndarray, test_contexts: np.ndarray, test_labels: np.ndarray, action_set: Sequence[int], temperature: float, faulty_actions: Sequence[int], ): """Constructs a Policy. Args: train_contexts: Array of training contexts (n-times-d, d=data dim., n=sample size). train_labels: Array of training labels (size n). test_contexts: Array of training contexts (n-times-d, d=data dim., n'=sample size). test_labels: Array of training labels 9size n). action_set: List of unique integer actions. temperature: Positive float controlling the temperature of a Softmax policy. faulty_actions: List of labels on which the behavior policy makes mistakes. """ self.action_set = action_set self.train_contexts = train_contexts self.train_labels = train_labels self.test_contexts = test_contexts self.test_labels = test_labels self.temperature = temperature self.faulty_actions = set(faulty_actions) self.reset_noise(0) def reset_noise(self, seed: int): """Resets a random state given a seed. Args: seed: Integer seed for random state """ self.rand = np.random.RandomState(seed) def alter_labels(self, labels: np.ndarray): """Returns altered labels according to the self.faulty_actions spec. Labels are altered by shifting each label contained in self.faulty_action to one forward (or to 0 if we have an overflow). Args: labels: Vector of labels (size 1 by n=sample size) Returns: A vector of the same size with all entries in self.faulty_actions shifted. """ num_actions = len(self.action_set) fault = np.zeros(len(labels)) for i in range(len(labels)): if labels[i] in self.faulty_actions: fault[i] = 1 return (labels + fault) % num_actions # faulty actions get shifted by one def get_probs(self, contexts: np.ndarray): """Returns probability distribution over actions for given contexts. The softmax policy is defined as a probability vector exp(alt_bin_labels / temp) / sum(exp(alt_bin_labels / temp)) where temp is a temperature of a policy and alt_bin_labels is a binary encoding of labels altered by alter_labels(...) Args: contexts: Array of contexts (n-times-d, d=data dim., n=sample size), which are either training or testing contexts provided during the initialization. Returns: Array of probabilities according to the policy, where K is the number of actions (size n-times-K). Raises: NotImplementedError: when contexts is not training or testing contexts """ # predictions get altered by internal noise : if contexts is self.train_contexts: alt_labels = self.alter_labels(self.train_labels) elif contexts is self.test_contexts: alt_labels = self.alter_labels(self.test_labels) else: raise NotImplementedError bin_alt_labels = skl_prep.label_binarize( alt_labels, classes=self.action_set) v = np.exp(bin_alt_labels / self.temperature) v = v / v.sum(axis=1)[:, np.newaxis] return v def get_probs_by_actions(self, contexts: np.ndarray, actions: np.ndarray): """Returns probabilities for each given action in each given context. Args: contexts: Array of contexts (n-times-d, d=data dim., n=sample size), which are either training or testing contexts provided during the initialization. actions: Array of actions (integers) for which probabilies are requested. Returns: Probabilities according to the policy. """ n = len(actions) all_probs = self.get_probs(contexts) probs = all_probs[np.arange(n), actions] return probs def query(self, contexts: np.ndarray) -> Query: """Returns actions and their probs sampled for the given contexts. Args: contexts: Array of contexts (n-times-d, d=data dim., n=sample size), which are either training or testing contexts provided during the initialization. Returns: A Tuple of arrays of actions (int) and corresponding probs (float) """ probs = self.get_probs(contexts) actions = [np.random.choice(self.action_set, p=pi) for pi in probs] n = probs.shape[0] probs_by_actions = probs[:n, actions] return Query(np.array(actions), np.array(probs_by_actions)) def __str__(self): """Returns a string representation of a policy with parametrization.""" return f"SoftmaxDataPolicy(τ={self.temperature}, fauly_actions=[{str(self.faulty_actions)}])" class SoftmaxGAPolicy(Policy): """Softmax gradient ascent fitted policy. This softmax policy is defined as a probability vector x |-> exp(<W,x> / temp) / sum(exp(<W,x> / temp)) where temp is a temperature of a policy and W is a K-times-d matrix of parameters (here K is a number of actions and d is a context dimension). Parameters W are fitted by the gradient ascent either w.r.t. the importance-weighted estimator or its self-normalized version. Attributes: n_actions: Number of actions. temperature: Positive float controlling the temp. of a Softmax policy. steps: Number of gradient ascent steps for fitting the policy step_size: step size of the gradient ascent for fitting the policy. obj_type: Objective type, TrainedPolicyObjType.IW = importance-weighted estimator TrainedPolicyObjType.SNIW = self-normalized importance-weighted estimator. parameters: Parameters of the linear model in the softmax policy ln_obj: Reference to a static method implementing the log-objective function. """ def __init__( self, action_set: Sequence[int], temperature: float, steps: int = 10000, step_size: float = 1e-2, obj_type: TrainedPolicyObjType = TrainedPolicyObjType.IW, ): """Constructs a Softmax Gradient Ascent Policy. Args: action_set: List of unique integer actions. temperature: Positive float controlling the temperature of a Softmax policy. steps: Number of gradient ascent steps for fitting the policy. step_size: Step size of the gradient ascent for fitting the policy. obj_type: Objective type, TrainedPolicyObjType.IW = importance-weighted estimator TrainedPolicyObjType.SNIW = self-normalized importance-weighted estimator. """ self.n_actions = len(action_set) self.temperature = temperature self.steps = steps self.step_size = step_size self.parameters = None self.obj_type = obj_type if obj_type == TrainedPolicyObjType.IW: self.ln_obj = log_vhat_importance_weighting elif obj_type == TrainedPolicyObjType.SNIW: self.ln_obj = log_vhat_sn_importance_weighting else: raise NotImplementedError def train( self, contexts: np.ndarray, actions: np.ndarray, rewards: np.ndarray, b_prob: np.ndarray, ): """Fits the softmax policy according to the chosen objective. Fits the softmax policy according to the objective chosen during initialization. The gradient ascent is run for a fixed number of steps and a step size (specified during initialization). Gradient computation is done through autodiff jax library. Args: contexts: Array of contexts (n-times-d, d=data dim., n=sample size) actions: Actions (integers). rewards: Rewards (float). b_prob: Probabilities corresponding to (context, action) pairs according to the behavior policy. """ contexts = jnp.array(contexts) actions = jnp.array(actions) rewards = jnp.array(rewards) b_prob = jnp.array(b_prob) _, d = contexts.shape grad_v = jax.jit(jax.grad(self.ln_obj)) obj_params = (self.temperature, contexts, actions, rewards, b_prob) logging.debug("%s(softmax): iter\t\temp_value ", self.obj_type) logging.debug("%s(softmax): --------------------------------- ", self.obj_type) def update_step_ga(_, parameters: np.ndarray): """Returns updated parameters after a single step of gradient ascent. Args: _: gradient ascent step parameters: Parameters to be updated. Returns: Updated parameters. """ g = grad_v(parameters, *obj_params) parameters += self.step_size * g return parameters parameters_init = np.zeros(shape=(d, self.n_actions)) parameters_init = jnp.array(parameters_init) self.parameters = jax.lax.fori_loop(0, self.steps, update_step_ga, parameters_init) logging.debug("%s(softmax): %d\t\t%.2f ", self.obj_type, self.steps, math.exp(self.ln_obj(self.parameters, *obj_params))) def get_probs(self, contexts: np.ndarray): """Returns probability distribution over actions for the given contexts. The softmax policy is defined as a probability vector exp(<W,x> / temp) / sum(exp(<W,x> / temp)) where temp is a temperature of a policy and W is a K-times-d matrix of parameters (here K is a number of actions and d is a context dimension) fitted by gradient ascent. Args: contexts: Array of contexts (n-times-d, d=data dim., n=sample size). Returns: Array of probabilities according to the policy. """ return np.exp(self.get_logprobs(contexts)) def get_probs_by_actions(self, contexts, actions): """Returns probability for each given action in each given context. Args: contexts: Array of contexts (n-times-d, d=data dim., n=sample size). actions: Actions (integers) for which probabilies are requested. Returns: Probabilities according to the policy. """ return np.exp(self.get_logprobs_by_actions(contexts, actions)) def get_logprobs(self, contexts: np.ndarray): """Returns log-probabilities over actions for each given context. The softmax policy is defined as a probability vector log(exp(<W,x> / temp) / sum(exp(<W,x> / temp))) where temp is a temperature of a policy and W is a K-times-d matrix of parameters (here K is a number of actions and d is a context dimension) fitted by gradient ascent. Args: contexts: Array of contexts (n-times-d, d=data dim., n=sample size). Returns: Array of log-probabilities according to the policy (n-times-K). """ v = (1.0 / self.temperature) * contexts.dot(self.parameters) logprob = v - np.expand_dims(scipy.special.logsumexp(v, axis=1), axis=1) return logprob def get_logprobs_by_actions(self, contexts, actions): """Returns log-probabilities for each given action and context. Args: contexts: Array of contexts (n-times-d, d=data dim., n=sample size). actions: Actions (integers) for which probabilies are requested. Returns: Log-probabilities according to the policy. """ v = (1.0 / self.temperature) * contexts.dot(self.parameters) pot = (1.0 / self.temperature) * (contexts * self.parameters[:, actions].T).sum(axis=1) logprob = pot - scipy.special.logsumexp(v, axis=1) return logprob def query(self, contexts: np.ndarray) -> Query: """Returns actions and their probs sampled by the policy given the contexts. Args: contexts: Array of contexts (n-times-d, d=data dim., n=sample size), which are either training or testing contexts provided during the initialization. Returns: Array integer actions and array of corresponding probabilities. """ n = len(contexts) probs = np.zeros((self.n_actions, n)) actions = [] sample_probs = [] probs = self.get_probs(contexts) actions = sample_from_simplices_m_times(p=probs, m=1).squeeze() sample_probs = probs[:n, actions] return Query(np.array(actions), np.array(sample_probs)) def query_many_times(self, contexts: np.ndarray, m_times: int): """Returns m_times actions sampled according to Policy for each context. Samples actions m_times times efficiently. Args: contexts: Array of contexts (n-times-d, d=data dim., n=sample size). m_times: Number of times to repeat the query. Returns: Array of integer actions (n-times-m_times) and n-array of corresponding probabilities. """ n = len(contexts) k = self.n_actions probs = np.zeros((k, n)) actions = [] sample_probs = [] probs = self.get_probs(contexts) actions = sample_from_simplices_m_times(probs, m_times) sample_probs = probs[np.arange(n), actions.T].T return np.array(actions), np.array(sample_probs) def __str__(self): """Returns a string representation of a policy with parametrization.""" return ("Softmax (linear potential): %s max`d by GA (T=%s, eta=%s)" % (self.obj_type, self.steps, self.step_size))
offpolicy_selection_eslb-main
policies.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implements a Dataset class which is an interface for OpenML dataset.""" from typing import NamedTuple import numpy as np import sklearn.datasets as skl_data import sklearn.model_selection as skl_ms import sklearn.preprocessing as skl_prep from offpolicy_selection_eslb import policies class FullInfoLoggedData(NamedTuple): """A dataset logged by a bandit policy and the true labels for testing. Attributes: contexts: n-times-d Array -- feature vectors for each entry actions: n-times-1 Array -- action taken by logging policy rewards: n-times-1 Array -- reward received labels: n-times-1 Array -- True label """ contexts: np.ndarray actions: np.ndarray rewards: np.ndarray labels: np.ndarray def generate_binary_noise( n: int, p: float, ) -> np.ndarray: """Returns a Bernoulli-distributed noise vector. Args: n: Number of points to generate. p: Bernoulli parameter (same for each point). Returns: Binary vector of length n. """ return np.random.binomial(n=1, p=p, size=n) def get_reward( actions: np.ndarray, labels: np.ndarray, reward_noise_p: float = 0.1, low_rew: float = 0.0, high_rew: float = 1., ): """Returns rewards and corrupted labels for matching actions. Args: actions: A n-vector of actions (integer in {0,nb_class -1}). labels: A n-vector of labels. reward_noise_p: A noise-level parameter in (0,1). low_rew: Reward for incorrect action. high_rew: Reward for correct action. Returns: A n-vector of rewards after adding noise and rescaling. """ rewards = np.equal(actions, labels) rewards = (rewards + generate_binary_noise(rewards.size, reward_noise_p)) % 2 rewards = high_rew * rewards + low_rew * (1 - rewards) return rewards class Dataset: """Represents an OpenML dataset. Attributes: openml_id: OpenML id of the dataset (for loading). log_frac: In (0,1), fraction of the data to be used as train data (logged dataset). reward_noise: In (0,1) noise level in the rewards obtained by a policy. name: Name of a dataset according to OpenML. encoder: Instance of scikit-learn LabelEncoder() preprocessing labels. contexts_all: Full dataset contexts (unless subsample >1, then subsampled contexts). labels_all: Full dataset labels (unless subsample >1, then subsampled labels). contexts_train: Train data contexts. contexts_test: Test data context. labels_train: Train data labels. labels_test: Test data labels. n_train: Train data size. n_test: Test data size. size: Total size of the dataset. """ def __init__( self, openml_id: int, standardize: bool = True, log_frac: float = 0.50, subsample: int = 1, random_state: int = 0, reward_noise: float = 0.1, ): """Constructs Dataset object. Args: openml_id: OpenML id of the dataset (for loading). standardize: Binary, use True to standardize dataset. log_frac: In (0,1), fraction of the data to be used as train data (logged dataset). subsample: Subsample rate -- use only every "subsample" point from the dataset. random_state: Seed for train-test split (sklearn). reward_noise: In (0,1) noise level in the rewards obtained by a policy. """ self.openml_id = openml_id self.log_frac = log_frac self.reward_noise = reward_noise dataset = skl_data.fetch_openml( data_id=openml_id, cache=True, as_frame=False) data = dataset.data target = dataset.target self.name = dataset.details["name"] self.encoder = skl_prep.LabelEncoder() self.encoder.fit(target) target = self.encoder.transform(target) self.contexts_all = data[::subsample] self.labels_all = target[::subsample] if standardize: scaler = skl_prep.StandardScaler() scaler.fit(self.contexts_all) self.contexts_all = scaler.transform(self.contexts_all) (self.contexts_train, self.contexts_test, self.labels_train, self.labels_test) = skl_ms.train_test_split( self.contexts_all, self.labels_all, test_size=1 - self.log_frac, shuffle=True, random_state=random_state) self.n_train = len(self.labels_train) self.n_test = len(self.labels_test) self.size = len(self.labels_all) def get_test(self, policy: policies.Policy) -> FullInfoLoggedData: """Returns test data contexts, action, rewards, test labels. Args: policy: An object of class Policy Returns: A tuple FullInfoLoggedData (contexts, actions, rewards, labels). """ actions, _ = policy.query(self.contexts_test) rewards = get_reward(actions, self.labels_test, self.reward_noise) return FullInfoLoggedData(self.contexts_test, actions, rewards, self.labels_test) def get_action_set(self): """Returns dictionary mapping labels to corresponding actions.""" return self.encoder.transform(self.encoder.classes_)
offpolicy_selection_eslb-main
data.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implements a benchmark executable. The executable runs experimental suite by calling run_experiment_suite(...) defined in experiment module. The type of the experiment and its parameters are set by the flags (see help for each flag). The suite is described in "Kuzborskij, I., Vernade, C., Gyorgy, A., & Szepesvári, C. (2021, March). Confident off-policy evaluation and selection through self-normalized importance weighting. In International Conference on Artificial Intelligence and Statistics (pp. 640-648). PMLR.".. Examples: # Run evaluation on all datasets considered in the paper for # 10 trials (data splits) with error probability = 0.01 python3 benchmark.py --dataset_type=uci_all --n_trials=10 --delta=0.01 """ from absl import app from absl import flags from absl import logging import termcolor from offpolicy_selection_eslb import estimators from offpolicy_selection_eslb import experiment from offpolicy_selection_eslb import policies _DATASET_TYPE = flags.DEFINE_enum( "dataset_type", "demo", ["uci_small", "uci_medium", "uci_all", "demo"], "UCI dataset subset.", ) _N_TRIALS = flags.DEFINE_integer( "n_trials", 10, "Number of experimental trials (for sample statistics).", lower_bound=0) _FAULTY_ACTIONS = flags.DEFINE_list("faulty_actions", ["1", "2"], "Faulty action indices.") _DELTA = flags.DEFINE_float( "delta", 0.05, "Error probability delta (i.e. confidence intervals hold w.p. at least 1-delta).", lower_bound=0, upper_bound=1) _BEHAVIOR_POL_TEMPERATURE = flags.DEFINE_float( "behavior_policy_temperature", 0.2, "Temperature of a softmax behavior policy (small = peaked actions).", lower_bound=0) _TARGET_POL_TEMPERATURE = flags.DEFINE_float( "target_policy_temperature", 0.1, "Temperature of a softmax target policy (small = peaked actions).", lower_bound=0) _REWARD_NOISE_P = flags.DEFINE_float( "reward_noise_p", 0.1, "Reward noise probability.", lower_bound=0, upper_bound=1) _GA_STEP_SIZE = flags.DEFINE_float( "GA_step_size", 0.01, "Gradient Ascent step size for training softmax target policies.", lower_bound=0) _GA_ITER = flags.DEFINE_integer( "GA_n_iter", 10000, "Gradient Ascent steps for training softmax target policies.", lower_bound=0) _ESLB_ITER = flags.DEFINE_integer( "eslb_n_iter", 10, "Number of Monte-Carlo iterations for ESLB.", lower_bound=0) _ESLB_BATCH = flags.DEFINE_integer( "eslb_batch", 1000, "Monte-Carlo batch size for ESLB.", lower_bound=0) _ESLB_BIAS_TYPE = flags.DEFINE_enum( "eslb_bias_type", "mult_one_hot", ["mult_one_hot", "bernstein"], "Bias control type for ESLB.", ) _TABLE_FORMAT = flags.DEFINE_string( "table_format", "psql", "Result table format (e.g. psql, latex, html). See https://pypi.org/project/tabulate/" ) green = lambda x: termcolor.colored(x, color="green") def main(argv): del argv # Unused. logging.set_verbosity(logging.INFO) # Datasets by OpenML IDs (see https://www.openml.org/search?type=data) if _DATASET_TYPE.value == "uci_small": dataset_ids = [39, 41, 54, 181, 30, 28, 182, 32] elif _DATASET_TYPE.value == "uci_medium": dataset_ids = [181, 30, 28, 182] elif _DATASET_TYPE.value == "uci_all": dataset_ids = [181, 30, 28, 182, 300, 32, 6, 184] elif _DATASET_TYPE.value == "demo": dataset_ids = [28, 30] if _ESLB_BIAS_TYPE.value == "mult_one_hot": eslb_bias_type = estimators.ESLBBiasType.MultOneHot elif _ESLB_BIAS_TYPE.value == "bernstein": eslb_bias_type = estimators.ESLBBiasType.Bernstein logging.info( green("running on '%s' dataset suite (openml ids: %s); see --help"), _DATASET_TYPE.value, ", ".join(map(str, dataset_ids))) logging.info(green("number of trials = %d"), _N_TRIALS.value) logging.info(green("faulty action indices = %s"), ", ".join(map(str, _FAULTY_ACTIONS.value))) logging.info(green("confidence bound failure probability (δ) = %f"), _DELTA.value) logging.info(green("behavior policy temperature = %f"), _BEHAVIOR_POL_TEMPERATURE.value) logging.info(green("target policy temperature = %f"), _TARGET_POL_TEMPERATURE.value) logging.info(green("reward noise prob. = %f"), _REWARD_NOISE_P.value) logging.info(green("steps of gradient ascent for fitting policies = %d"), _GA_ITER.value) logging.info(green("gradient ascent step size = %f"), _GA_STEP_SIZE.value) logging.info(green("ESLB estimator Monte-Carlo estimation steps = %d"), _ESLB_ITER.value) logging.info(green("ESLB estimator Monte-Carlo batch size = %d"), _ESLB_BATCH.value) logging.info(green("ESLB bias control type = %s"), _ESLB_BIAS_TYPE.value) estimators_ = estimators.get_estimators( delta=_DELTA.value, eslb_iter=_ESLB_ITER.value, eslb_batch_size=_ESLB_BATCH.value, eslb_bias_type=eslb_bias_type) target_policy_specs = [ ("SoftmaxGAPolicy", dict( step_size=_GA_STEP_SIZE.value, steps=_GA_ITER.value, temperature=_TARGET_POL_TEMPERATURE.value, obj_type=policies.TrainedPolicyObjType.IW)), ("SoftmaxGAPolicy", dict( step_size=_GA_STEP_SIZE.value, steps=_GA_ITER.value, temperature=_TARGET_POL_TEMPERATURE.value, obj_type=policies.TrainedPolicyObjType.SNIW)), ("SoftmaxDataPolicy", dict(temperature=_TARGET_POL_TEMPERATURE.value, faulty_actions=[])) ] behavior_faulty_actions = list(map(int, _FAULTY_ACTIONS.value)) (mean_test_rewards, std_test_rewards, mean_reference_rewards, std_reference_rewards, dataset_names) = experiment.run_experiment_suite( list_data_ids=dataset_ids, n_trials=_N_TRIALS.value, behavior_policy_temperature=_BEHAVIOR_POL_TEMPERATURE.value, behavior_faulty_actions=behavior_faulty_actions, target_policy_specs=target_policy_specs, reward_noise_p=_REWARD_NOISE_P.value, estimators=estimators_) experiment.print_results( estimators_, dataset_names, mean_test_rewards, std_test_rewards, mean_reference_rewards, std_reference_rewards, table_format=_TABLE_FORMAT.value) if __name__ == "__main__": app.run(main)
offpolicy_selection_eslb-main
demo/benchmark.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """HiP and Perceiver IO model templates.""" import sys from typing import Any, Dict, Mapping, Optional, Sequence from absl import logging import chex import haiku as hk from jax import numpy as jnp from hierarchical_perceiver import perceiver_blocks from hierarchical_perceiver import perceiver_helpers PERCEIVER_MODULE_NAME = 'perceiver' # Perceiver model variants. VARIANTS = { 'Mini': { 'num_groups': (16, 1, 16), 'num_self_attends_per_block': (2, 1, 1), 'z_index_dim': (128, 64, 128), 'num_z_channels': (128, 1024, 128), 'num_cross_attend_heads': (1, 1, 1), 'num_self_attend_heads': (4, 32, 4), 'cross_attend_widening_factor': (1, 1, 1), 'self_attend_widening_factor': (4, 4, 4), 'num_embedding_channels': 32, }, '16': { 'num_groups': (16, 4, 1, 1, 1, 4, 16), 'num_self_attends_per_block': (2, 2, 18, 2, 1, 1, 1), 'z_index_dim': (128, 256, 256, 64, 256, 256, 128), 'num_z_channels': (128, 256, 512, 1024, 512, 256, 128), 'num_cross_attend_heads': (1, 1, 1, 1, 1, 1, 1), 'num_self_attend_heads': (4, 8, 16, 32, 16, 8, 4), 'cross_attend_widening_factor': (1, 1, 1, 1, 1, 1, 1), 'self_attend_widening_factor': (4, 4, 4, 4, 4, 4, 4), 'num_embedding_channels': 32, }, '256': { 'num_groups': (256, 64, 16, 4, 1, 1, 1, 4, 16, 64, 256), 'num_self_attends_per_block': (1, 1, 2, 2, 18, 2, 1, 1, 1, 1, 1), 'z_index_dim': (32, 64, 128, 256, 256, 64, 256, 256, 128, 64, 32), 'num_z_channels': (64, 96, 128, 256, 512, 1024, 256, 128, 64, 32, 16), 'num_cross_attend_heads': (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), 'num_self_attend_heads': (1, 2, 4, 8, 16, 32, 16, 8, 4, 2, 1), 'cross_attend_widening_factor': (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), 'self_attend_widening_factor': (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4), 'num_embedding_channels': 16, }, '16x3': { 'num_groups': (16, 1, 16), 'num_self_attends_per_block': (2, 18, 2), 'z_index_dim': (128, 256, 128), 'num_z_channels': (128, 1024, 128), 'num_cross_attend_heads': (1, 1, 1), 'num_self_attend_heads': (4, 32, 4), 'cross_attend_widening_factor': (1, 1, 1), 'self_attend_widening_factor': (4, 4, 4), 'num_embedding_channels': 32, }, # Perceiver IO 'io_mini': { 'num_self_attends_per_block': 2, 'z_index_dim': 128, 'num_z_channels': 128, 'num_cross_attend_heads': 1, 'num_self_attend_heads': 2, 'cross_attend_widening_factor': 1, 'self_attend_widening_factor': 2, 'num_embedding_channels': 128, }, 'io_c_50m': { 'num_self_attends_per_block': 8, 'z_index_dim': 1024, 'num_z_channels': 512, 'num_cross_attend_heads': 8, 'num_self_attend_heads': 8, 'cross_attend_widening_factor': 4, 'self_attend_widening_factor': 4, 'num_embedding_channels': 512, }, 'io_c_150m': { 'num_self_attends_per_block': 12, 'z_index_dim': 1024, 'num_z_channels': 896, 'num_cross_attend_heads': 16, 'num_self_attend_heads': 16, 'cross_attend_widening_factor': 4, 'self_attend_widening_factor': 4, 'num_embedding_channels': 896, }, } def _check_and_get_processor_idx(num_groups: Sequence[int]) -> int: # The processor is the central block in a HiP. # [enc_1, ..., enc_N, processor, dec_1, ..., dec_N] processor_idx = len(num_groups) // 2 # The processor block has 1 group: it is essentially a Perceiver IO. assert num_groups[processor_idx] == 1, 'The processor must use 1 group.' return processor_idx class PerceiverIO(hk.Module): """Perceiver IO. Perceiver IO is an anymodal, fully permutation-invariant model. It takes in a (usually large) input sequence, maps them to a (smaller) sequence with latent cross-attention, processes them with a homogeneous latent Transformer, then maps them to a (usually large) output sequence again with latent cross-attention. See https://arxiv.org/abs/2107.14795 for more details. For compatibility with HiP, this Perceiver IO includes a singleton group dimension: inputs are concatenated and newaxis'd to [B, 1, M, C] before processing (where M is the summed index dim of all input modalities). """ def __init__( self, # Variant-specific hyperparams num_self_attends_per_block: int, z_index_dim: int, num_z_channels: int, num_cross_attend_heads: int, num_self_attend_heads: int, cross_attend_widening_factor: int, self_attend_widening_factor: int, num_embedding_channels: int, *, # Shared hyperparameters num_position_encoding_channels: Optional[int] = None, activation_name: str = 'sq_relu', z_index_dim_train: Optional[int] = None, z_index_dim_eval: Optional[int] = None, dropout_prob: float = 0.0, drop_path_rate: float = 0.0, name: str = PERCEIVER_MODULE_NAME, ): """Constructs the model. Args: num_self_attends_per_block: The number of self-attention layers in each block. z_index_dim: The number of latents in each block. num_z_channels: The number of channels in each block. num_cross_attend_heads: The number of heads in cross-attention layers in each block. num_self_attend_heads: The number of heads in self-attention layers in each block. cross_attend_widening_factor: The MLP channel widening factor in cross-attention layers in each block. self_attend_widening_factor: The MLP channel widening factor in self-attention layers in each block. num_embedding_channels: The number of channels used to embed inputs to and outputs from the model. Data from all modalities are projected to `num_embedding_channels`. num_position_encoding_channels: The number of channels of the raw position encoding. If num_position_encoding_channels != num_embedding_channels, position encodings are projected before adding to embedded inputs. activation_name: Activation for HiPCrossAttention and SelfAttention. z_index_dim_train: Optional train-time index dimension override. z_index_dim_eval: Optional eval-time index dimension override. dropout_prob: SelfAttention dropout probability. drop_path_rate: SelfAttention drop path rate. name: Haiku module name. """ super().__init__(name=name) # Variant-specific hyperparams self.num_self_attends_per_block = num_self_attends_per_block self.z_index_dim = z_index_dim self.num_z_channels = num_z_channels self.num_cross_attend_heads = num_cross_attend_heads self.num_self_attend_heads = num_self_attend_heads self.cross_attend_widening_factor = cross_attend_widening_factor self.self_attend_widening_factor = self_attend_widening_factor self.num_embedding_channels = num_embedding_channels # Shared hyperparameters self.num_position_encoding_channels = num_position_encoding_channels self.activation_name = activation_name self.z_index_dim_train = z_index_dim_train self.z_index_dim_eval = z_index_dim_eval self.dropout_prob = dropout_prob self.drop_path_rate = drop_path_rate def __call__(self, dataset_name: str, inputs: Mapping[str, chex.Array], *, is_training: bool) -> Dict[str, chex.Array]: """Computes a reconstruction of the inputs through the model. Args: dataset_name: The name of the dataset (ignored). inputs: A dictionary of modality_name: value. is_training: Is this a training step. Returns: The computed output. """ grouper = perceiver_blocks.ConcatenateGrouper() embedder = perceiver_blocks.Embedder( num_embedding_channels=self.num_embedding_channels) z_0 = embedder.embed(inputs) z, mae_query = perceiver_blocks.PositionEncoder( num_position_encoding_channels=self.num_position_encoding_channels, )(z_0) z = grouper.group(z) mae_query = grouper.group(mae_query) z = perceiver_blocks.PerceiverBlock( num_output_groups=1, output_index_dim=self.z_index_dim, num_output_channels=self.num_z_channels, num_self_attend_layers=self.num_self_attends_per_block, num_self_attend_heads=self.num_self_attend_heads, self_attend_widening_factor=self.self_attend_widening_factor, num_cross_attend_heads=self.num_cross_attend_heads, cross_attend_widening_factor=self.cross_attend_widening_factor, # Perceiver IO always uses a single group. regroup_inputs=False, regroup_type='', # Ignored activation_name=self.activation_name, output_index_dim_train=self.z_index_dim_train, output_index_dim_eval=self.z_index_dim_eval, dropout_prob=self.dropout_prob, drop_path_rate=self.drop_path_rate, name='block_0')(z, is_training=is_training) reconstruction_z_out = perceiver_blocks.ReconstructionHead()( z, mae_query=mae_query, is_training=is_training) reconstruction_z_out = grouper.ungroup(reconstruction_z_out) reconstruction_output = embedder.unembed(reconstruction_z_out) z_out = grouper.ungroup(z) output_keys = perceiver_helpers.ModelOutputKeys return { # pytype: disable=bad-return-type # numpy-scalars output_keys.INPUT_RECONSTRUCTION: reconstruction_output, output_keys.LATENTS: z_out, } class HiP(hk.Module): """Hierarchical Perceiver. See: https://arxiv.org/abs/2202.10890 """ def __init__( self, # Variant-specific hyperparams (e.g. for HiP-16, HiP-256) num_groups: Sequence[int], num_self_attends_per_block: Sequence[int], z_index_dim: Sequence[int], num_z_channels: Sequence[int], num_cross_attend_heads: Sequence[int], num_self_attend_heads: Sequence[int], cross_attend_widening_factor: Sequence[int], self_attend_widening_factor: Sequence[int], num_embedding_channels: int, *, # Shared hyperparameters num_position_encoding_channels: Optional[int] = None, regroup_type: str = 'reshape', activation_name: str = 'sq_relu', processor_index_dim_train: Optional[int] = None, processor_index_dim_eval: Optional[int] = None, dropout_prob: float = 0.0, drop_path_rate: float = 0.0, name: str = PERCEIVER_MODULE_NAME, ): """Constructs the model. Args: num_groups: The number of groups in each level of the HiP hierarchy. num_self_attends_per_block: The number of self-attention layers in each level of the HiP hierarchy. z_index_dim: The number of latents in each level of the HiP hierarchy. num_z_channels: The number of channels in each level of the HiP hierarchy. num_cross_attend_heads: The number of heads in cross-attention layers in each level of the HiP hierarchy. num_self_attend_heads: The number of heads in self-attention layers in each level of the HiP hierarchy. cross_attend_widening_factor: The MLP channel widening factor in cross-attention layers in each level of the HiP hierarchy. self_attend_widening_factor: The MLP channel widening factor in self-attention layers in each level of the HiP hierarchy. num_embedding_channels: The number of channels used to embed inputs to and outputs from the model. Data from all modalities are projected to `num_embedding_channels`. num_position_encoding_channels: The number of channels of the raw position encoding. If num_position_encoding_channels != num_embedding_channels, position encodings are projected before adding to embedded inputs. regroup_type: The regrouping strategy to use. activation_name: Activation for HiPCrossAttention and SelfAttention. processor_index_dim_train: Optional train-time index dimension override for the central processor block. processor_index_dim_eval: Optional eval-time index dimension override for the central processor block. dropout_prob: SelfAttention dropout probability. drop_path_rate: SelfAttention drop path rate. name: Haiku module name. """ super().__init__(name=name) # Variant-specific hyperparams (e.g. for HiP-16, HiP-256) self.num_groups = num_groups self.num_self_attends_per_block = num_self_attends_per_block self.z_index_dim = z_index_dim self.num_z_channels = num_z_channels self.num_cross_attend_heads = num_cross_attend_heads self.num_self_attend_heads = num_self_attend_heads self.cross_attend_widening_factor = cross_attend_widening_factor self.self_attend_widening_factor = self_attend_widening_factor self.num_embedding_channels = num_embedding_channels # Shared hyperparameters self.num_position_encoding_channels = num_position_encoding_channels self.regroup_type = regroup_type self.activation_name = activation_name self.processor_index_dim_train = processor_index_dim_train self.processor_index_dim_eval = processor_index_dim_eval self.dropout_prob = dropout_prob self.drop_path_rate = drop_path_rate self.num_blocks = len(self.num_groups) assert self.num_blocks >= 3, ( 'At least 3 blocks are needed for U-Net residuals.') assert self.num_blocks % 2 == 1, ( 'HiP assumes an odd number of blocks: any number of paired ' 'encoder/decoder blocks plus 1 processor block.') self.processor_block_idx = _check_and_get_processor_idx(self.num_groups) def __call__(self, dataset_name: str, inputs: Mapping[str, chex.Array], *, is_training: bool) -> Dict[str, chex.Array]: """Computes a reconstruction of the inputs through the HiP. Args: dataset_name: The name of the dataset (ignored). inputs: A dictionary of modality_name: value. is_training: Is this a training step. Returns: The computed output. """ grouper = perceiver_blocks.ConstNumGrouper(num_groups=self.num_groups[0]) embedder = perceiver_blocks.Embedder( num_embedding_channels=self.num_embedding_channels) z_0 = embedder.embed(inputs) z, mae_query = perceiver_blocks.PositionEncoder( num_position_encoding_channels=self.num_position_encoding_channels, )(z_0) z = grouper.group(z) mae_query = grouper.group(mae_query) hidden_z = [] for i in range(self.num_blocks): # UNet skips between corresponding encoder and decoder blocks. if i > self.processor_block_idx: pre_attention_residual = hidden_z[self.num_blocks - i - 1] else: pre_attention_residual = None if i == self.processor_block_idx: # Allow overrides of the number of processor-block latents. output_index_dim_train = self.processor_index_dim_train output_index_dim_eval = self.processor_index_dim_eval else: # Always use the default number of latents for encoder/decoder blocks. output_index_dim_train = None output_index_dim_eval = None z = perceiver_blocks.PerceiverBlock( num_output_groups=self.num_groups[i], output_index_dim=self.z_index_dim[i], num_output_channels=self.num_z_channels[i], num_self_attend_layers=self.num_self_attends_per_block[i], num_self_attend_heads=self.num_self_attend_heads[i], self_attend_widening_factor=self.self_attend_widening_factor[i], num_cross_attend_heads=self.num_cross_attend_heads[i], cross_attend_widening_factor=self.cross_attend_widening_factor[i], # The grouper takes care of the initial re-grouping. regroup_inputs=(i > 0), regroup_type=self.regroup_type, activation_name=self.activation_name, output_index_dim_train=output_index_dim_train, output_index_dim_eval=output_index_dim_eval, dropout_prob=self.dropout_prob, drop_path_rate=self.drop_path_rate, name=f'block_{i}')( z, is_training=is_training, pre_attention_residual=pre_attention_residual) hidden_z.append(z) reconstruction_z_out = perceiver_blocks.ReconstructionHead()( z, mae_query=mae_query, is_training=is_training) reconstruction_z_out = grouper.ungroup(reconstruction_z_out) reconstruction_output = embedder.unembed(reconstruction_z_out) z_out = grouper.ungroup(z) output_keys = perceiver_helpers.ModelOutputKeys return { # pytype: disable=bad-return-type # numpy-scalars output_keys.INPUT_RECONSTRUCTION: reconstruction_output, output_keys.LATENTS: z_out, } class HiPClassBottleneck(hk.Module): """Hierarchical Perceiver with classes -> processor -> classes. This template handles class labels by passing them into and reading them out of the central processor block. All other modalities go through the encoder and decoder. See: https://arxiv.org/abs/2202.10890 """ def __init__( self, # Variant-specific hyperparams (e.g. for HiP-16, HiP-256) num_groups: Sequence[int], num_self_attends_per_block: Sequence[int], z_index_dim: Sequence[int], num_z_channels: Sequence[int], num_cross_attend_heads: Sequence[int], num_self_attend_heads: Sequence[int], cross_attend_widening_factor: Sequence[int], self_attend_widening_factor: Sequence[int], num_embedding_channels: int, label_modalities: Sequence[str], *, # Shared hyperparameters num_position_encoding_channels: Optional[int] = None, regroup_type: str = 'reshape', activation_name: str = 'sq_relu', processor_index_dim_train: Optional[int] = None, processor_index_dim_eval: Optional[int] = None, dropout_prob: float = 0.0, drop_path_rate: float = 0.0, name: str = PERCEIVER_MODULE_NAME): """Constructs the model. Args: num_groups: The number of groups in each level of the HiP hierarchy. num_self_attends_per_block: The number of self-attention layers in each level of the HiP hierarchy. z_index_dim: The number of latents in each level of the HiP hierarchy. num_z_channels: The number of channels in each level of the HiP hierarchy. num_cross_attend_heads: The number of heads in cross-attention layers in each level of the HiP hierarchy. num_self_attend_heads: The number of heads in self-attention layers in each level of the HiP hierarchy. cross_attend_widening_factor: The MLP channel widening factor in cross-attention layers in each level of the HiP hierarchy. self_attend_widening_factor: The MLP channel widening factor in self-attention layers in each level of the HiP hierarchy. num_embedding_channels: The number of channels used to embed inputs to and outputs from the model. Data from all modalities are projected to `num_embedding_channels`. label_modalities: The names of modalities to be passed in to the bottleneck. num_position_encoding_channels: The number of channels of the raw position encoding. If num_position_encoding_channels != num_embedding_channels, position encodings are projected before adding to embedded inputs. regroup_type: The regrouping strategy to use. activation_name: Activation for HiPCrossAttention and SelfAttention. processor_index_dim_train: Optional train-time index dimension override for the central processor block. processor_index_dim_eval: Optional eval-time index dimension override for the central processor block. dropout_prob: SelfAttention dropout probability. drop_path_rate: SelfAttention drop path rate. name: Haiku module name. """ super().__init__(name=name) # Variant-specific hyperparams (e.g. for HiP-16, HiP-256) self.num_groups = num_groups self.num_self_attends_per_block = num_self_attends_per_block self.z_index_dim = z_index_dim self.num_z_channels = num_z_channels self.num_cross_attend_heads = num_cross_attend_heads self.num_self_attend_heads = num_self_attend_heads self.cross_attend_widening_factor = cross_attend_widening_factor self.self_attend_widening_factor = self_attend_widening_factor self.num_embedding_channels = num_embedding_channels # Shared hyperparameters self.num_position_encoding_channels = num_position_encoding_channels self.regroup_type = regroup_type self.activation_name = activation_name self.processor_index_dim_train = processor_index_dim_train self.processor_index_dim_eval = processor_index_dim_eval self.dropout_prob = dropout_prob self.drop_path_rate = drop_path_rate self.label_modalities = label_modalities self.num_blocks = len(self.num_groups) assert self.num_blocks >= 3, ( 'At least 3 blocks are needed for U-Net residuals.') assert self.num_blocks % 2 == 1, ( 'HiP assumes an odd number of blocks: any number of paired ' 'encoder/decoder blocks plus 1 processor block.') # Embedded class labels are input to and decoded from this block: self.processor_block_idx = _check_and_get_processor_idx(self.num_groups) def __call__(self, dataset_name: str, inputs: Mapping[str, chex.Array], *, is_training: bool) -> Dict[str, chex.Array]: """Computes a reconstruction of the inputs through the HiP. Args: dataset_name: The name of the dataset (ignored). inputs: A dictionary of modality_name: value. is_training: Is this a training step. Returns: The computed output. """ grouper = perceiver_blocks.ConstNumGrouper(num_groups=self.num_groups[0]) class_label_inputs = {k: v for k, v in inputs.items() if k in self.label_modalities} inputs = {k: v for k, v in inputs.items() if k not in self.label_modalities} # Embed, position, and group the non-class-label inputs. embedder = perceiver_blocks.Embedder( num_embedding_channels=self.num_embedding_channels) z_0 = embedder.embed(inputs) z, mae_query = perceiver_blocks.PositionEncoder( num_position_encoding_channels=self.num_position_encoding_channels, )(z_0) z = grouper.group(z) mae_query = grouper.group(mae_query) num_blocks = len(self.num_groups) assert num_blocks >= 3, 'At least 3 blocks are needed for U-Net residuals.' hidden_z = [] for i in range(num_blocks): # UNet skips between corresponding encoder and decoder blocks. if i > self.processor_block_idx: pre_attention_residual = hidden_z[num_blocks - i - 1] else: pre_attention_residual = None if i > 0: # Manually regroup the current latents to allow concatenation. # The grouper takes care of the initial regroup. z = perceiver_blocks.regroup( inputs=z, num_output_groups=self.num_groups[i], regroup_type=self.regroup_type) if i == self.processor_block_idx: mae_query_class = {} grouper_class = {} embedder_class = {} for k, v in class_label_inputs.items(): # Concatenate the class inputs to the latents. assert z.shape[perceiver_blocks.GROUPS_DIM] == 1 grouper_class[k] = perceiver_blocks.ConstNumGrouper(num_groups=1) # Embed and position encode class labels. embedder_class[k] = perceiver_blocks.Embedder( num_embedding_channels=z.shape[perceiver_blocks.CHANNELS_DIM]) z_class = embedder_class[k].embed({k: v}) z_class, mae_query_class[k] = perceiver_blocks.PositionEncoder( # Position encoding matches the embedding size. num_position_encoding_channels=z.shape[ perceiver_blocks.CHANNELS_DIM])(z_class) z_class = grouper_class[k].group(z_class) mae_query_class[k] = grouper_class[k].group(mae_query_class[k]) z = jnp.concatenate([z, z_class], axis=perceiver_blocks.INDEX_DIM) # Allow overrides of the number of processor-block latents. output_index_dim_train = self.processor_index_dim_train output_index_dim_eval = self.processor_index_dim_eval else: # Always use the default number of latents for encoder/decoder blocks. output_index_dim_train = None output_index_dim_eval = None z = perceiver_blocks.PerceiverBlock( num_output_groups=self.num_groups[i], output_index_dim=self.z_index_dim[i], num_output_channels=self.num_z_channels[i], num_self_attend_layers=self.num_self_attends_per_block[i], num_self_attend_heads=self.num_self_attend_heads[i], self_attend_widening_factor=self.self_attend_widening_factor[i], num_cross_attend_heads=self.num_cross_attend_heads[i], cross_attend_widening_factor=self.cross_attend_widening_factor[i], # We've already re-grouped the latents: make sure they stay put! regroup_inputs=False, regroup_type=self.regroup_type, # Ignored. activation_name=self.activation_name, output_index_dim_train=output_index_dim_train, output_index_dim_eval=output_index_dim_eval, dropout_prob=self.dropout_prob, drop_path_rate=self.drop_path_rate, name=f'perceiver_block_{i}')( z, is_training=is_training, pre_attention_residual=pre_attention_residual) hidden_z.append(z) if i == self.processor_block_idx: output_class = dict() rh_class = perceiver_blocks.ReconstructionHead() for k, v in mae_query_class.items(): # Reconstruct the class-label inputs assert z.shape[perceiver_blocks.GROUPS_DIM] == 1 # pytype: disable=attribute-error # numpy-scalars z_out_class = rh_class(z, mae_query=v, is_training=is_training) z_out_class = grouper_class[k].ungroup(z_out_class) output_class.update(embedder_class[k].unembed(z_out_class)) reconstruction_z_out = perceiver_blocks.ReconstructionHead()( z, mae_query=mae_query, is_training=is_training) reconstruction_z_out = grouper.ungroup(reconstruction_z_out) reconstruction_output = embedder.unembed(reconstruction_z_out) # Merge class-label and non-class-label reconstructions into a single dict. reconstruction_output = {**reconstruction_output, **output_class} z_out = grouper.ungroup(z) output_keys = perceiver_helpers.ModelOutputKeys return { # pytype: disable=bad-return-type # numpy-scalars output_keys.INPUT_RECONSTRUCTION: reconstruction_output, output_keys.LATENTS: z_out, } def build_perceiver( model_base_name: str, model_variant_name: Optional[str], model_kwargs: Optional[Mapping[str, Any]] = None, searched_modules: Sequence[Any] = (sys.modules[__name__],), ) -> hk.Module: """Construct a Perceiver instance. Args: model_base_name: Name of a HiP-like base model class (e.g., 'HiP'). model_variant_name: Name of a variant (e.g., '16'). Should be None for model classes with a baked-in variant (e.g. templates.HiPUnrolled16). model_kwargs: A dictionary of model kwargs. The key of the dictionary is a base model name (e.g., 'HiP') and the value is a kwargs dictionary. searched_modules: A list of modules to search for the given class. Returns: A constructed instance of the specified model. """ candidate = None for module in searched_modules: if hasattr(module, model_base_name): candidate = getattr(module, model_base_name) break assert candidate is not None, ( f'Failed to find class {model_base_name} in provided modules.') logging.info('Using Perceiver template: %s', model_base_name) if model_kwargs is None: model_kwargs = {} if model_variant_name is None: instance = candidate( **model_kwargs, name=PERCEIVER_MODULE_NAME) else: assert model_variant_name in VARIANTS, ( f'VARIANTS does not contain {model_variant_name}. ' 'Please set variant to `None` if using a model with fixed variant.' ) logging.info('Using Perceiver variant: %s', model_variant_name) instance = candidate( **model_kwargs, **VARIANTS[model_variant_name], name=PERCEIVER_MODULE_NAME) return instance
hierarchical_perceiver-main
perceiver.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Blocks for the Perceiver IO and HiP.""" from typing import Dict, List, Mapping, Optional, Tuple import chex from einshape import jax_einshape as einshape import haiku as hk import jax from jax import numpy as jnp from hierarchical_perceiver import perceiver_helpers BATCH_DIM = 0 GROUPS_DIM = 1 INDEX_DIM = -2 CHANNELS_DIM = -1 RECONSTRUCTION_HEAD_NAME = 'reconstruction_head' def regroup( inputs: chex.Array, num_output_groups: int, regroup_type: str, ) -> chex.Array: """Re-group an input array from [B, G, N, C] to [B, G', N', C]. Args: inputs: the array to regroup. num_output_groups: The number of output groups G'. regroup_type: The regrouping strategy to use. Returns: The re-grouped array. """ batch_size = inputs.shape[BATCH_DIM] num_input_groups = inputs.shape[GROUPS_DIM] num_input_latents = inputs.shape[INDEX_DIM] num_channels = inputs.shape[CHANNELS_DIM] if regroup_type in ['reshape', 'transpose_reshape']: new_index_dim = num_input_groups * num_input_latents // num_output_groups if regroup_type == 'transpose_reshape': # [B, G, N, C] -> [B, N, G, C] # This leads to mixing between all input groups, rather than preferential # mixing between neighboring groups. inputs = jnp.swapaxes(inputs, 1, 2) outputs = jnp.reshape( inputs, (batch_size, num_output_groups, new_index_dim, num_channels)) else: raise ValueError(f'Unknown regroup_type: {regroup_type}.') return outputs class HiPCrossAttention(hk.Module): """A HiPCrossAttention module, including a dense block. Maps batched, grouped arrays of shape B x G x M x C to arrays of shape B x G x N x D. """ def __init__(self, output_index_dim_train: Optional[int] = None, output_index_dim_eval: Optional[int] = None, output_num_channels: Optional[int] = None, activation_name: str = 'sq_relu', widening_factor: int = 1, num_heads: int = 8, use_post_attention_residual: bool = False, name: Optional[str] = None): """Constructs a new HiPCrossAttention. Args: output_index_dim_train: The output index dimension size at train. Ignored if `query_inputs` is specified directly at call. output_index_dim_eval: The output index dimension size at eval. Ignored if `query_inputs` is specified directly at call. output_num_channels: The number of output channels. activation_name: The activation to use. widening_factor: The widening factor to use in the output MLP. num_heads: The number of heads to use in cross-attention. use_post_attention_residual: Enable the post-attention residual connection? This residual adds the query inputs to the output of attention. name: Haiku module name. """ super(HiPCrossAttention, self).__init__(name=name) self._output_index_dim_train = output_index_dim_train self._output_index_dim_eval = output_index_dim_eval self._output_num_channels = output_num_channels self._activation_name = activation_name self._widening_factor = widening_factor self._num_heads = num_heads self._use_post_attention_residual = use_post_attention_residual def _subsample_query_inputs(self, query_inputs): """Randomly subsample the number of query inputs. Args: query_inputs: An array of latent query inputs, of shape B x G x N_eval x C Returns: A subsampled array of latent query inputs, of shape B x G x N_train x C, where N_train < N_eval. """ batch_size, num_groups, _, _ = query_inputs.shape def get_weight_indices(): # Sample indices without replacement for each batch & group. rng_keys = hk.next_rng_keys(batch_size * num_groups) rng_keys = jnp.reshape( jnp.asarray(rng_keys), [batch_size, num_groups, -1]) def get_per_group_weights(random_key): # Get the weight indices for a single group in a single batch. weight_indices = jnp.arange(0, self._output_index_dim_eval) weight_indices = jax.random.shuffle(random_key, weight_indices) return weight_indices # Subsample outside of the vmap to avoid compiling to a while loop. weight_indices = jax.vmap(jax.vmap(get_per_group_weights))(rng_keys) # [B, G, train_index_dim] return weight_indices[..., :self._output_index_dim_train] weight_indices = get_weight_indices() # One-hot index onto the full weights (note: uses a bfloat16 matmul). # [B, G, train_index_dim] -> [B, G, train_index_dim, eval_index_dim] one_hot_indices = jax.nn.one_hot( weight_indices, num_classes=self._output_index_dim_eval) # [B, G, train_index_dim, C] query_inputs = jnp.einsum( 'bgMc,bgmM->bgmc', query_inputs, one_hot_indices) return query_inputs def __call__( self, inputs: chex.Array, *, query_inputs: Optional[chex.Array] = None, pre_attention_residual: Optional[chex.Array] = None, attention_mask: Optional[chex.Array] = None, is_training: bool = True, ) -> chex.Array: """Calls the HiPCrossAttention. Args: inputs: An input array of shape B x G x M x C to cross-attend to. query_inputs: Optional query inputs to the cross-attention. If provided, learned latent queries will not be constructed. Typically used for decoding from position encoding queries. pre_attention_residual: An optional array that will be added to the queries before the cross-attention. Used for U-Net-like skip connections in HiP. attention_mask: An optional mask for cross-attention. is_training: Are we currently training, yes or no? Returns: The array after processing with the HiPCrossAttention. """ # Input shape is assumed to be # [batch_size, num_groups, index_dim_per_group, num_channels] batch_size, num_groups, _, _ = inputs.shape # If explicit query_inputs are not provided, learn latent queries. if query_inputs is None: assert self._output_index_dim_train is not None assert self._output_index_dim_eval is not None assert self._output_index_dim_eval >= self._output_index_dim_train assert self._output_num_channels is not None query_inputs = perceiver_helpers.TrainablePositionEncoding( # The underlying array contains all latents expected at eval time index_dim=num_groups * self._output_index_dim_eval, num_channels=self._output_num_channels, name='query_inputs')(batch_size=batch_size) # Fold groups into the batch dimension query_inputs = einshape('b(gm)c->bgmc', query_inputs, g=num_groups) if is_training and ( self._output_index_dim_train < self._output_index_dim_eval): # Sample a random subset of latent queries for this training batch. query_inputs = self._subsample_query_inputs(query_inputs) output_index_dim = query_inputs.shape[-2] output_num_channels = query_inputs.shape[-1] if pre_attention_residual is not None: assert pre_attention_residual.shape[-2] == output_index_dim # Project pre_attention_residual to the correct shape. residual_num_channels = pre_attention_residual.shape[-1] if residual_num_channels != output_num_channels: pre_attention_residual = perceiver_helpers.conv_1d( output_channels=output_num_channels, name='pre_attention_residual_linear')(pre_attention_residual) query_inputs += pre_attention_residual # ----------------------------------------- # ---------- Cross-attend -> MLP ---------- # ----------------------------------------- attention = perceiver_helpers.Attention( num_heads=self._num_heads, # KV input channels determine the dimension of the attention matmul. qk_channels=inputs.shape[-1], v_channels=inputs.shape[-1], # (Latent) query channels determine the size of the output. output_channels=query_inputs.shape[-1])( inputs_q=perceiver_helpers.layer_norm(query_inputs), inputs_kv=perceiver_helpers.layer_norm(inputs), attention_mask=attention_mask) if self._use_post_attention_residual: attention += query_inputs output = attention output += perceiver_helpers.Dense( widening_factor=self._widening_factor)( perceiver_helpers.layer_norm(attention), is_training=is_training) return output class SelfAttention(hk.Module): """A self-attention module, including a dense block.""" def __init__(self, widening_factor: int = 4, dropout_prob: float = 0.0, dropout_attn_prob: float = 0.0, drop_path_rate: float = 0.0, num_heads: int = 8, att_init_scale: float = 1.0, dense_init_scale: float = 1.0, qk_channels: Optional[int] = None, v_channels: Optional[int] = None, activation_name: str = 'sq_relu', name: Optional[str] = None): super(SelfAttention, self).__init__(name=name) self._widening_factor = widening_factor self._dropout_prob = dropout_prob self._dropout_attn_prob = dropout_attn_prob self._num_heads = num_heads self._att_init_scale = att_init_scale self._dense_init_scale = dense_init_scale self._qk_channels = qk_channels self._v_channels = v_channels self._activation_name = activation_name if drop_path_rate > 0.: self._drop_path = perceiver_helpers.StochasticDepth(drop_path_rate) else: self._drop_path = lambda x, _: x def __call__(self, inputs: chex.Array, attention_mask: Optional[chex.Array] = None, is_training: bool = True) -> chex.Array: dropout_prob = self._dropout_prob if is_training else 0.0 x = inputs dropout_attn_prob = self._dropout_attn_prob if is_training else 0.0 qkv_inputs = perceiver_helpers.layer_norm(inputs) attention = perceiver_helpers.Attention( num_heads=self._num_heads, init_scale=self._att_init_scale, qk_channels=self._qk_channels, v_channels=self._v_channels, dropout_prob=dropout_attn_prob)(qkv_inputs, qkv_inputs, attention_mask=attention_mask) attention = hk.dropout(hk.next_rng_key(), dropout_prob, attention) x = x + self._drop_path(attention, is_training) dense_layer = perceiver_helpers.Dense( widening_factor=self._widening_factor, dropout_prob=dropout_prob, init_scale=self._dense_init_scale) dense_out = dense_layer(perceiver_helpers.layer_norm(x), is_training=is_training) x += self._drop_path(dense_out, is_training) return x class PerceiverBlock(hk.Module): """The PerceiverBlock combines regrouping, cross- and self-attention.""" def __init__(self, *, num_output_groups: int, output_index_dim: int, num_output_channels: int, num_self_attend_layers: int, num_self_attend_heads: int, self_attend_widening_factor: int = 4, num_cross_attend_heads: int = 1, cross_attend_widening_factor: int = 1, regroup_inputs: bool = True, regroup_type: str = 'reshape', activation_name: str = 'sq_relu', use_post_attention_residual: bool = True, output_index_dim_train: Optional[int] = None, output_index_dim_eval: Optional[int] = None, dropout_prob: float = 0.0, drop_path_rate: float = 0.0, name: str): """Constructs a new PerceiverBlock. The constructed block will reshape inputs into num_output_groups, then pass them through a cross-attention (HiPCrossAttention), followed by a series of self-attentions (n = num_self_attend_layers). num_output_channels and output_index_dim control the output size. The input must be (batch, groups, index_dim, channels), whereas the groups*index must be divisible by num_output_groups. The output size will be (batch_size, output_groups, output_index_dim, num_output_channels), where only batch_size must remain constant with the input. Args: num_output_groups: Number of groups for this block. output_index_dim: The default index dimension size at train time. num_output_channels: The number of output channels. num_self_attend_layers: Number of self-attend layers. num_self_attend_heads: Number of heads per self-attend layer. self_attend_widening_factor: SelfAttention widening factor. num_cross_attend_heads: Number of HiPCrossAttention heads. cross_attend_widening_factor: HiPCrossAttention widening factor. regroup_inputs: If True, the input array will be restructured to match the number of output groups. If False, the input will be passed in as is. If False, the number of input and output groups must match. regroup_type: The regrouping strategy to use. activation_name: Activation for HiPCrossAttention and SelfAttention. use_post_attention_residual: Enable the post-attention residual connection? This residual adds the query inputs to the output of attention. output_index_dim_train: The optional output index dimension size at train. If specified, overrides output_index_dim at train time. output_index_dim_eval: The optional output index dimension size at eval. If specified, overrides output_index_dim at eval time. dropout_prob: SelfAttention dropout probability. drop_path_rate: SelfAttention drop path rate. name: Haiku module name. """ super().__init__(name=name) self.num_output_groups = num_output_groups self.num_output_channels = num_output_channels self.regroup_inputs = regroup_inputs self.regroup_type = regroup_type # Optionally specialize index dim for more compute at test time. # Usage: override `output_index_dim_train` to subsample at train and use the # default index dim at eval, override `output_index_dim_eval` to supersample # at eval and use the default index dim at train. if output_index_dim_train is not None and output_index_dim_eval is not None: raise ValueError( 'Only one of `output_index_dim_train` and `output_index_dim_eval`' 'should be overridden.') if output_index_dim_train is None: assert output_index_dim is not None, ( 'output_index_dim must be specified ' 'if output_index_dim_train is None.') self.output_index_dim_train = output_index_dim else: self.output_index_dim_train = output_index_dim_train if output_index_dim_eval is None: assert output_index_dim is not None, ( 'output_index_dim must be specified ' 'if output_index_dim_eval is None.') self.output_index_dim_eval = output_index_dim else: self.output_index_dim_eval = output_index_dim_eval assert self.output_index_dim_eval >= self.output_index_dim_train, ( f'output_index_dim_eval (got {self.output_index_dim_eval}) must be ' f'at least as big as output_index_dim_train ' '(got {self.output_index_dim_train}).') assert ( num_output_channels % num_self_attend_heads == 0 ), (f'num_self_attend_heads ({num_self_attend_heads})' f'should divide num_output_channels ({num_output_channels}) evenly') assert ( num_output_channels % num_cross_attend_heads == 0 ), (f'num_cross_attend_heads ({num_cross_attend_heads})' f'should divide num_output_channels ({num_output_channels}) evenly') self.projector = HiPCrossAttention( activation_name=activation_name, num_heads=num_cross_attend_heads, output_num_channels=num_output_channels, use_post_attention_residual=use_post_attention_residual, widening_factor=cross_attend_widening_factor, output_index_dim_train=self.output_index_dim_train, output_index_dim_eval=self.output_index_dim_eval, ) self.self_attentions = [] for idx in range(num_self_attend_layers): self.self_attentions.append( SelfAttention( activation_name=activation_name, dropout_prob=dropout_prob, drop_path_rate=drop_path_rate, num_heads=num_self_attend_heads, widening_factor=self_attend_widening_factor, name=f'self_attend_id_{idx}')) def __call__(self, inputs: chex.ArrayTree, *, is_training: bool, pre_attention_residual: Optional[chex.ArrayTree] = None, attention_mask: Optional[chex.Array] = None) -> chex.ArrayTree: assert len(inputs.shape) == 4 # (batch, groups, index, channels) # pytype: disable=attribute-error # numpy-scalars if is_training: output_index_dim = self.output_index_dim_train else: output_index_dim = self.output_index_dim_eval # Optionally regroup (this often means "reshape") inputs to a different # number of output groups. Elements in different groups can't interact. # Typically used in HiP. if self.regroup_inputs: inputs = regroup( inputs=inputs, num_output_groups=self.num_output_groups, regroup_type=self.regroup_type) else: chex.assert_equal(inputs.shape[GROUPS_DIM], self.num_output_groups) # pytype: disable=attribute-error # numpy-scalars z = self.projector( inputs=inputs, pre_attention_residual=pre_attention_residual, is_training=is_training, attention_mask=attention_mask) chex.assert_shape(z, (inputs.shape[BATCH_DIM], self.num_output_groups, # pytype: disable=attribute-error # numpy-scalars output_index_dim, self.num_output_channels)) for self_attend in self.self_attentions: z = self_attend(z, is_training=is_training) chex.assert_shape(z, (inputs.shape[BATCH_DIM], self.num_output_groups, # pytype: disable=attribute-error # numpy-scalars output_index_dim, self.num_output_channels)) return z class Embedder(hk.Module): """Projects inputs to the target number of channels. Inputs should be a dictionary of {modality_name: (batch_size, index_dim, num_channels)}. The output format will be similar, but with the new number of channels. Note both inputs and outputs are ungrouped. Grouping is handled by the Grouper module. """ def __init__(self, *, num_embedding_channels: int, with_bias: bool = True, name: str = 'embedder'): super().__init__(name=name) self.with_bias = with_bias self.num_embedding_channels = num_embedding_channels self._orig_channels = None def embed(self, inputs: Mapping[str, chex.Array]) -> Dict[str, chex.Array]: """Takes raw inputs and embeds them to num_embedding_channels. Args: inputs: A dictionary of modality name and (batch, index, channels) value. Returns: A dictionary of modality name and (batch, index, num_embedding_channels). """ _assert_input_shapes(inputs, expected_rank=3) self._orig_channels = {} out = {} for modality_name, value in inputs.items(): # value: (batch, index, channels) self._orig_channels[modality_name] = value.shape[CHANNELS_DIM] conv_1d_embed = hk.Linear( output_size=self.num_embedding_channels, with_bias=self.with_bias, w_init=hk.initializers.VarianceScaling(1.0), name=f'embed_{modality_name}') out[modality_name] = conv_1d_embed(value) return out def unembed(self, inputs: Mapping[str, chex.Array]) -> Dict[str, chex.Array]: """Reverses an embed operation, reproducing the shape of original inputs. Args: inputs: A dictionary of modality name and (batch, index, num_embedding_channels). Returns: A dictionary of modality name and (batch, index, num_embedding_channels). """ _assert_input_shapes(inputs, expected_rank=3, constant_channels=True) assert self._orig_channels is not None, 'Must call embed() first.' assert ( list(inputs.keys()) == list(self._orig_channels.keys()) ), ( f'Modality names must be consistent. ' f'Expected {self._orig_channels.keys()}; ' f'found {inputs.keys()}.') out = {} for modality_name, value in inputs.items(): # value: (batch, index, channels) conv_1d_unembed = hk.Linear( output_size=self._orig_channels[modality_name], with_bias=self.with_bias, w_init=hk.initializers.VarianceScaling(0.0), name=f'unembed_{modality_name}') out[modality_name] = conv_1d_unembed(value) return out class PositionEncoder(hk.Module): """Adds position encodings to input channels. Inputs should be a dictionary of {modality_name: (batch_size, index_dim, num_channels)}. The output format will be identical. Note both inputs and outputs are ungrouped. Grouping is handled by the Grouper module. """ def __init__( self, num_position_encoding_channels: Optional[int] = None, name: str = 'position_encoder', ): super().__init__(name=name) self.num_position_encoding_channels = num_position_encoding_channels def __call__( self, inputs: Mapping[str, chex.Array] ) -> Tuple[Dict[str, chex.Array], Dict[str, chex.Array]]: """Adds position encodings to the inputs and also returns the encodings. Args: inputs: A dictionary of {modality_name: (batch_size, index_dim, num_channels)} inputs. Returns: A tuple of the inputs with added position encodings, as well as the raw encodings. """ _assert_input_shapes(inputs, expected_rank=3, constant_channels=True) num_channels = next(iter(inputs.values())).shape[CHANNELS_DIM] if self.num_position_encoding_channels is None: num_position_encoding_channels = num_channels else: num_position_encoding_channels = self.num_position_encoding_channels out = {} pos_encodings = {} for modality_name, value in inputs.items(): # value: (batch, index, channels) pos_encodings_i = perceiver_helpers.TrainablePositionEncoding( index_dim=value.shape[INDEX_DIM], num_channels=value.shape[CHANNELS_DIM], # Unshared between modalities. name=f'pos_emb_mae_{modality_name}')(value.shape[BATCH_DIM]) if num_position_encoding_channels != num_channels: # Project to required size. conv_1d_encode = hk.Linear( output_size=num_channels, with_bias=False, w_init=hk.initializers.VarianceScaling(1.0), # Shared between modalities. name='position_encoding_linear') pos_encodings_i = conv_1d_encode(pos_encodings_i) pos_encodings[modality_name] = pos_encodings_i out[modality_name] = value + pos_encodings[modality_name] return out, pos_encodings @chex.dataclass class _GroupInfo: modality_name: str group_idx: List[int] final_padding: int group_padding: int class ConstNumGrouper(hk.Module): """Groups inputs into a constant number of groups. The group size will grow based on the inputs. Inputs should be a dictionary of {modality_name: (batch_size, index_dim, num_channels)}. The output format will be (batch_size, num_groups, new_index_dim (computed), num_channels). Notes: Inputs will be ordered based on the insertion order of the dict. Make sure this is consistent across calls. batch_size and num_channels must be constant across modalities. The Grouper will ensure that multiple modalities are not mixed in a single group. Padding will be added proportionally at the end of each group, with extra padding at the last group of each modality. """ def __init__( self, *, num_groups: int, name: str = 'constant_number_grouper', ): """Builds the Grouper. Args: num_groups: The number of groups to create. name: Haiku module name. """ super().__init__(name=name) self.num_groups = num_groups self._group_map = None def _build_group_map(self, inputs: Mapping[str, chex.Array]): index_dims = [v.shape[INDEX_DIM] for v in inputs.values()] assign_groups_to_modalities = perceiver_helpers.assign_groups_to_modalities num_groups_per_modality, index_dim_per_group = assign_groups_to_modalities( self.num_groups, index_dims) group_map = [] next_group_id = 0 for (name, value), num_modality_groups in zip(inputs.items(), num_groups_per_modality): index_dim = value.shape[INDEX_DIM] assigned_groups = list( range(next_group_id, next_group_id + num_modality_groups)) next_group_id += num_modality_groups final_padding = perceiver_helpers.padding_to_make_divisible( index_dim, num_modality_groups) local_index_dim_per_group = (index_dim + final_padding) // num_modality_groups group_padding = index_dim_per_group - local_index_dim_per_group group_map.append( _GroupInfo( modality_name=name, group_idx=assigned_groups, final_padding=final_padding, group_padding=group_padding)) self._group_map = group_map def group(self, inputs: Mapping[str, chex.Array]) -> chex.Array: """Groups a given input with the appropriate padding. This method can be called multiple times on inputs that require similar grouping and padding (e.g., a sample and its attention mask). Args: inputs: A dict of modality names and (batch, index, channel) values. Returns: A tensor of shape (batch, group, index, channel). """ _assert_input_shapes(inputs, expected_rank=3, constant_channels=True) self._build_group_map(inputs) grouped_inputs = [] for group_info, value in zip(self._group_map, inputs.values()): x = jnp.pad(value, ((0, 0), (0, group_info.final_padding), (0, 0))) x = einshape('b(gm)...->bgm...', x, g=len(group_info.group_idx)) x = jnp.pad(x, ((0, 0), (0, 0), (0, group_info.group_padding), (0, 0))) grouped_inputs.append(x) return jnp.concatenate(grouped_inputs, axis=1) def ungroup(self, latents: chex.Array) -> Dict[str, chex.Array]: """Ungroups a given input into a dict of modalities and values. Args: latents: A tensor of (batch, group, index, channel). Returns: A dict of the original modality names and their values. """ assert len(latents.shape) == 4 out = {} for group_info in self._group_map: # Select only the relevant groups. x = latents[:, group_info.group_idx, :, :] # Remove per-group padding. x = x[:, :, :x.shape[INDEX_DIM] - group_info.group_padding, :] x = einshape('bgm...->b(gm)...', x, g=len(group_info.group_idx)) # Remove final padding. x = x[:, :x.shape[INDEX_DIM] - group_info.final_padding, :] out[group_info.modality_name] = x return out class ConcatenateGrouper(hk.Module): """Concatenates inputs into a single group, shared across all modalities. Inputs should be a dictionary of {modality_name: (batch_size, index_dim, num_channels)}. The output format will be (batch_size, num_groups, total_index_dim, num_channels), where total_index_dim = sum_{modality_i} index_dim_i. Notes: Inputs will be ordered based on the insertion order of the dict. Make sure this is consistent across calls. batch_size and num_channels must be constant across modalities. """ def __init__( self, *, name: str = 'concatenate_grouper', ): """Builds the Grouper. Args: name: Haiku module name. """ super().__init__(name=name) self._index_dims = None self._input_names = None def group(self, inputs: Mapping[str, chex.Array]) -> chex.Array: """Groups a given input. This method can be called multiple times on inputs that require similar grouping (e.g., a sample and its attention mask). Args: inputs: A dict of modality names and (batch, index, channel) values. Returns: A tensor of shape (batch, group, index, channel). """ _assert_input_shapes(inputs, expected_rank=3, constant_channels=True) self._input_names = inputs.keys() self._index_dims = [v.shape[INDEX_DIM] for v in inputs.values()] # [B, (I_0 + I_1 + ... + I_N), C] grouped = jnp.concatenate(list(inputs.values()), axis=1) # Add a dummy group axis: return grouped[:, None, ...] def ungroup(self, latents: chex.Array) -> Dict[str, chex.Array]: """Ungroups a given input into a dict of modalities and values. Args: latents: A tensor of (batch, group, index, channel). Returns: A dict of the original modality names and their values. """ assert len(latents.shape) == 4 start_idx = 0 out = dict() for name, index_dim in zip(self._input_names, self._index_dims): end_idx = start_idx + index_dim # [B, 1, (I_0 + I_1 + ... + I_N), C] -> [B, I_i, C] out[name] = latents[:, 0, start_idx:end_idx, :] start_idx = end_idx return out class ReconstructionHead(hk.Module): """Produces a reconstruction from perceiver latents and an MAE query. The reconstruction is in a grouped and embedded form, similar to the input of a PerceiverBlock. It needs to be ungrouped and unembedded. """ def __init__(self, *, use_post_attention_residual: bool = False, name: str = RECONSTRUCTION_HEAD_NAME): super().__init__(name=name) self._use_post_attention_residual = use_post_attention_residual def __call__(self, latents: chex.Array, *, mae_query: chex.Array, is_training: bool) -> chex.Array: """Given latents and an MAE query, builds the reconstruction. Args: latents: The output of a PerceiverBlock. mae_query: MAE query - the second return value of PositionalEncoder. is_training: Current execution mode. Returns: A grouped array of reconstructions for the query. The array will have the shape of the MAE query. """ chex.assert_rank(latents, 4) chex.assert_rank(mae_query, 4) projector = HiPCrossAttention( widening_factor=1, num_heads=1, use_post_attention_residual=self._use_post_attention_residual, ) predictions = projector( inputs=latents, query_inputs=mae_query, is_training=is_training) return predictions def _assert_input_shapes(inputs: Mapping[str, chex.Array], *, expected_rank: int, constant_channels: bool = False): """Given an inputs dictionary, asserts all shapes are correct.""" batch_size = None num_channels = None for modality_name, values in inputs.items(): assert len(values.shape) == expected_rank if batch_size is None: batch_size = values.shape[BATCH_DIM] num_channels = values.shape[CHANNELS_DIM] else: assert (batch_size == values.shape[BATCH_DIM] ), f'batch size is inconsistent for input {modality_name}' if constant_channels: assert (num_channels == values.shape[-1] ), f'num channels is inconsistent for input {modality_name}' return batch_size, (num_channels if constant_channels else None)
hierarchical_perceiver-main
perceiver_blocks.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Perceiver IO and HiP.""" import unittest from absl import logging import chex import haiku as hk import jax from ml_collections import config_dict import numpy as np from parameterized import parameterized from hierarchical_perceiver import perceiver from hierarchical_perceiver import perceiver_helpers def mock_data(): return { 'imagenet': { 'imagenet_image': np.random.random((2, 1024, 3)), 'imagenet_label': np.random.randint(low=0, high=1, size=(2, 32, 1)).astype(np.float32), }, 'audioset': { 'audioset_audio': np.random.random((2, 128, 16)), 'audioset_label': np.random.randint(low=0, high=1, size=(2, 16, 16)).astype(np.float32), } } SAMPLE_LABEL_MODALITIES = ('audioset_label', 'coco_labels', 'imagenet_label', 'jft_label', 'multi_nli_labels', 'objects365_labels') DEFAULT_MODEL_KWARGS = config_dict.ConfigDict({ # Canonical models: 'PerceiverIO': { # The size of the raw ('latent') position encodings. # If != the embedding size, will be projected. 'num_position_encoding_channels': 512, 'activation_name': 'sq_relu', 'dropout_prob': 0.0, 'drop_path_rate': 0.0, }, 'HiP': { # The size of the raw ('latent') position encodings. # If != the embedding size, will be projected. 'num_position_encoding_channels': 512, 'regroup_type': 'reshape', 'activation_name': 'sq_relu', 'dropout_prob': 0.0, 'drop_path_rate': 0.0, # Optional index dimension overrides: }, 'HiPClassBottleneck': { # The size of the raw ('latent') position encodings. # If != the embedding size, will be projected. 'num_position_encoding_channels': 512, 'regroup_type': 'reshape', 'activation_name': 'sq_relu', 'dropout_prob': 0.0, 'drop_path_rate': 0.0, 'label_modalities': SAMPLE_LABEL_MODALITIES, }, }) def select_mae_outputs(output_dict): trimmed_output = {} for dataset, dataset_outs in output_dict.items(): mae_key = perceiver_helpers.ModelOutputKeys.INPUT_RECONSTRUCTION trimmed_output[dataset] = {k: v for k, v in dataset_outs[mae_key].items()} return trimmed_output class PerceiverTest(unittest.TestCase): @parameterized.expand([ # Standard HiP ('HiP', '16', 99_224_996), ('HiP', '256', 95_585_188), ('HiP', 'Mini', 18_709_668), ('HiPClassBottleneck', 'Mini', 21_114_788), ]) def test_all_perceiver_models( self, model_base_name, model_variant_name, expected_num_params): """Test creating Perceiver-like models, as well as their parameter counts. Parameters are counted per key, with the expectation that shared bottleneck models will have more parameters, because the encoder and decoder are not shared. Args: model_base_name: The model's name. Corresponds to a class in `perceiver`. model_variant_name: The model's variant. expected_num_params: Expected number of parameters for the module. """ rng = jax.random.PRNGKey(4) def haiku_fn(inputs): out = {} model = perceiver.build_perceiver( model_base_name=model_base_name, model_variant_name=model_variant_name, model_kwargs=DEFAULT_MODEL_KWARGS[model_base_name]) for dataset_name, v in inputs.items(): out[dataset_name] = model(dataset_name, v, is_training=True) return out inputs = mock_data() with chex.fake_jit(): transformed = hk.transform_with_state(haiku_fn) params, state = transformed.init(rng, inputs) outputs, _ = transformed.apply(params, state, rng, inputs) outputs = select_mae_outputs(outputs) chex.assert_trees_all_equal_shapes(outputs, inputs) _, treedef = jax.tree_flatten(params) num_params = hk.data_structures.tree_size(params) # pylint: disable=g-generic-assert logging.info('Checking parameter counts...') self.assertEqual( num_params, expected_num_params, f'{treedef}: \nExpected {expected_num_params} params, ' f'got {num_params} for model {model_base_name}, ' f'variant {model_variant_name}' ) # pylint: enable=g-generic-assert @parameterized.expand([ # Supersample latents at eval time. ('HiP', 'Mini', None, 128), # Subsample latents at train time. ('HiP', 'Mini', 32, None), ('HiPClassBottleneck', 'Mini', None, 128), # Subsample latents at train time. ('HiPClassBottleneck', 'Mini', 32, None), ]) def test_processor_index_train_eval( self, model_base_name, model_variant_name, processor_index_dim_train, processor_index_dim_eval): """Test HiP processor train-time and eval-time index dimension overrides. Args: model_base_name: The model's name. Corresponds to a class in `perceiver`. model_variant_name: The model's variant. processor_index_dim_train: Train-time index dimension override for the processor block. processor_index_dim_eval: Eval-time index dimension override for the processor block. """ rng = jax.random.PRNGKey(4) def haiku_fn(inputs, is_training): out = {} model_kwargs = DEFAULT_MODEL_KWARGS[model_base_name] # Override the processor_index_dim_ config settings. with model_kwargs.unlocked(): model_kwargs.processor_index_dim_train = processor_index_dim_train model_kwargs.processor_index_dim_eval = processor_index_dim_eval model = perceiver.build_perceiver( model_base_name=model_base_name, model_variant_name=model_variant_name, model_kwargs=model_kwargs) for dataset_name, v in inputs.items(): out[dataset_name] = model(dataset_name, v, is_training=is_training) return out inputs = mock_data() with chex.fake_jit(): transformed = hk.transform_with_state(haiku_fn) params, state = transformed.init(rng, inputs, is_training=True) # Run as training outputs_train, _ = transformed.apply( params, state, rng, inputs, is_training=True) # Run as eval outputs_eval, _ = transformed.apply( params, state, rng, inputs, is_training=False) outputs_train = select_mae_outputs(outputs_train) chex.assert_trees_all_equal_shapes(outputs_train, inputs) outputs_eval = select_mae_outputs(outputs_eval) chex.assert_trees_all_equal_shapes(outputs_eval, inputs) @parameterized.expand([ # Supersample latents at eval time. ('PerceiverIO', 'io_mini', None, 256), # Subsample latents at train time. ('PerceiverIO', 'io_mini', 64, None), ]) def test_z_index_train_eval( self, model_base_name, model_variant_name, z_index_dim_train, z_index_dim_eval): """Test train-time and eval-time index dimension overrides. Args: model_base_name: The model's name. Corresponds to a class in `perceiver`. model_variant_name: The model's variant. z_index_dim_train: Optional train-time index dimension override. z_index_dim_eval: Optional eval-time index dimension override. """ rng = jax.random.PRNGKey(4) def haiku_fn(inputs, is_training): out = {} model_kwargs = DEFAULT_MODEL_KWARGS[model_base_name] # Override the `eval_index_widening_factor` config setting. with model_kwargs.unlocked(): model_kwargs.z_index_dim_train = z_index_dim_train model_kwargs.z_index_dim_eval = z_index_dim_eval model = perceiver.build_perceiver( model_base_name=model_base_name, model_variant_name=model_variant_name, model_kwargs=model_kwargs) for dataset_name, v in inputs.items(): out[dataset_name] = model(dataset_name, v, is_training=is_training) return out inputs = mock_data() with chex.fake_jit(): transformed = hk.transform_with_state(haiku_fn) params, state = transformed.init(rng, inputs, is_training=True) # Run as training outputs_train, _ = transformed.apply( params, state, rng, inputs, is_training=True) # Run as eval outputs_eval, _ = transformed.apply( params, state, rng, inputs, is_training=False) outputs_train = select_mae_outputs(outputs_train) chex.assert_trees_all_equal_shapes(outputs_train, inputs) outputs_eval = select_mae_outputs(outputs_eval) chex.assert_trees_all_equal_shapes(outputs_eval, inputs)
hierarchical_perceiver-main
perceiver_test.py